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1. Introduction

Abstract convexity has found many applications in the study of problems of

mathematical analysis and optimization. Abstract convexity has mainly been

used for the study of point-to-point functions. Examples of its use in the

analysis of multifunctions can be found in [3, 13, 14, 24].

Several approaches to the theory of monotone multifunctions have established

links between maximal monotone multifunctions and convex functions (see
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[4, 5, 9, 12, 15, 16, 23, 33, 34]). The richness of the theory of monotone opera-

tors has given rise to a great number of works and the simplification of proofs

and theory that has resulted from the use of convex analysis techniques justifies

an interest in these links.

The theory of monotone multifunctions have found many applications in opti-

mization and variational analysis [1, 11]. Let X be a real Banach space and

X∗ be the dual space of X. Denote by 〈., .〉 the duality product between X and

X∗.

Rockafellar in [26] proved that subdifferentials of proper lower semi-continuous
convex functions on X are maximal monotone. In general, maximal monotone
operators are not subdifferentials of convex functions. Krauss in [12] man-
aged to represent maximal monotone operators by subdifferentials of saddle
functions on X ×X. After that, Fitzpatrick [9] proved that the family

H(A) := {h ∈ Γ(X ×X∗); h(x, x∗) ≥ 〈x, x∗〉 ∀ (x, x∗), h(x, x∗) =

〈x, x∗〉 ∀(x, x∗) ∈ G(A)}

is non-empty, where A : X −→ 2X
∗

is an arbitrary maximal monotone operator and

Γ(X × X∗) is the set of all lower semi continuous convex functions h : X ×X∗ −→

(−∞,+∞]. He defined the function ϕA : X ×X∗ −→ (−∞,+∞] by

ϕA(x, x
∗) := sup

(y,y∗)∈G(A)

〈x− y, y∗ − x∗〉+ 〈x, x∗〉, ∀ (x, x∗) ∈ X ×X∗,

and showed that ϕA ∈ H(A). It is worth noting that ϕA is called the Fitzpatrick

function and moreover ϕA represents A, that is, ϕA ∈ H(A).

In a recent paper, Mart́ınez-Legaz and Théra [16] rediscovered the Fitzpatrick func-

tion associated to maximal monotone operators and characterized the family

{ϕA : A : X −→ 2X
∗

is a maximal monotone operator}.

In [4] Burachik and Svaiter also rediscovered Fitzpatrick functions and studied the

whole family of lower semi-continuous convex functions associated with a given max-

imal monotone operator A, that is, those functions h ∈ H(A). They proved that this

family is invariant under a suitable generalized conjugation operator and has a biggest

element. Recently, Mart́ınez-Legaz and Svaiter [15] extended the representation of

maximal monotone operators by lower semi-continuous convex functions to a larger

class of monotone operators. They showed that, in the finite-dimensional case, the

class of representable operators is the one consisting of the intersections of maximal

monotone operators.

In the sequel, we present a citation of the available literature in the topic of abstract

convexity.

The theory of Fenchel conjugation and subdifferentials plays a central role in convex

analysis. Fenchel’s theorem on the second conjugate and duality for the sum of two

convex functions, and the Fenchel-Rockafellar’s theorem on the sum of the subdif-

ferentails have substantially influenced the development of convex analysis and its

applications in various ways. For instance, Fenchel’s duality theorem, which states

www.SID.ir



Arc
hive

 of
 S

ID

Sum Formula for Maximal Abstract Monotonicity and ... 87

an equality between the minimization of a sum of two convex functions and the max-

imization of the sum of concave functions, using conjugates, is fundamental to the

study of convex optimization.

In 1970, Moreau [21] observed that Fenchel conjugation and the second conjugation

theorem can be established in a very general setting, using two arbitrary sets and

arbitrary coupling functions. The second conjugation theorem in this setting, known

as Fenchel-Moreau theorem, has given rise to the rich theory of abstract convexity

(see [22, 27, 32]). Moreover, extensions of Fenchel’s duality theorem and Fenchel-

Rockafellar’s theorem, which have played key roles in the application of convex anal-

ysis, have been presented for abstract convex functions in [10].

Abstract convexity has found many applications in mathematical analysis and opti-

mization. Also, it has found interesting applications to the theory of inequalities (see

[27]). Abstract convexity opens the way for extending some main ideas and results

from classical convex analysis to much more general classes of functions, mappings

and sets. It is well-known that every convex, proper and lower semicontinuous func-

tion is the upper envelope of a set of affine functions. Therefore, affine functions

play a crucial role in classical convex analysis. In abstract convexity, the role of the

set of affine functions is taken by an alternative set H of functions, and their upper

envelopes constitute the set of abstract convex functions. Different choices of the set

H generate variants of the classical concepts, and have shown important applications

in global optimization (see [28, 29, 30, 31]). Moreover, if a family of functions is

abstract convex for a specific choice of H, then we can use some key ideas of convex

analysis in order to gain new insight on these functions. On the other hand, by us-

ing an alternative set for affine functions, we indentify those facts in classical convex

analysis which depend on the specific properties of affine functions.

Abstract convexity has mainly been used for the study of point-to-point functions.

Examples of its use in the analysis of multifunctions can be found in works of Levin

[13, 14], who focused in the study of abstract cyclical monotonicity, and also, Penot

[24] by using a framework of generalized convexity showed the existence of a convex

representation of a maximal monotone operator by a convex function which is in-

variant with respect to the Fenchel conjugacy. Recently, Burachik and Rubinov [3]

studied semi-continuity properties of abstract monotone operators. Roughly speaking

the study of monotone operators reduces to the study of the convexification of the

coupling functions, restricted to monotone sets. Convexity is sometimes a restrictive

assumption, and therefore based on the works [3, 5, 14, 15, 23, 24, 34] the problem

arises to generalize the theory of monotone operators via abstract convexity.

Recently, a theory of monotone operators has been developed in the framework of

abstract convexity (see [8, 18, 19]). Indeed, in [8] a generalization of Fenchel du-

ality theorem in the framework of abstract convexity and also in [19] some criteria

for maximal abstract monotonicity have been given. The Rockafellar’s surjectivity

theorem is one of the most important results to investigate maximal monotone oper-

ators in reflexive Banach spaces. The necessary condition of Rockafellar’s surjectivity

theorem has been extended to abstract convex framework in ([19], Theorem 4.3). In

this paper, we are going to show that this condition can be also sufficient. On the

other words, although the ”abstract duality pairing” (which is defined by (2.2)) is
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symmetric, the theory presented in this paper would specialize to if we consider the

set of all continuous linear functionals as the set of elementary functions.

One of the most important questions in this environment is when the sum of two

maximal abstract monotone operators is maximal. In general, this is not true even

in the classical sense without a qualification assumption. Some results for the sum

formula in reflexive Banach spaces have been shown in [2, 7, 25]. In this paper,

we shall show that there is an example, which shows that the sum of two maximal

abstract monotone operators is also maximal.

The structure of this paper is as follows: In section 2, we provide some preliminary

definitions and results related to abstract convexity and abstract monotonicity. In

section 3, we give an example in which the sum of two maximal abstract monotone

operators is maximal. Finally, in section 4, we prove that the necessary condition in

([19], Theorem 4.3) is also sufficient. In fact, we show that Rockafellar’s surjectivity

holds in the framework of abstract monotonicity.

2. Preliminaries

Let X and Y be two sets. Recall (see [6]) that a set valued mapping (multifunction)

from X to Y is a mapping F : X −→ 2Y , where 2Y represents the collection of all

subsets of Y. We define the domain and graph of F by

dom (F ) := {x ∈ X : F (x) 6= ∅},

and

G(F ) := {(x, y) ∈ X × Y : y ∈ F (x)},

respectively. The inverse of F is the set valued mapping F−1 : Y −→ 2X defined by

F−1(y) := {x ∈ X : y ∈ F (x)}.

Now, let X be a set and L be a set of real valued functions l : X −→ R, which will

be called abstract linear. For each l ∈ L and c ∈ R, consider the shift hl,c of l on the

constant c :

hl,c(x) := l(x)− c, (x ∈ X).

The function hl,c is called L-affine. Recall (see [27]) that the set L is called a set of

abstract linear functions if hl,c /∈ L for all l ∈ L and all c ∈ R \ {0}. The set of all

L-affine functions will be denoted by HL. If L is the set of abstract linear functions,

then hl,c = hl0,c0 if and only if l = l0 and c = c0.

If L is a set of abstract linear functions, then the mapping (l, c) −→ hl,c is a one-

to-one correspondence. In this case, we identify hl,c with (l, c), in other words, we

consider an element (l, c) ∈ L × R as a function defined on X by x −→ l(x) − c

(x ∈ X).

A function f : X −→ (−∞,+∞] is called proper if dom f 6= ∅, where dom f is defined

by

dom f := {x ∈ X : f(x) < +∞}.

Let F(X) be the set of all functions f : X −→ (−∞,+∞] and the function −∞.

Recall (see [27]) that a function f ∈ F(X) is called H-convex (H = L, or H = HL)

if

f(x) = sup{h(x) : h ∈ supp (f,H)}, ∀ x ∈ X,
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where

supp (f,H) := {h ∈ H : h ≤ f}

is called the support set of the function f, and h ≤ f if and only if h(x) ≤ f(x) for

all x ∈ X.

Note that if X is a locally convex Hausdorff topological vector space and L is the set of

all real valued continuous linear functionals defined on X, then f : X −→ (−∞,+∞]

is an L-convex function if and only if f is lower semi-continuous and sublinear. Also,

f is an HL-convex function if and only if f is lower semi-continuous and convex.

Now, we consider the coupling function 〈., .〉 : X × L −→ R defined by 〈x, l〉 := l(x)

for all x ∈ X and all l ∈ L. For a function f ∈ F(X), define the Fenchel-Moreau

L-conjugate f∗

L of f (see [27]) by

f∗

L(l) := sup
x∈X

(l(x)− f(x)), l ∈ L.

Similarly, the Fenchel-Moreau X-conjugate g∗X of an extended real valued function g

defined on L is given by

g∗X (x) := sup
l∈L

(l(x)− g(l)), x ∈ X.

The function f∗∗

L,X := (f∗

L)
∗

X is called the second conjugate (or biconjugate) of f, and

by definition we have

f∗∗

L,X(x) := sup
l∈L

(l(x)− f∗

L(l)), x ∈ X.

A set C ⊂ F(X) is called additive if for f1, f2 ∈ C, then f1 + f2 ∈ C.

If X is a set on which an addition + is defined, then we say that a function f ∈ F(X)

is additive if

f(x+ y) = f(x) + f(y), ∀ x, y ∈ X.

Let f : X −→ (−∞,+∞] be a function and x0 ∈ domf. Recall (see [27]) that an

element l ∈ L is called an L-subgradient of f at x0 if

f(x) ≥ f(x0) + l(x)− l(x0), ∀ x ∈ X.

The set ∂Lf(x0) of all L-subgradients of f at x0 is called the L-subdifferential of f at

x0. The subdifferential ∂Lf(x0) (see [[27], Proposition 1.2]) is non-empty if and only

if x0 ∈ domf and

f(x0) = max{h(x0) : h ∈ supp (f,HL)}.

Now, assume that X is a set and L is a set of real valued abstract linear functions

l : X −→ R defined on X, with the coupling function 〈., .〉 : X × L −→ R defined by

〈x, l〉 := l(x) for all x ∈ X and all l ∈ L. In the following, we present some definitions

and properties of abstract monotone operators (see [8, 18, 14, 24]).

(i) A set valued mapping T : X −→ 2L is called L-monotone operator (or, abstract

monotone operator) if

(2.1) l(x)− l(x′)− l′(x) + l′(x′) ≥ 0

for all x, x′ ∈ X and all l ∈ Tx, l′ ∈ Tx′.

It is worth to note that if X is a Banach space with dual space X∗ and L := X∗,

then T is a monotone operator in the classical sense.
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(ii) A set valued mapping T : X −→ 2L is called maximal L-monotone (or maximal

abstract monotone) if T is L-monotone and T = T ′ for any L-monotone operator

T ′ : X −→ 2L such that G(T ) ⊆ G(T ′).

In the following, we present some results which have been obtained in [8].

Let X be a set with an operation + having the following properties:

(A1) x+ y ∈ X, ∀ x, y ∈ X.

(A2) There exists a unique element 0 ∈ X such that 0 + x = x+ 0 = x, ∀ x ∈ X.

(A3) For each x ∈ X there exists a unique element − x ∈ X such that x+ (−x) =

(−x) + x = 0.

Let L be a set of real valued additive abstract linear functions defined on X. Assume

that L is equipped with the point-wise operation + of functions such that (L,+)

satisfies the properties (A1), (A2) and (A3), where for each l ∈ L, define (−l)(x) :=

−l(x) for all x ∈ X, and define the function 0 ∈ L by 0(x) := 0 for all x ∈ X. We

consider the coupling function 〈., .〉 : X × L −→ R defined by 〈x, l〉 := l(x) for all

x ∈ X and all l ∈ L.

Remark 2.1. Note that for each l ∈ L, we have l(0) = 0. Moreover, l(−x) = −l(x)

for all x ∈ X and all l ∈ L. Indeed, assume that l ∈ L and x ∈ X are arbitrary. Then

0 = l(0) = l(x+ (−x)) = l(x) + l(−x),

and hence l(−x) = −l(x) for all x ∈ X and all l ∈ L.

Let K ⊆ X × L be any non-empty set such that K satisfies the properties (A1),

(A2) and (A3), where −(x, l) := (−x,−l) and 0 := (0, 0) ∈ K. Define L∗ := {(l, x) ∈

L × X : (x, l) ∈ K} ⊆ L × X. It is clear that L∗ satisfies the properties (A1), (A2)

and (A3). Define the coupling function 〈., .〉∗ : K × L∗ −→ R by

(2.2) 〈(x′, l′), (l, x)〉∗ := l(x′) + l′(x), ∀ (x′, l′) ∈ K; ∀ (l, x) ∈ L∗.

One can consider an element (l, x) ∈ L∗ as a function defined on K by

(l, x)(x′, l′) := 〈(x′, l′), (l, x)〉∗, ∀ (x′, l′) ∈ K,

and an element (x, l) ∈ K as a function defined on L∗ by

(x, l)(l′, x′) := 〈(x, l), (l′, x′)〉∗, ∀ (l′, x′) ∈ L∗.

Note that the coupling function 〈., .〉∗ is symmetric, that is

〈(x′, l′), (l, x)〉∗ = 〈(x, l), (l′, x′)〉∗, for all (x′, l′) ∈ K, and all (l, x) ∈ L∗.

It is easy to check that L∗ and K are sets of real valued abstract linear functions.

Indeed, if there exist (l0, x0) ∈ L∗ and c0 ∈ R \ {0} such that h(l0,x0),c0 ∈ L∗, where

h(l0,x0),c0 := (l0, x0)− c0, then h(l0,x0),c0 = (l, x) for some (l, x) ∈ L∗. It follows that

(2.3) l0(x
′) + l′(x0)− c0 = l(x′) + l′(x), ∀ (x′, l′) ∈ K.

Since (0, 0) ∈ K, put x′ = 0 and l′ = 0 in (2.3). Thus, we have c0 = 0. This

is a contradiction, because c0 6= 0. Hence, h(l,x),c /∈ L∗ for all (l, x) ∈ L∗ and all

c ∈ R\{0}. Therefore, L∗ is a set of abstract linear functions. By a similar argument,

K is also a set of abstract linear functions.
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Denote by

P(HL∗) := {h : K −→ (−∞,+∞] : h is a proper HL∗ − convex function}

the set of all properHL∗-convex functions defined onK. Define the transpose operator

t : K −→ L∗ by t(x, l) := (l, x) for all (x, l) ∈ K.

In the sequel, we shall use the following assumption which has been introduced in [8].

Assumption (D): Assume that there exists a function γ ∈ P(HL∗) such that

(i) 0 ≤ γ < +∞ on K,

(ii) γ∗

L∗ ◦ t = γ on K,

(iii) 〈., .〉+ γ ≥ 0 on K,

(iv) If γ(x, l) = 0, then (x, l) = (0, 0).

(v) γ(−(x, l)) = γ(x, l) for all (x, l) ∈ K.

Notice that, in the case when X is a Banach space with the dual space X∗ and L :=

X∗, the function γ defined by γ (x, x∗) :=
1

2

(

‖x‖2 + ‖x∗‖2
)

satisfies the Assumption

(D). There are examples of function γ which satisfies Assumption (D) in the case of

abstract convexity, for more details see [8].

3. Some Results on Abstract Monotonicity

In this section, we give an example in which the sum of two maximal abstract mono-

tone operators is also maximal. Indeed, It has been shown in [18] that the abstract

subdifferentials of IPH functions are maximal abstract monotone operators. We shall

show that the sum of two abstract subdifferentials of IPH functions is maximal.

Let X be a topological vector space. We assume that X is equipped with a closed

convex pointed cone S (the latter means that S ∩ (−S) = {0}). We say x ≤ y or

y ≥ x if and only if y − x ∈ S.

Recall that the function p : X −→ [−∞,+∞] is IPH if p is an increasing and positively

homogeneous function (the latter means that p(λx) = λp(x) for all x ∈ X and all

λ > 0).

Now, consider the function l : X ×X −→ [0,+∞] defined by

l(x, y) := max{λ ≥ 0 : λy ≤ x}, (x, y ∈ X),

(with the convention max ∅ := 0).

This function was introduced and examined in [20]. The following results for the

function l have been proved in ([20], Proposition 3.1). In fact, for every x, y, x′, y′ ∈

X, and γ > 0, one has

l(γx, y) = γl(x, y),(3.1)

l(x, γy) =
1

γ
l(x, y),(3.2)

l(x, y) = +∞ =⇒ y ∈ −S,(3.3)

l(x, x) = 1 ⇐⇒ x /∈ −S,(3.4)

x ∈ S, y ∈ −S =⇒ l(x, y) = +∞,(3.5)

x ≤ x′ =⇒ l(x, y) ≤ l(x′, y),(3.6)

y ≤ y′ =⇒ l(x, y) ≥ l(x, y′).(3.7)
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Let LS := {ly : y ∈ X\(−S)}, where for each y ∈ X\(−S), define ly : X −→ [0,+∞]

by ly(x) := l(x, y) for all x ∈ X. Note that ly is an IPH function for each y ∈ X, and

every non-negative IPH function is LS-convex. Also, one has supp (p,LS) = {ly ∈

LS : p(y) ≥ 1} (for more details see [20]). By the next lemma, ∂LS
p is characterized.

Lemma 3.1. ([17], Theorem 3.3) Let p : X → [0,+∞] be an IPH function and

p(x) 6= 0,+∞, then

∂LS
p(x) = {ly ∈ LS : ly(x) = p(x), p(y) = 1}.

Consider the set L = LS ∪{0}. Trivially, if p : X → [0,+∞] is an IPH function, then

p is L-convex. Also, ∂Lp(x) 6= ∅ for every x ∈ X with p(x) 6= +∞. Indeed, assume

that p(x) 6= 0 (note that in this case we have p(x) > 0, and hence x /∈ −S). Then, by

(3.2), (3.4) and Lemma 3.1, l x
p(x)

∈ ∂Lp(x). If p(x) = 0, then 0 ∈ ∂Lp(x).

In the following, we show that ∂Lp is a maximal L-monotone operator, although

the proof is similar to that of Theorem 3.1 in [18], which is obtained with respect to

the set LS .

Theorem 3.2. Let p : X → [0,+∞) be an IPH function and L = LS ∪ {0}. Then,

∂Lp is a maximal L-monotone operator.

Proof. First, we are going to show that ∂Lp is L-monotone. To this end, consider

(x, l), (x0, l0) ∈ G(∂Lp). It is easy to see that ∂Lp(x) = {l ∈ L : l(x) = p(x), l(t) ≤

p(t), ∀ t ∈ X}. So we have

l(t) ≤ p(t), l(x) = p(x); l0(t) ≤ p(t), l0(x0) = p(x0) (∀ t ∈ X).

Therefore,

l(x)− l(x0)− l0(x) + l0(x0) = (p(x)− l0(x)) + (p(x0)− l(x0)) ≥ 0.

Hence, ∂Lp is an L-monotone operator.

For maximality of ∂Lp, suppose that (x0, l0) is monotonically related to G(∂Lp), so

(3.8) l(x)− l(x0)− l0(x) + l0(x0) ≥ 0 (∀ l ∈ ∂Lp(x), ∀ x ∈ X).

Let λ > 0 and x = λx0. Then, as λ → +∞, we obtain l0(x0) ≤ l(x0). If λ → 0,

we conclude that l0(x0) ≥ l(x0). Therefore, l(x0) = l0(x0) for each l ∈ ∂Lp(x0), and

hence, since l(x0) = p(x0), we deduce that l0(x0) = p(x0).

On the other hand, let x ∈ X be arbitrary. Replace x by λx in (3.8), so as λ→ +∞

we get

l0(x) ≤ l(x) (∀ l ∈ ∂Lp(x), ∀ x ∈ X).

Since l(x) ≤ p(x) for all x ∈ X and all l ∈ ∂Lp(x)), we can obtain l0(x) ≤ p(x). This,

together with the fact that l0(x0) = p(x0) implies that l0 ∈ ∂Lp(x0), which completes

the proof. �

In the following, we investigate the main result of this section.

Theorem 3.3. Let p1, p2 : X → [0,+∞) be two IPH functions and L = LS ∪ {0}.

Then ∂Lp1 + ∂Lp2 is a maximal L-monotone operator.
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Proof. First, we claim that ∂L(p1 + p2)(x0) ⊂ ∂Lp1(x0) + ∂Lp2(x0) for all x0 ∈ X.

Let l ∈ ∂L(p1 + p2)(x0) and l 6= 0. So there exists ly0 ∈ LS such that l = ly0 . Assume

that (p1 + p2)(x0) 6= 0, it follows from Lemma 3.1 that (p1 + p2)(x0) = ly0(x0) and

(p1 + p2)(y0) = 1.

Now, consider the possible three cases.

Case (i): Assume that p1(y0) 6= 0 6= p2(y0). Put, y1 = y0
p1(y0)

and y2 = y0
p2(y0)

. Let

x ∈ X be arbitrary. Then, by (3.2), we have

ly1(x) + ly2(x) = p1(y0)ly0(x) + p2(y0)ly0(x)

= ((p1 + p2)(y0))ly0(x)

= ly0(x).

Since p1(y1) = 1 = p2(y2), it follows that ly1 ∈ supp (p1, L) and ly2 ∈ supp (p2, L),

which means that ly1(x) ≤ p1(x) and ly2(x) ≤ p2(x) for all x ∈ X.

Now, assume that ly1(x0) < p1(x0). Then, ly0(x0) = ly1(x0) + ly2(x0) < p1(x0) +

p2(x0) = ly0(x0). This is a contradiction. So, ly1(x0) = p1(x0). By a similar ar-

gument we have ly2(x0) = p2(x0). Therefore, by Lemma 3.1, ly1 ∈ ∂Lp1(x0) and

ly2 ∈ ∂Lp2(x0). Hence, ly0 = ly1 + ly2 ∈ ∂Lp1(x0) + ∂Lp2(x0).

Case (ii): Suppose that p1(y0) = 0. So, p2(y0) = 1 and ly0 ∈ supp (p2, L), which

implies that

ly0(x0) ≤ p2(x0) ≤ p1(x0) + p2(x0) = ly0(x0).

Thus, p2(x0) = ly0(x0) and p1(x0) = 0. This, together with the fact that p2(y0) = 1

implies that ly0 ∈ ∂Lp2(x0). Moreover, since p1(x0) = 0, it follows that 0 ∈ ∂Lp1(x0).

Hence, ly0 = 0 + ly0 ∈ ∂Lp1(x0) + ∂Lp2(x0).

Case (iii): Assume that p2(y0) = 0. This is similar to the case (ii).

Note that since p1(y0) + p2(y0) = 1, then p1(y0) and p2(y0) can not be vanished

simultaneous.

if (p1 + p2)(x0) = 0 then ∂L(p1 + p2)(x0) = {ly ; ly(x0) = 0, (p1 + p2)(y) ≥ 1} ∪ {0}.

Use this fact and the above cases except in case (i) put y1 = y0(p1(y0)+p2(y0))
p1(y0)

and

y2 = y0(p1(y0)+p2(y0))
p2(y0)

, then we get the desirable result.

Now, assume that l = 0, which means that p1(x0) + p2(x0) = 0. Thus, p1(x0) =

0 = p2(x0). This implies that 0 ∈ ∂Lp1(x0) ∩ ∂Lp2(x0). Therefore, 0 = 0 + 0 ∈

∂Lp1(x0) + ∂Lp2(x0). Hence, the claim proved in all cases.

Due to Theorem 3.2, ∂L(p1 + p2) is a maximal L-monotone operator because p1 + p2
is an IPH function. On the other hand, by the above one has G(∂L(p1 + p2)) ⊂

G(∂Lp1 + ∂Lp2). Then, by L-monotonicity of ∂Lp1 + ∂Lp2, we conclude that ∂L(p1 +

p2) = ∂Lp1 + ∂Lp2. Hence, ∂Lp1 + ∂Lp2 is a maximal L-monotone operator. �

4. Rockafellar’s Surjectivity Theorem in the Framework of Abstract

Monotonicity

In this section, we present a generalization of Rockafellar’s surjectivy theorem in

the framework of abstract monotonicity. In fact, in ([19] Theorem 4.3), a necessary

condition for this generalization has been shown. We shall show that the sufficiency
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of this condition can be obtained.

Throughout this section, let X, L be as in section 2 and K := X × L, L∗ := L×X

and 〈., .〉∗ be the coupling function defined by (2.2).

Let γ be a function defined on K which satisfies Assumption (D). In [8] and [19], by

using the function γ, some suitable results have been obtained in the case of abstract

monotonicity. We shall concentrate on Assumption (D) to obtain more results.

Proposition 4.1. Assume that γ satisfies Assumption (D). Then,

γ(x, 0) ≤ max{γ(x, l), γ(x,−l)} (∀ x ∈ X, ∀ l ∈ L),

and

γ(0, l) ≤ max{γ(x, l), γ(−x, l)} (∀ x ∈ X, ∀ l ∈ L).

Proof. We only prove the first inequality and the second one is similar. Let x ∈ X

and l ∈ L be arbitrary. Put A := {l′(x) − γ(x′, l′) : x′ ∈ X, l′ ∈ L} and B :=

{±l(x′) + l′(x)− γ(x′, l′) : x′ ∈ X, l′ ∈ L}. Trivially, supA ≤ supB. So we have

γ(x, 0) = sup
(x′,l′)∈X×L

(l′(x)− γ(x′, l′))

≤ sup
(x′,l′)∈X×L

(±l(x′) + l′(x)− γ(x′, l′))

= max{ sup
(x′,l′)∈X×L

(l(x′) + l′(x)− γ(x′, l′)), sup
(x′,l′)∈X×L

(−l(x′) + l′(x)− γ(x′, l′))}

= max{γ(x, l), γ(x,−l)}.

Hence, the proof is complete. �

In the rest of this section, we replace part (v) of Assumption (D) by (v′) which is

defined as follows:

(v′) γ(−x, l) = γ(x, l) = γ(x,−l) for all x ∈ X and all l ∈ L,

in this case, we denote (D) by (D′).

Clearly, (v′) implies (v), and so all results which have been obtained based on As-

sumption (D) in [8] and [19] still hold for Assumption (D′).

Remark 4.2. By (v′) and Proposition 4.1, we conclude that γ(x, 0) ≤ γ(x, l) and

γ(0, l) ≤ γ(x, l) for all x ∈ X and all l ∈ L.

Lemma 4.3. Assume that γ satisfies Assumption (D′). Then the following assertions

are true.

(i) We have

γ(0, l) = sup
x′∈X

(l(x′)− γ(x′, 0)) (∀ l ∈ L).

(ii) We have

γ(x, 0) = sup
l′∈L

(l′(x)− γ(0, l′)) (∀ x ∈ X).
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Proof. The proof of (ii) is similar to that of (i), so we only prove (i). It is clear that

sup
x′∈X

(l(x′)− γ(x′, 0)) ≤ sup
(x′,l′)∈X×L

(l(x′)− γ(x′, l′)).

For the converse inequality, since γ(x′, 0) ≤ γ(x′, l′) for all (x′, l′) ∈ X × L, then

l(x′)− γ(x′, 0) ≥ l(x′)− γ(x′, l′), which implies that

sup
x′∈X

(l(x′)− γ(x′, 0)) ≥ sup
(x′,l′)∈X×L

(l(x′)− γ(x′, l′)).

Hence, the proof is complete. �

Assume that Assumption (D′) holds for the function γ. We are going to define a

new function γ̄, which not only satisfies Assumption (D′) but also has the following

property

γ̄(x, l) = γ̄(x, 0) + γ̄(0, l) (∀ (x, l) ∈ X × L).

Define the function γ̄ as follows

(4.1) γ̄ : X × L→ [0,+∞]; γ̄(x, l) := γ(x, 0) + γ(0, l), ∀ (x, l) ∈ X × L.

Theorem 4.4. Suppose that Assumption (D′) holds for the function γ. Let the

function γ̄ be defined by (4.1). Then Assumption (D′) also holds for γ̄. Moreover,

γ̄(x, l) = γ̄(x, 0) + γ̄(0, l) for all x ∈ X and all l ∈ L.

Proof. It is easy to see that γ̄(x, l) = γ(x, 0) + γ(0, l) = γ̄(x, 0) + γ̄(0, l), and also γ̄

satisfies (i), (iii), (iv), (v′) and (vi) of Assumption (D′).

Now, we show that γ̄∗

L∗ ◦ t = γ̄. By definition of γ̄∗

L∗ and Lemma 4.3 we have

(γ̄∗

L∗ ◦ t)(x, l) = γ̄∗(l, x)

= sup
(x′,l′)∈X×L

(l′(x) + l(x′)− γ̄(x′, l′))

= sup
(x′,l′)∈X×L

(l′(x) + l(x′)− γ(x′, 0)− γ(0, l′))

= sup
x′∈X, l′∈L

(l′(x)− γ(0, l′) + l(x′)− γ(x′, 0))

= sup
l′∈L

(l′(x)− γ(0, l′)) + sup
x′∈X

(l(x′)− γ(x′, 0))

= γ(x, 0) + γ(0, l)

= γ̄(x, l),

which completes the proof. �

Remark 4.5. Suppose that γ satisfies Assumption (D′). According to Theorem 4.4,

the function γ̄ also satisfies Assumption (D′) and has the property

γ̄(x, l) = γ̄(x, 0) + γ̄(0, l) (∀ x ∈ X, ∀ l ∈ L).

Therefore one can replace the function γ by γ̄. So, we define Assumption (D′′) as

follows:

There exists a function γ satisfying Assumption (D′) and has the property:

γ(x, l) = γ(x, 0) + γ(0, l) (∀ x ∈ X, ∀ l ∈ L).
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Assume that Assumption (D′′) holds for the function γ. Consider the function ϕ :

X → [0,+∞] defined by ϕ(x) := γ(x, 0) for all x ∈ X, and the function ψ : L −→

[0,+∞] defined by ψ(l) := γ(0, l) for all l ∈ L.

In the following, we give some properties of the functions ϕ and ψ.

Proposition 4.6. Let ϕ and ψ be defined as the above. Then

(i) ϕ∗

L(l) = ψ(l) for all l ∈ L,

(ii) ψ∗

X(x) = ϕ(x) for all x ∈ X,

(iii) ϕ and ψ are abstract convex functions with respect to L and X, respectively.

Proof. (i). By Lemma 4.3(i) we have

ψ(l) = γ(0, l)

= sup
x′∈X

(l(x′)− γ(x′, 0))

= sup
x′∈X

(l(x′)− ϕ(x′))

= ϕ∗

L(l).

(ii) is similar to (i), and (iii) is clear. Hence, the proof is complete. �

The following theorem has a crucial role to obtain our main results.

Theorem 4.7. Let the function ϕ be defined as the above and x ∈ X be arbitrary.

Then

∂Lϕ(x) = {l ∈ L : l(x) = ϕ(x) + ψ(l) = γ(x, l)}.

Proof. Let l ∈ ∂Lϕ(x) be arbitrary. By definition we have l(t) − ϕ(t) ≤ l(x) − ϕ(x)

for all t ∈ X. Then, ϕ∗

L(l) = supt∈X(l(t) − ϕ(t)) ≤ l(x) − ϕ(x). By Proposition 4.6,

one has ϕ∗

L(l) = ψ(l). Hence,

(4.2) ψ(l) + ϕ(x) ≤ l(x).

Moreover,

γ(x, l) = γ∗

L∗(l, x)

= sup
(x′,l′)∈X×L

(l′(x) + l(x′)− γ(x′, l′))

≥ l′(x) + l(x′)− γ(x′, l′) (∀ (x′, l′) ∈ X × L).

Replace x′ and l′ by x and l, respectively, we obtain γ(x, l) ≥ l(x). This, together

with (4.2) implies that l(x) = ψ(l) + ϕ(x). Thus,

∂Lϕ(x) ⊆ {l ∈ L : l(x) = ϕ(x) + ψ(l) = γ(x, l)}.

The converse inclusion is obvious. Indeed, let l ∈ L be such that l(x) = γ(x, l) and

let t ∈ X be arbitrary. Thus

l(t)− ϕ(t) ≤ sup
t∈X

(l(t)− ϕ(t)) = ϕ∗(l) = ψ(l) = l(x)− ϕ(x).

So, l ∈ ∂Lϕ(x), which completes the proof. �
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Define the set valued mapping d : X −→ 2L by

(4.3) d(x) := {l ∈ L : γ(x,−l) = l(x)}, ∀ x ∈ X.

Also, define the set valued mapping −d : X −→ 2L by (−d)(x) := −d(x) for each

x ∈ X.

Therefore, we have

(4.4) (−d)(x) = {l ∈ L : γ(x, l) = −l(x)}, ∀ x ∈ X.

It is easy to check that d(−x) = −d(x) for each x ∈ X.

Note that the above set valued mappings d and −d were introduced in [19], and also

the necessary condition for abstract Rockafellar’s surjectivity theorem ([19], Theorem

4.3) is based on the function d.

Proposition 4.8. Suppose that the Assumption (D′′) holds for the function γ, and

d is the function defined by (4.3). Then, d(x) = {l ∈ L : γ(x, l) = l(x)} = ∂Lϕ(x)

for all x ∈ X.

Proof. The result follows from Assumption (D′′) and Theorem 4.7. �

In the following, we give an example of a function d such that dom (d) = X.Moreover,

d and d−1 are single-valued.

Example 4.9. Let X := Q be the set of all rational numbers endowed with the

ordinary addition. Now, for each x ∈ X, define the function lx : X −→ R by lx(y) :=

xy for all y ∈ X. Let L := {lx : x ∈ X}. It is easy to check that L is a set of real

valued additive abstract linear functions. Let K := X × L and L∗ := L ×X. Define

the function γ : K −→ (−∞,+∞] by

γ(x, ly) :=
1

2
(x2 + y2), ∀ x, y ∈ X.

Therefore, It is not difficult to show that γ satisfies Assumption (D′′). Define the

function d : X −→ 2L by

d(x) := {ly ∈ L : γ(x, ly) = ly(x)}, ∀ x ∈ X.

Therefore, for each x ∈ X, we have

d(x) = {ly ∈ L : γ(x, ly) = ly(x)}

= {ly ∈ L :
1

2
(x2 + y2) = xy}

= {ly ∈ L : (x− y)2 = 0}

= {ly ∈ L : x = y}

= {lx}.

This implies that dom (d) = X, and also, d is single-valued. Moreover, one has

d−1(ly) = {y} for each y ∈ X, that is, dom (d−1) = L and d−1 is single-valued.

The following theorem gives us a sufficient condition for Rockafellar’s surjectivity

theorem in the framework of abstract monotonicity.
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Theorem 4.10. Suppose that Assumption (D′′) holds for the function γ. Let T :

X −→ 2L be an abstract monotone operator such that R(T + d) = L. Assume that d

and d−1 are single valued. Then, T is a maximal abstract monotone operator.

Proof. First note that since d(x) is a singleton for all x ∈ X, we denote the element

of this singleton by d(x).

Let (x0, l0) be monotonically related to G(T ). Since l0 + d(x0) ∈ L, then there exists

x ∈ D(T ) such that l0 + d(x0) ∈ (T + d)(x). This implies that there exists l ∈ T (x)

such that

(4.5) l0 + d(x0) = l + d(x).

Also, we have

0 = 〈x0 − x, (l0 + d(x0))− (l + d(x))〉

= 〈x0 − x, l0 − l〉+ 〈x0 − x, d(x0)− d(x)〉.

Since (x0, l0) is monotonically related to G(T ), we have 〈x0−x, l0− l〉 ≥ 0. Moreover,

d is monotone. Thus, one has 〈x0 −x, d(x0)− d(x)〉 ≥ 0. Therefore, we conclude that

(4.6) d(x0)(x0)− d(x0)(x)− d(x)(x0) + d(x)(x) = 0.

Now, we are going to show that d(x0) ∈ ∂Lϕ(x). To this end, in view of (4.6) we

obtain

d(x0)(x) = d(x0)(x0) + d(x)(x)− d(x)(x0)

= ϕ(x0) + ψ(d(x0)) + ϕ(x) + ψ(d(x))− d(x)(x0)

≥ ϕ(x0) + ψ(d(x0)) + ϕ(x) + ψ(d(x))− γ(x0, d(x))

= ϕ(x) + ψ(d(x0))

= γ(x, d(x0)).

Thus, d(x0)(x) ≥ γ(x, d(x0)). Clearly, d(x0)(x) ≤ γ(x, d(x0)), and hence d(x0)(x) =

γ(x, d(x0)). According to Theorem 4.7 and Proposition 4.3, we conclude that d(x0) ∈

∂Lϕ(x) = {d(x)}. Therefore, d(x0) = d(x). So, by (4.5), we have l = l0. Since d
−1 is

single valued, then x = x0 and (l0, x0) = (l, x) ∈ G(T ). Hence, T is maximal. �
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