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Abstract. In this paper, we introduce the notion of a frame in a 2-

inner product space and give some characterizations. These frames can

be considered as a usual frame in a Hilbert space, so they share many

useful properties with frames.
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1. Introduction and preliminaries

The concept of frames in Hilbert spaces has been introduced by Duffin and

Schaeffer [12] in 1952 to study some deep problems in nonharmonic Fourier se-

ries. Various generalizations of frames have been proposed; frame of subspaces

[2, 6], pseudo-frames [18], oblique frames [10], continuous frames [1, 4, 14]

and so on. The concept of frames in Banach spaces have been introduced by

Grochenig [16], Casazza, Han and Larson [5] and Christensen and Stoeva [11].

The concept of linear 2-normed spaces has been investigated by S. Gahler

in 1965 [15] and has been developed extensively in different subjects by many

authors [3, 7, 8, 13, 14, 17]. A concept which is related to a 2-normed space

is 2-inner product space which have been intensively studied by many math-

ematicians in the last three decades. A systematic presentation of the recent

results related to the theory of 2-inner product spaces as well as an extensive
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list of the related references can be found in the book [7]. Here we give the

basic definitions and the elementary properties of 2-inner product spaces.

Let X be a linear space of dimension greater than 1 over the field K, where K

is the real or complex numbers field. Suppose that (., .|.) is a K-valued function

defined on X × X × X satisfying the following conditions:

(I1)(x, x|z) ≥ 0 and (x, x|z) = 0 if and only if x and z are linearly dependent,

(I2)(x, x|z) = (z, z|x),
(I3)(y, x|z) = (x, y|z),
(I4)(αx, y|z) = α(x, y|z) for all α ∈ K,

(I5)(x1 + x2, y|z) = (x1, y|z) + (x2, y|z).
(., .|.) is called a 2-inner product on X and (X , (., .|.)) is called a 2-inner product

space (or 2-pre Hilbert space). Some basic properties of 2-inner product (., .|.)
can be immediately obtained as follows ([8, 13]):

• (0, y|z) = (x, 0|z) = (x, y|0) = 0,

• (x, αy|z) = α(x, y|z),
• (x, y|αz) = |α|2(x, y|z), for all x, y, z ∈ X and α ∈ K.

Using the above properties, we can prove the Cauchy-Schwarz inequality

|(x, y|z)|2 ≤ (x, x|z)(y, y|z).(1.1)

Example 1.1. If (X , 〈., .〉) is an inner product space, then the standard 2-inner

product (., .|.) is defined on X by

(x, y|z) =
∣

∣

∣

∣

〈x, y〉 〈x, z〉
〈z, y〉 〈z, z〉

∣

∣

∣

∣

= 〈x, y〉〈z, z〉 − 〈x, z〉〈z, y〉,(1.2)

for all x, y, z ∈ X .

In any given 2-inner product space (X , (., .|.)), we can define a function ‖., .‖
on X × X by

‖x, z‖ = (x, x|z) 1

2 ,(1.3)

for all x, z ∈ X .

It is easy to see that, this function satisfies the following conditions:

(N1) ‖x, z‖ ≥ 0 and ‖x, z‖ = 0 if and only if x and z are linearly dependent,

(N2) ‖x, z‖ = ‖z, x‖,
(N3) ‖αx, z‖ = |α|‖x, z‖ for all α ∈ K,

(N4) ‖x1 + x2, z‖ ≤ ‖x1, z‖+ ‖x2, z‖.
Any function ‖., .‖ defined on X × X and satisfying the conditions (N1)-

(N4) is called a 2-norm on X and (X , ‖., .‖) is called a linear 2-normed space.

Whenever a 2-inner product space (X , (., .|.)) is given, we consider it as a linear

2-normed space (X , ‖., .‖) with the 2-norm defined by (1.3).
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In the present paper, we shall introduce 2-frames for a 2-inner product space

and describe some fundamental properties of them. This implies that each el-

ement in the underlying 2-inner product space can be written as an uncondi-

tionally convergent infinite linear combination of the frame elements.

2. Frames in the standard 2-inner product spaces

Throughout this paper, we assume that H is a separable Hilbert space, with

the inner product 〈., .〉 chosen to be linear in the first entry. We first review

some basic facts about frames in H, then try to define them in a standard

2-inner product space.

Definition 2.1. A sequence {fi}∞i=1 ⊆ H is called a frame for H if there exist

A,B > 0 such that

A‖f‖2 ≤
∞
∑

i=1

|〈f, fi〉|2 ≤ B‖f‖2, (f ∈ H).(2.1)

The numbers A, B are called frame bounds. The frame is called tight if

A = B. Given a frame {fi}∞i=1, the frame operator is defined by

Sf =

∞
∑

i=1

〈f, fi〉fi.

The series defining Sf converges unconditionally for all f ∈ H and S is a

bounded, invertible, and self-adjoint operator. This leads to the frame decom-

position:

f = S−1Sf =

∞
∑

i=1

〈f, S−1fi〉fi, (f ∈ H).

The possibility of representing every f ∈ H in this way is the main feature of a

frame. The coefficients {〈f, S−1fi〉}∞i=1 are called frame coefficients. A sequence

satisfying the upper frame condition is called a Bessel sequence. A sequence

{fi}∞i=1 is Bessel sequence if and only if the operator T : {ci} 7→ ∑∞
i=1 cifi

is a well-defined operator from l2 into H. In that case T, which is called the

pre-frame operator, is automatically bounded. When {fi}∞i=1 is a frame, the

pre-frame operator T is well-defined and S = TT ∗. For more details see [9,

Section 5.1]. Also see [19] for a class of finite frames.

Let X be a 2-inner product space. A sequence {an}∞n=1 of X is said to be

convergent if there exists an element a ∈ X such that limn→∞ ‖an − a, x‖ = 0,

for all x ∈ X . Similarly, we can define a Cauchy sequence in X . A 2-inner

product space X is called a 2-Hilbert space if it is complete. That is, every

Cauchy sequence in X is convergent in this space [17]. Clearly, the limit of any

convergent sequence is unique and if (X , (., .|.)) is the standard 2-inner product,

then this topology is the original topology on X .

Now we are ready to define 2-frames on a 2-Hilbert space.
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Definition 2.2. Let (X , (., .|.)) be a 2-Hilbert space and ξ ∈ X . A sequence

{xi}∞i=1 of elements in X is called a 2-frame (associated to ξ) if there exist

A,B > 0 such that

A‖x, ξ‖2 ≤
∞
∑

i=1

|(x, xi|ξ)|2 ≤ B‖x, ξ‖2, (x ∈ X ).(2.2)

A sequence satisfying the upper 2-frame condition is called a 2-Bessel sequence.

In (2.2) we may assume that every xi is linearly independent to ξ , by (1.1)

and the property (I1).

The following proposition shows that in the standard 2-inner product spaces

every frame is a 2-frame.

Proposition 2.3. Let (H, 〈., .〉) be a Hilbert space and {xi}∞i=1 is a frame for

H. Then it is a 2-frame with the standard 2-inner product on H.

Proof. Suppose that {xi}∞i=1 is a frame with the bounds A,B and ξ ∈ H such

that ‖ξ‖ = 1. Then by using (2.1) and (1.2) for every x ∈ H we have

∞
∑

i=1

|(x, xi|ξ)|2 =

∞
∑

i=1

|〈x − 〈x, ξ〉ξ, xi〉|2

≤ B‖x− 〈x, ξ〉ξ‖2

≤ B(‖x‖2 − |〈x, ξ〉|2)
= B(x, x|ξ).

The argument for lower bound is similar. �

The converse of the above proposition is not true. In fact, by the following

proposition, every 2-frame is a frame for a closed subspace of H with codi-

mension 1. For each ξ ∈ H we denote by Lξ the subspace generated with

ξ.

Proposition 2.4. Let (H, 〈., .〉) be a Hilbert space and ξ ∈ H. Every 2-frame

associated to ξ is a frame for L⊥
ξ .

Proof. If {xi}∞i=1 is a 2-frame with the bounds A,B then (2.2) implies that

there exist A,B > 0 such that

A(‖x‖2 − |〈x, ξ〉|2) ≤
∞
∑

i=1

|〈x− 〈x, ξ〉ξ, xi〉|2 ≤ B(‖x‖2 − |〈x, ξ〉|2), (x ∈ H).

Therefore, {xi}∞i=1 is a frame for the Hilbert space L⊥
ξ . �

Remark 2.5. Let H be a Hilbert space and {xi}∞i=1 is a frame for H with the

frame operator S. If 〈xj , S
−1xj〉 = 1 for some j ∈ N, then {xi}i6=j is incomplete
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and therefore it is not a frame for H [9, Theorem 5.3.9]. Assume that ‖xj‖ = 1

and consider the standard 2-inner product on H. It is not difficult to see that

∞
∑

i=1

|(x, xi|xj)|2 =

∞
∑

i=1,i6=j

|(x, xi|xj)|2.

Now the proof of Proposition 2.3 shows that {xi}i6=j is a 2-frame for H associ-

ated to xj .

3. Some properties of 2-frames

This section is devoted to establishing pre-frame and frame operator for a

2-frame. To extend a well-known result in Hilbert spaces to 2-inner product

spaces.

Lemma 3.1. Let (X , (., .|.)) be a 2-inner product space and x, z ∈ X . Then

‖x, z‖ = sup{|(x, y|z)|; y ∈ X , ‖y, z‖ = 1}.(3.1)

Proof. By the Cauchy-Schwarz inequality (1.1) we observe that

(x, y|z) ≤ ‖x, z‖‖y, z‖ = ‖x, z‖

for every y ∈ X such that ‖y, z‖ = 1. Moreover, if y = 1
‖x,z‖x, then ‖y, z‖ = 1

and therefore (x, y|z) = ‖x, z‖. �

For the remainder, we assume (X , (., .|.)) is a 2-Hilbert space and Lξ the

subspace generated with ξ for a fix element ξ in X . Denote by Mξ the algebraic

complement of Lξ in X . So Lξ ⊕Mξ = X .

We first define the inner product 〈., .〉ξ on X as following:

〈x, z〉ξ = (x, z|ξ).

A straightforward calculations shows that 〈., .〉ξ is a semi-inner product on X .

It is well-known that this semi-inner product induces an inner product on the

quotient space X/Lξ as

〈x+ Lξ, z + Lξ〉ξ = 〈x, z〉ξ, (x, z ∈ X ).

By identifying X/Lξ with Mξ in an obvious way, we obtain an inner product

on Mξ. Define

‖x‖ξ =
√

〈x, x〉ξ (x ∈ Mξ).(3.2)

Then (Mξ, ‖.‖ξ) is a norm space.

Now if {xi}∞i=1 ⊆ X is a 2-frame associated to ξ with bounds A and B, then

we can rewrite (2.2) as

A‖x‖2ξ ≤
∞
∑

i=1

|〈x, xi〉ξ|2 ≤ B‖x‖2ξ, (x ∈ Mξ).
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That is, {xi}∞i=1 is a frame for Mξ. Let Xξ be the completion of the inner

product space Mξ. Due to Lemma 5.1.2 of [9] the sequence {xi}∞i=1 is also

a frame for Xξ with the same bounds. To summarize, we have the following

theorem.

Theorem 3.2. Let (X , (., .|.)) be a 2-Hilbert space. Then {xi}∞i=1 ⊆ X is a

2-frame associated to ξ with bounds A and B if and only if it is a frame for the

Hilbert space Xξ with bounds A and B.

By the above theorem, every question about 2-frames in a 2-Hilbert space

can be solved as a question about frames in a Hilbert space.

Lemma 3.3. Let {xi}∞i=1 be a 2-Bessel sequence in X . Then the 2-pre frame

operator Tξ : l
2 → Xξ defined by

Tξ{ci} =

∞
∑

i=1

cixi(3.3)

is well-defined and bounded.

Proof. Suppose {ci}∞i=1 ∈ l2, then by using (3.1) and (3.2) we have

‖
m
∑

i=1

cixi −
n
∑

i=1

cixi‖2ξ = ‖
m
∑

i=1

cixi −
n
∑

i=1

cixi, ξ‖2

= sup{|(
m
∑

i=n

cixi, y|ξ)|2, y ∈ X , ‖y, ξ‖ = 1}

≤
m
∑

i=n

|ci|2sup{
m
∑

i=n

|(xi, y|ξ)|2, y ∈ X , ‖y, ξ‖ = 1}

≤ B

m
∑

i=n

|ci|2

where B is the (upper) bound of {xi}∞i=1. This implies that
∑∞

i=1 cixi is well-

defined as an element of Xξ. Moreover, if {ci}∞i=1 is a sequence in l2, then an

argument as above shows that ‖Tξ{ci}‖ξ ≤
√
B‖{ci}‖2. In particular, ‖Tξ‖ ≤√

B. �

Next, we can compute T ∗
ξ , the adjoint of Tξ as

T ∗
ξ : Xξ → l2; T ∗

ξ x = {(x, xi|ξ)}∞i=1.

It is easy to check that T ∗
ξ is well-defined. Moreover, it follows by (2.2) that

‖T ∗
ξ ‖ ≤

√
B.
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Definition 3.4. Let {xi}∞i=1 be a 2-frame associated to ξ with bounds A and

B in a 2-Hilbert space X . The operator Sξ : Xξ → Xξ defined by

Sξx =
∞
∑

i=1

(x, xi|ξ)xi(3.4)

is called the 2-frame operator for {xi}∞i=1.

Clearly, Sξ = TξT
∗
ξ and therefore ‖Sξ‖ ≤ B. We can conclude the bounded-

ness of Sξ directly. Indeed, we see from (I3),(I4),(I5) and (3.1) that

‖Sξx‖2ξ = ‖Sξx, ξ‖2

= sup{|(Sξx, y|ξ)|2, y ∈ X , ‖y, ξ‖ = 1}

≤ sup{
∞
∑

i=1

|(x, xi|ξ)|2
∞
∑

i=1

|(y, xi|ξ)|2, y ∈ X , ‖y, ξ‖ = 1}

≤ B2‖x‖2ξ.

Now we state some of the important properties of Sξ.

Theorem 3.5. Let {xi}∞i=1 be a 2-frame associated to ξ for a 2-Hilbert space

(X , (., .|.)) with 2-frame operator Sξ and frame bounds A,B. Then Sξ is in-

vertible, self-adjoint, and positive.

Proof. Obviously, the operator Sξ is self-adjoint. The inequality (2.2) means

that

A‖x‖2ξ ≤ 〈Sξx, x〉ξ ≤ B‖x‖2ξ, (x ∈ Xξ).

Hence, Sξ is a positive element in the set of all bounded operators on the

Hilbert space Xξ. More precisely, with symbols AI ≤ Sξ ≤ BI where I is the

identity operator on Xξ. Furthermore,

‖I −B−1Sξ‖ = sup‖x‖ξ=1|〈(I −B−1Sξ)x, x〉ξ| ≤
B −A

B
< 1.

This shows that Sξ is invertible. �

Corollary 3.6. Let {xi}∞i=1 be a 2-frame in a 2-Hilbert space X with frame

operator Sξ. Then each x ∈ Xξ has an expansion of the following

x = SξS
−1
ξ x =

∞
∑

i=1

(S−1
ξ x, xi|ξ)xi.

Remark 3.7. If {xi}∞i=1 is a 2-frame associated to ξ, then every x ∈ X has a

representation as

x = αξ +
∞
∑

i=1

cixi,
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for some α ∈ C and {ci}∞i=1 ∈ l2. The coefficients {ci}∞i=1 are not unique, but

the frame coefficients {(S−1
ξ x, xi|ξ)}∞i=1 introduced in the Corollary 3.6 have

minimal l2-norm among all sequences representing x, see Lemma 5.3.6 of [9].
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