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Abstract. In this paper, we introduce the notion of hyper pseudo BCK-

algebras, which is a generalization of pseudo BCK-algebras and hyper

BCK-algebras and we investigates some related properties. In follow, we

define some kinds of hyper pseudo BCK-ideals of a hyper pseudo BCK-

algebra and we find the relations among them. Finally, we characterize

the hyper pseudo BCK-ideals of type 4 generated by a nonempty subset.
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1. Introduction and Preliminaries

The study of BCK-algebras was initiated by Y. Imai and K. Iséki [8] in

1966 as a generalization of the concept of set-theoretic difference and propo-

sitional calculi. In order to extend BCK-algebras in a noncommutative form,

Georgescu and Iorgulescu [4] introduced the notion of pseudo BCK-algebras

and studied their properties. The pseudo BCK-algebras as generalization
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of BCK-algebras in order to give a structure corresponding to pseudo MV -

algebras, as the bounded commutative BCK-algebras corresponds to MV -

algebra. Hyperstructure theory (called also multialgebras) was introduced in

1934 by F. Marty [11] at the 8th Congress of Scandinavian Mathematiciens.

Since then many researchers have worked on algebraic hyperstructures and

developed it. A recent book [3] contains a wealth of applications. Via this

book, Corsini and Leoreanu presented some of the numerous applications of

algebraic hyperstructures, especially those from the last fifteen years, to the

following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy sets

and rough sets, automata, cryptography, codes, median algebras, relation alge-

bras, artificial intelligence and probabilities. Hyperstructures have many appli-

cations to several sectors of both pure and applied sciences. In [1, 10, 12, 13], R.

A. Borzooei, M.M. Zahedi et al. applied the hyperstructures to BCK-algebras

and introduced the notion of a hyper BCK-algebra (hyper K-algebra) which

is a generalization of BCK-algebra and investigated some related properties.

Now, in this paper we define the notions of hyper pseudo BCK-algebra, hyper

pseudo BCK-ideals of hyper pseudo BCK-algebra and we obtain some related

results which have been mentioned in the abstract.

Definition 1.1. [10] By a hyper BCK-algebra we mean a nonempty set H

endowed with a hyperoperation ”◦” and a constant 0 satisfy the following

axioms:

(HK1) (x ◦ z) ◦ (y ◦ z)� x ◦ y,

(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,

(HK3) x ◦H � {x},
(HK4) x� y and y � x imply x = y,

for all x, y, z ∈ H, where x � y is defined by 0 ∈ x ◦ y and for every

A,B ⊆ H, A� B is defined by ∀a ∈ A,∃b ∈ B such that a� b. In such case,

we call ”� ” the hyperorder in H.

Definition 1.2. [10] Let I be a nonempty subset of hyper BCK-algebra H

and 0 ∈ I. Then I is said to be a

(i) hyper BCK-ideal of H if for all x, y ∈ H, y ∈ I and x ◦ y � I, imply

x ∈ I.

(ii) weak hyper BCK-ideal of H if for all x, y ∈ H, y ∈ I and x ◦ y ⊆ I,

imply x ∈ I.

Definition 1.3. [4] A pseudo BCK-algebra is a structure X = (X, ∗, �, 0),

where ” ∗ ” and ” � ” are binary operations on X and ”0” is a constant element

of X, that satisfies the following:

(a1) (x ∗ y) � (x ∗ z) � z ∗ y , (x � y) ∗ (x � z) � z � y,

(a2) x ∗ (x � y) � y, x � (x ∗ y) � y,

(a3) x � x,
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(a4) 0 � x,

(a5) x � y, y � x implies x = y,

(a6) x � y ⇔ x ∗ y = 0⇔ x � y = 0.

for all x, y, z ∈ X.

Let X be a pseudo BCK-algebra, we denote ∗(y, I) = {x ∈ X | x ∗ y ∈ I}
and �(y, I) = {x ∈ X | x � y ∈ I}.

Note that, ∗(y, I) ∩ �(y, I) = {x ∈ X | x ∗ y ∈ I, x ◦ y ∈ I}.

Definition 1.4. [9] Let I be a nonempty subset of pseudo BCK-algebra X

and 0 ∈ I. Then I is said to be a

(i) pseudo-ideal of X if for any y ∈ I, ∗(y, I) ⊆ I and �(y, I) ⊆ I.

(ii) weak pseudo-ideal of X if for any y ∈ I, ∗(y, I) ∩ �(y, I) ⊆ I.

2. Hyper pseudo BCK-algebra

In 2001, G. Georgescu and A. Iorgulescu [3], extended the BCK-algebras in

a noncommutative form and defined the notion of pseudo BCK-algebras. They

gave a structure corresponding between pseudo BCK-algebras and pseudo

MV -algebras. Moreover, in 2000, R. A. Borzooei and et al. [1,10], defined

the notion of hyper BCK-algebras and hyper K-algebras as a generalization of

BCK-algebras and in [5], Sh. Ghorbani and et al. defined the notion of hyper

MV -algebra and they found a structure corresponding between hyper MV -

algebras and hyper K-algebras, by some conditions. Now, in this section we

generalize the notion of pseudo BCK-algebras and hyper BCK-algebras and

we define the concept of hyper pseudo BCK-algebra. One of our motivation is

to find a corresponding between this structure and hyper pseudo MV -algebras,

in the future.

Definition 2.1. A hyper pseudo BCK-algebra is a structure (H, ◦, ∗, 0), where

” ∗ ” and ” ◦ ” are hyper operations on H and ”0” is a constant element, that

satisfies the following:

(PHK1) (x ◦ z) ◦ (y ◦ z)� x ◦ y, (x ∗ z) ∗ (y ∗ z)� x ∗ y.

(PHK2) (x ◦ y) ∗ z = (x ∗ z) ◦ y.

(PHK3) x ◦H � {x}, x ∗H � {x}.
(PHK4) x� y and y � x imply x = y.

for all x, y, z ∈ H, where x� y ⇔ 0 ∈ x◦y ⇔ 0 ∈ x∗y and for every A,B ⊆ H,

A� B is defined by ∀a ∈ A,∃b ∈ B such that a� b.

Theorem 2.2. Let H be a hyper pseudo BCK-algebra. If x ∗ y = x ◦ y, for all

x, y ∈ H, then H is a hyper BCK-algebra and if ” ∗ ” and ” ◦ ” are singleton,

then H is a pseudo BCK-algebra.

Proof. Let H be a hyper pseudo BCK-algebra and x∗y = x◦y, for all x, y ∈ H.

It is easy to see that H is a hyper BCK-algebra. Now, assume that ”∗” and ”◦”
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are singleton. Then x� y ⇐⇒ x∗y = 0 ⇐⇒ x◦y = 0. Clearly (a6) and (a5)

are hold. By (PHK1), (x◦z)◦(y◦z)� x◦y and so ((x◦z)◦(y◦z))∗(x◦y) = 0.

By (PHK2), ((x ◦ z) ∗ (x ◦ y)) ◦ (y ◦ z) = 0, i.e. (x ◦ z) ∗ (x ◦ y)� (y ◦ z). By the

similar way, we can prove that if (x∗z)∗(y∗z)� x∗y, then (x∗z)◦(x∗y)� y∗z.
Therefore, (a1) is hold. Now, we need to show that 0 ∗ 0 = 0. By (PHK3),

0 ∗ 0 � 0. So, it is enough to show that 0 � 0 ∗ 0. If 0 ◦ (0 ∗ 0) = b, we will

prove that b = 0. Since by (PHK3), 0 ◦ (0 ∗ 0)� 0, then b� 0, i.e. b ∗ 0 = 0.

We know that b∗0� b and so 0� b. Hence b = 0 by (PHK4) and so 0∗0 = 0.

By (PHK3), 0 ◦ x� 0 and so by (PHK2), 0 = (0 ◦ x) ∗ 0 = (0 ∗ 0) ◦ x = 0 ◦ x,

i.e. 0 � x and so (a4) is hold. By (PHK3), x ∗ 0 � x and using (PHK2), we

obtain 0 = (x ∗ 0) ◦x = (x ◦x) ∗ 0 i.e. x ◦x� 0. Since by (a4) 0� x ◦x, hence

by (PHK4), x ◦ x = 0, i.e. x � x and (a3) is hold. By (PHK2) and (a3), we

have (x ∗ (x ◦ y)) ◦ y = (x ◦ y) ∗ (x ◦ y) = 0, i.e. x ∗ (x ◦ y)� y. By the similar

way, we can prove that x ◦ (x ∗ y) � y, hence (a2) is hold. Therefore, H is a

pseudo BCK-algebra. �

Example 2.3. (i) Let H = {0, 1, 2, . . .}. The hyperoperations ” ∗ ” and ” ◦ ”

on H be defined as follows:

x ∗ y =


{0} , if x < y,

{0, x} , if x = y,

{x} , if x > y.

x ◦ y =

{
{0, x} , if x ≤ y,
{x} , if x > y.

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra.

(ii) Let H = {0, 1, 2, 3}. The hyperoperations ”∗” and ”◦” on H be defined

as follows:
◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {1} {0} {0} {0}
2 {2} {1} {0} {1}
3 {3} {3} {0,3} {0,3}

* 0 1 2 3

0 {0} {0} {0} {0}
1 {1} {0} {0} {0}
2 {2} {1} {0,1} {1}
3 {3} {3} {0,3} {0,3}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra.

Proposition 2.4. In any hyper pseudo BCK-algebra H, the following hold:

(i) 0 ◦ 0 = {0}, 0 ∗ 0 = {0}.
(ii) 0� x.

(iii) x� x.

(iv) A� A.

(v) A ⊆ B implies A� B.

(vi) 0 ◦ x = {0}, 0 ∗ x = {0}.
(vii) 0 ◦A = {0}, 0 ∗A = {0}.

(viii) A� {0} implies A = {0}.
(ix) x ◦ 0 = {x}, x ∗ 0 = {x}.

Arc
hive

 of
 S

ID

www.SID.ir



On Hyper Pseudo BCK-algebras 17

(x) x ◦ 0� {y} implies x� y and x ∗ 0� {y} implies x� y.

(xi) y � z implies x ◦ z � x ◦ y and x ∗ z � x ∗ y.

(xii) x ◦ y = {0} implies (x ◦ z) ◦ (y ◦ z) = {0} and x ◦ z � y ◦ z, x ∗ y = {0}
implies (x ∗ z) ∗ (y ∗ z) = {0} and x ∗ z � y ∗ z.

(xiii) A ◦ {0} = {0} implies A = {0} and A ∗ {0} = {0} implies A = {0}
(xiv) (A ◦ c) ◦ (B ◦ c)� A ◦B, (A ∗ c) ∗ (B ∗ c)� A ∗B.

for all x, y, z ∈ H and for all nonempty subsets A and B of H.

Proof. (i) Let a ∈ 0 ∗ 0. Since by (PHK3), 0 ∗ 0 � {0}, then a � 0. Now, we

show that 0 � a. Let b ∈ 0 ∗ a. Since by (PHK3) 0 ∗ a � {0}, then b � {0}
and so 0 ∈ b∗0. But, since b∗0� {b}, then 0� {b} and so by (PHK4), b = 0.

Hence 0 ∈ 0 ∗ a and so 0� a. Therefore, by (PHK4), a = 0 and so 0 ∗ 0 = {0}.
By the similar way, we can prove that 0 ◦ 0 = {0}.

(ii) By (PHK3), 0 ◦ x � {0} and so by (PHK2) and (i), 0 ∈ (0 ◦ x) ∗ 0 =

(0 ∗ 0) ◦ x = 0 ◦ x. Hence 0� x, for all x ∈ H.

(iii) By (PHK3), x◦0� {x} and by using (PHK2), we obtain 0 ∈ (x◦0)∗x =

(x ∗ x) ◦ 0 =
⋃
a∈x∗x a ◦ 0. Thus there exists a0 ∈ x ∗ x such that 0 ∈ a0 ◦ 0 i.e.

a0 � 0. Using (ii) we get a0 = 0 and so 0 ∈ x ∗ x, i.e. x� x.

(iv) By (iii), the proof is clear.

(v) The proof is easy.

(vi) Let a ∈ 0 ∗ x for x ∈ H. Since by (PHK3), 0 ∗ x� {0}, then a� 0 and

so by (ii) and (PHK4), a = 0. Hence 0 ∗ x = {0}. By the similar way, we can

proof that 0 ◦ x = {0}.
(vii) By (vi), the proof is clear.

(viii) Let A � {0} and a ∈ A. Then a � 0 and so a = 0. Therefore

A = {0}.
(ix) By (iv) and (PHK2), 0 ∈ (x ◦ 0) ∗ (x ◦ 0) = (x ∗ (x ◦ 0)) ◦ 0. Hence

there exists a ∈ x ∗ (x ◦ 0) such that 0 ∈ a ◦ 0 and so a� 0. Now, by (ii) and

(PHK4), a = 0 and so 0 ∈ x ∗ (x ◦ 0). Hence there exists t ∈ x ◦ 0 such that

0 ∈ x ∗ t and so x � t. Now, since by (PHK3), x ◦ 0 � {x}, then t � x and

so t = x. Thus, x ∈ x ◦ 0. Now, let y ∈ x ◦ 0. Then by (iii) and (PHK2),

0 ∈ y ∗ y ⊆ (x ◦ 0) ∗ y = (x ∗ y) ◦ 0. Hence there exists u ∈ x ∗ y such that

0 ∈ u ◦ 0 and so u � 0. Now, by (ii) and (PHK4), u = 0 and so 0 ∈ x ∗ y.

Hence x � y. Now, since by (PHK3), x ◦ 0 � {x}, then y � x and so y = x.

Thus, x ◦ 0 = {x}. By the similar way, we can prove that x ∗ 0 = {x}.
(x) By (ix), the proof is clear.

(xi) Let y � z, for y, z ∈ H. Since 0 ∈ y ◦z, then by (PHK1) for any x ∈ H,

(x ◦ z) ◦ 0 ⊆ (x ◦ z) ◦ (y ◦ z) � x ◦ y and so (x ◦ z) ◦ 0 � x ◦ y. Hence for

any a ∈ x ◦ z, there exists b ∈ x ◦ y such that a ◦ 0 � b. Now, since by (ix),

a ∈ a ◦ 0, then a � b and this means that x ◦ z � x ◦ y. By the similar way,

we can prove that x ∗ z � x ∗ y.
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(xii) Let x∗y = {0}, for x, y ∈ H. Then by (PHK1), (x∗z)∗(y∗z)� x∗y =

{0} and so by (viii), (x ∗ z) ∗ (y ∗ z) = {0} and this means that x ∗ z � y ∗ z.
By the similar way, we can prove the other case.

(xiii) Let ∅ 6= A ⊆ H, A ∗ {0} = {0} and a ∈ A. Then by (ix), a ∈ a ∗ {0} ⊆
A ∗{0} = {0} and so a = 0. Hence A = {0}. The proof of other case is similar.

(xiv) Let A and B are two nonempty subsets of H and x ∈ (A ◦ c) ◦ (B ◦ c).
Then there exist a ∈ A and b ∈ B such that x ∈ (a ◦ c) ◦ (b ◦ c). Since by

(PHK1), (a ◦ c) ◦ (b ◦ c) � a ◦ b then there exists y ∈ a ◦ b such that x � y.

Now, since y ∈ a ◦ b � A ◦ B, then (A ◦ c) ◦ (B ◦ c) � A ◦ B. By the similar

way, we can prove that (A ∗ c) ∗ (B ∗ c)� A ∗B. �

Note: (i) From now on, in this paper H is a hyper pseudo BCK-algebra,

unless otherwise state.

(ii) For any nonempty subset I of H and any element y of H, we denote

∗(y, I)� = {x ∈ H | x ∗ y � I}, ◦(y, I)� = {x ∈ H | x ◦ y � I}

∗(y, I)⊆ = {x ∈ H | x ∗ y ⊆ I}, ◦(y, I)⊆ = {x ∈ H | x ◦ y ⊆ I}

3. Hyper pseudo BCK-ideals

In this section we generalize the notion of pseudo and weak pseudo BCK-

ideals in pseudo BCK-algebras and (weak) hyper BCK-ideals in hyper BCK-

algebras to the hyper pseudo BCK-algebras and we get the following cases for

hyper pseudo BCK-ideals. In fact, these following 12 cases are the natural

generalization of ideals in the hyper pseudo BCK-algebras.

define the notions of hyper pseudo BCK-ideals of type 1, 2, . . . , 12. Then

we state and prove some theorems which determine the relationships between

these notions.

Definition 3.1. Let I be a nonempty subset of H and 0 ∈ I. Then I is said

to be a hyper pseudo BCK-ideal of

(i1) type (1), if for any y ∈ I, ∗(y, I)� ⊆ I and ◦(y, I)� ⊆ I.

(i2) type (2), if for any y ∈ I, ∗(y, I)⊆ ⊆ I and ◦(y, I)� ⊆ I.

(i3) type (3), if for any y ∈ I, ∗(y, I)� ⊆ I and ◦(y, I)⊆ ⊆ I.

(i4) type (4), if for any y ∈ I, ∗(y, I)⊆ ⊆ I and ◦(y, I)⊆ ⊆ I.

(i5) type (5), if for any y ∈ I, ∗(y, I)� ⊆ I or ◦(y, I)� ⊆ I.

(i6) type (6), if for any y ∈ I, ∗(y, I)⊆ ⊆ I or ◦(y, I)� ⊆ I.

(i7) type (7), if for any y ∈ I, ∗(y, I)� ⊆ I or ◦(y, I)⊆ ⊆ I.

(i8) type (8), if for any y ∈ I, ∗(y, I)⊆ ⊆ I or ◦(y, I)⊆ ⊆ I.

(i9) type (9), if for any y ∈ I, ∗(y, I)� ∩ ◦(y, I)� ⊆ I.

(i10) type (10), if for any y ∈ I, ∗(y, I)⊆ ∩ ◦(y, I)� ⊆ I.

(i11) type (11), if for any y ∈ I, ∗(y, I)� ∩ ◦(y, I)⊆ ⊆ I.
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(i12) type (12), if for any y ∈ I, ∗(y, I)⊆ ∩ ◦(y, I)⊆ ⊆ I.

Theorem 3.2. (i) If x ∗ y = x ◦ y, for all x, y ∈ H, then any hyper pseudo

BCK-ideal of types 1, 2, 3, 5 and 9 in H is a hyper BCK-ideal in H and any

hyper pseudo BCK-ideal of types 1, 2, 3, 4, 5, 8, 9 and 12 in H is a weak

hyper BCK-ideal in H.

(ii) If ”∗” and ”◦” are singleton, then any hyper pseudo BCK-ideal of type

4 in H is a pseudo-ideal in H and any hyper pseudo BCK-ideal of types 2, 3,

4, 8 and 12 in H is a weak pseudo-ideal in H.

Proof. (i) Assume that x ∗ y = x ◦ y, for all x, y ∈ H and I be a hyper pseudo

BCK-ideal of type 1. First, we prove that I is a hyper BCK-ideal in H. So, let

y ∈ I and x ◦ y � I. Then x ∈ ◦(y, I)�. Since I is a hyper pseudo BCK-ideal

of type 1, then ◦(y, I)� ⊆ I and so x ∈ I. Hence I is a hyper BCK-ideal in

H. Now, we prove that I is a weak hyper BCK-ideal in H. So, let y ∈ I and

x ◦ y ⊆ I. Then x ◦ y � I and so x ∈ ◦(y, I)�. Since I is a hyper pseudo

BCK-ideal of type 1, then ◦(y, I)� ⊆ I and so x ∈ I. Hence I is a weak hyper

BCK-ideal in H. By the similar way, we can prove the other cases.

(ii) Assume that ” ∗ ” and ” ◦ ” are singleton. Then

∗(y, I)⊆ = {x ∈ H | x ∗ y ⊆ I} = {x ∈ H | x ∗ y ∈ I} = ∗(y, I)

◦(y, I)⊆ = {x ∈ H | x ◦ y ⊆ I} = {x ∈ H | x ◦ y ∈ I} = ◦(y, I)

Now, let I be a hyper pseudo BCK-ideal of type 4. First, we prove that I

is a pseudo-ideal in H. So, let y ∈ I, x ∈ ∗(y, I) and z ∈ ◦(y, I). Since

I is a hyper pseudo BCK-ideal of type 4, then ∗(y, I) = ∗(y, I)⊆ ⊆ I and

◦(y, I) = ◦(y, I)⊆ ⊆ I and so x ∈ I and z ∈ I. Hence I is a pseudo-ideal

in H. Now, we prove that I is a weak pseudo-ideal in H. So, let y ∈ I and

x ∈ ∗(y, I)∩◦(y, I). Then x ∈ ∗(y, I) and x ∈ ◦(y, I). Since I is a hyper pseudo

BCK-ideal of type 4, then ∗(y, I) = ∗(y, I)⊆ ⊆ I and ◦(y, I) = ◦(y, I)⊆ ⊆ I

and so x ∈ I . Hence I is a weak pseudo-ideal in H. The proof of other cases

are the similar. �

Theorem 3.3. (i) Any hyper pseudo BCK-ideal of types 1, 2 and 3 in H are

equivalent.

(ii) Every hyper pseudo BCK-ideal of type 1 in H is a hyper pseudo BCK-

ideal of types 4 and 5.

(iii) Every hyper pseudo BCK-ideal of type 4 in H is a hyper pseudo BCK-

ideal of type 8.

Proof. (i) Let I be a hyper pseudo BCK-ideal of type 1. We will prove that

I is a hyper pseudo BCK-ideal of type 2. It is enough to prove that for any

y ∈ I, ∗(y, I)⊆ ⊆ I. Let y ∈ I and x ∈ ∗(y, I)⊆. Then x ∗ y ⊆ I and so

x ∗ y � I. Hence x ∈ ∗(y, I)�. Since I is a hyper pseudo BCK-ideal of type

1, then ∗(y, I)� ⊆ I and so x ∈ I. Therefore, ∗(y, I)⊆ ⊆ I.
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20 R. A. Borzooei, A. Rezazadeh and R. Ameri

Now, let I be a hyper pseudo BCK-ideal of type 2. We will prove that I is a

hyper pseudo BCK-ideal of type 3. Let y ∈ I and x ∈ ◦(y, I)⊆. Then x◦y ⊆ I
and so x ◦ y � I. Hence x ∈ ◦(y, I)�. Since I is a hyper pseudo BCK-ideal

of type 2, then ◦(y, I)� ⊆ I and so x ∈ I. Hence ◦(y, I)⊆ ⊆ I. Now, let y ∈ I
and z ∈ ∗(y, I)�. Then z ∗ y � I. We should prove that z ∈ I. Let z 6∈ I, by

contrary. First, we claim that for any w ∈ H, if w 6∈ I then w 6� I. Now, let

w ∈ H and w 6∈ I. Since I is a hyper pseudo BCK-ideal of type 2 and 0 ∈ I,

then ◦(0, I)� ⊆ I and so w 6∈ ◦(0, I)�. Hence w ◦ 0 6� I and so by Theorem

2.4 (ix), w 6� I. Now, since by hypothesis ∗(y, I)⊆ ⊆ I, then z 6∈ ∗(y, I)⊆ and

so z ∗ y 6⊆ I. Then there exists w ∈ z ∗ y such that w 6∈ I and so by above,

w 6� I, which is impossible. Because z ∗ y � I and w ∈ z ∗ y then w � I.

Hence z ∈ I and so ∗(y, I)� ⊆ I.

Now, let I be a hyper pseudo BCK-ideal of type 3. We will prove that I is

a hyper pseudo BCK-ideal of type 1. It is enough to prove that for any y ∈ I,

◦(y, I)� ⊆ I. Similar to above, we can proof that if x ∈ ◦(y, I)� then x ∈ I.

(ii) Let I be a hyper pseudo-ideal of type 1. We will prove that I is a hyper

pseudo BCK-ideal of type 4. Let y ∈ I, x ∈ ∗(y, I)⊆ and z ∈ ◦(y, I)⊆. Then

x ∗ y ⊆ I and z ◦ y ⊆ I and so x ∗ y � I and z ◦ y � I. Hence x ∈ ∗(y, I)� and

z ∈ ◦(y, I)�. Since I is a hyper pseudo BCK-ideal of type 1, then ∗(y, I)� ⊆ I
and ◦(y, I)� ⊆ I and so x ∈ I and z ∈ I. Hence ∗(y, I)⊆ ⊆ I and ◦(y, I)⊆ ⊆ I.

Now, let I be a hyper pseudo BCK-ideal of type 1. We will prove that I is

a hyper pseudo BCK-ideal of type 5. Let y ∈ I and x ∈ ∗(y, I)�. Since I is

a hyper pseudo BCK-ideal of type 1, then ∗(y, I)� ⊆ I and so x ∈ I. Hence

∗(y, I)� ⊆ I. If x ∈ ◦(y, I)� by the similar way, we can proof that x ∈ I.

Hence ◦(y, I)� ⊆ I.

(iii) The proof is similar to the proof of case (ii), by some modification. �

The following examples show that the converse of Theorem 3.3 (ii) and (iii)

are not correct in general.

Example 3.4. (i) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be

defined as follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0,b}

* 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0,a}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 4 but it is not a hyper pseudo BCK-ideal

of type 1. Because a ∈ ∗(b, I)� but a 6∈ I.

(ii) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:
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◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {a,b} {0,b}

* 0 a b

0 {0} {0} {0}
a {a} {0} {0}
b {b} {a} {0}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, a}
is a hyper pseudo BCK-ideal of type 5 but it is not a hyper pseudo BCK-ideal

of type 1. Because b ∈ ∗(a, I)� but b 6∈ I.

(iii) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0}
b {b} {b} {0,a}

* 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0,b}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 8 but it is not a hyper pseudo BCK-ideal

of type 4. Because a ∈ ◦(b, I)⊆ but a 6∈ I.

Theorem 3.5. Every hyper pseudo BCK-ideal of type 5 in H is a hyper pseudo

BCK-ideal of types 6, 7, 8 and 9.

Proof. Let I be a hyper pseudo BCK-ideal of type 5. We will prove that I

is a hyper pseudo BCK-ideal of type 6. If ◦(y, I)� ⊆ I, then the proof is

straightforward. Now, let ◦(y, I)� 6⊆ I and x ∈ ∗(y, I)⊆ for y ∈ I. Then

x ∗ y ⊆ I and so x ∗ y � I. Hence x ∈ ∗(y, I)�. Since I is a hyper pseudo

BCK-ideal of type 5 and ◦(y, I)� 6⊆ I, then ∗(y, I)� ⊆ I and so x ∈ I.

Hence ∗(y, I)⊆ ⊆ I. The proof of type 7 is the similar. Now, let I be a hyper

pseudo BCK-ideal of type 5. We will prove that I is a hyper pseudo BCK-

ideal of type 8. If ◦(y, I)⊆ ⊆ I, then the proof is straightforward. Now, let

◦(y, I)⊆ 6⊆ I and x ∈ ∗(y, I)⊆ for y ∈ I. Then x∗y ⊆ I and so x∗y � I. Hence

x ∈ ∗(y, I)�. Since I is a hyper pseudo BCK-ideal of type 5, then ◦(y, I)� ⊆ I
or ∗(y, I)� ⊆ I. It is enough to prove that ◦(y, I)� 6⊆ I. If we assume that

◦(y, I)� ⊆ I, since by the hypothesis ◦(y, I)⊆ 6⊆ I there exists a ∈ ◦(y, I)⊆

such that a 6∈ I. Then a ◦ y ⊆ I and so a ◦ y � I. Hence a ∈ ◦(y, I)� and so

a ∈ I. That is contrast. Therefore, ◦(y, I)� 6⊆ I. Hence ∗(y, I)� ⊆ I and so

x ∈ I. Thus ∗(y, I)⊆ ⊆ I. Now, let I be a hyper pseudo BCK-ideal of type

5. We will prove that I is a hyper pseudo BCK-ideal of type 9. Let y ∈ I

and x ∈ ∗(y, I)� ∩ ◦(y, I)�. Then x ∈ ∗(y, I)� and x ∈ ◦(y, I)�. Since I is a

hyper pseudo BCK-ideal of type 5, then ∗(y, I)� ⊆ I or ◦(y, I)� ⊆ I and so

x ∈ I. Hence ∗(y, I)� ∩ ◦(y, I)� ⊆ I. �

Corollary 3.6. Every hyper pseudo BCK-ideal of type 2 or 3 in H is a hyper

pseudo BCK-ideal of types 6, 7, 8 and 9.

Arc
hive

 of
 S

ID

www.SID.ir



22 R. A. Borzooei, A. Rezazadeh and R. Ameri

The following examples show that the converse of Theorem 3.5 is not correct

in general.

Example 3.7. (i) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be

defined as follows:
◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0}
b {b} {b} {0}

* 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0,a,b}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 6 but it is not a hyper pseudo BCK-ideal

of type 5. Because a ∈ ∗(b, I)� but a 6∈ I and a ∈ ◦(b, I)� but a 6∈ I.

(ii) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:
◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {a,b} {0,b}

* 0 a b

0 {0} {0} {0}
a {a} {0} {0}
b {b} {a,b} {0,a,b}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 7 but it is not a hyper pseudo BCK-ideal

of type 5. Because a ∈ ◦(b, I)� but a 6∈ I and a ∈ ∗(b, I)� but a 6∈ I.

(iii) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:
◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0}
b {b} {b} {0}

* 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0,a}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 8 but it is not a hyper pseudo BCK-ideal

of type 5. Because a ∈ ∗(0, I)� but a 6∈ I and a ∈ ◦(b, I)� but a 6∈ I.

(iv) Let H = {0, a, b, c} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:
◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0} {a} {0}
b {b} {b} {0} {0}
c {c} {b} {c} {0}

* 0 a b c

0 {0} {0} {0} {0}
a {a} {0} {a} {0}
b {b} {b} {0} {0}
c {c} {c} {a} {0}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, a, b}
is a hyper pseudo BCK-ideal of type 9 but it is not a hyper pseudo BCK-ideal

of type 5. Because c ∈ ∗(b, I)� but c 6∈ I and c ∈ ◦(a, I)� but c 6∈ I.

Theorem 3.8. (i) Every hyper pseudo BCK-ideal of type 6 in H is a hyper

pseudo BCK-ideal of types 8 and 10.
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(ii) Every hyper pseudo BCK-ideal of type 7 in H is a hyper pseudo BCK-

ideal of types 8 and 11.

(iii) Every hyper pseudo BCK-ideal of type 8 in H is a hyper pseudo BCK-

ideal of type 12.

Proof. (i) Let I be a hyper pseudo BCK-ideal of type 6. We will prove that I

is a hyper pseudo BCK-ideal of type 8. If ∗(y, I)⊆ ⊆ I the proof is straight-

forward. Let ∗(y, I)⊆ 6⊆ I and x ∈ ◦(y, I)⊆ for y ∈ I. Then x ◦ y ⊆ I and so

x ◦ y � I. Hence x ∈ ◦(y, I)�. Since I is a hyper pseudo BCK-ideal of type

6 and ∗(y, I)⊆ 6⊆ I, then ◦(y, I)� ⊆ I and so x ∈ I. Thus ◦(y, I)⊆ ⊆ I. Now,

let I be a hyper pseudo BCK-ideal of type 6. We will prove that I is a hyper

pseudo BCK-ideal of type 10. Let y ∈ I and x ∈ ∗(y, I)⊆ ∩ ◦(y, I)�. Then

x ∈ ∗(y, I)⊆ and x ∈ ◦(y, I)�. Since I is a hyper pseudo BCK-ideal of type 6,

then ∗(y, I)⊆ ⊆ I or ◦(y, I)� ⊆ I and so x ∈ I. Hence ∗(y, I)⊆ ∩ ◦(y, I)� ⊆ I.

The proof of cases (ii) and (iii) are the similar to the proof of case (i), by

the some modification. �

The following examples show that the converse of Theorem 3.8 is not correct

in general.

Example 3.9. (i) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be

defined as follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0}

* 0 a b

0 {0} {0} {0}
a {a} {0,a} {0}
b {b} {b} {0,b}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 8 but it is not a hyper pseudo BCK-ideal

of type 6. Because a ∈ ∗(b, I)⊆ but a 6∈ I and a ∈ ◦(b, I)� but a 6∈ I.

(ii) Let H = {0, a, b, c} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:

∗ 0 a b c

0 {0} {0} {0} {0}
a {a} {0,a} {0,a} {0,a}
b {b} {b} {0} {0}
c {c} {c} {b} {0}

◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0,a} {0} {0}
b {b} {b} {0,b} {0,b}
c {c} {c} {b,c} {0,c}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 10 but it is not a hyper pseudo BCK-ideal

of type 6. Because c ∈ ∗(b, I)⊆ but c 6∈ I and a ∈ ◦(b, I)� but a 6∈ I.

(iii) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:
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◦ 0 a b

0 {0} {0} {0}
a {a} {0} {0}
b {b} {b} {0}

* 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 8 but it is not a hyper pseudo BCK-ideal

of type 7. Because a ∈ ◦(b, I)⊆ but a 6∈ I and a ∈ ∗(b, I)� but a 6∈ I.

(iv) Let H = {0, a, b, c} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:
◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0,a} {0,a} {0,a}
b {b} {b} {0} {0}
c {c} {c} {b} {0}

* 0 a b c

0 {0} {0} {0} {0}
a {a} {0,a} {0,a} {0,a}
b {b} {b} {0,b} {0,b}
c {c} {c} {b,c} {0,c}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 11 but it is not a hyper pseudo BCK-ideal

of type 7. Because a ∈ ∗(b, I)� but a 6∈ I and c ∈ ◦(b, I)⊆ but c 6∈ I.

(v) Let H = {0, a, b, c} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:
* 0 a b c

0 {0} {0} {0} {0}
a {a} {0,a} {0,a} {0,a}
b {b} {b} {0} {0}
c {c} {c} {c} {0,c}

◦ 0 a b c

0 {0} {0} {0} {0}
a {a} {0} {0} {0}
b {b} {b} {0,b} {0,b}
c {c} {c} {c} {0,c}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, c} is

a hyper pseudo BCK-ideal of type 12 but it is not a hyper pseudo BCK-ideal

of type 8. Because b ∈ ∗(c, I)⊆ but b 6∈ I and a ∈ ◦(c, I)⊆ but a 6∈ I.

Theorem 3.10. (i) Every hyper pseudo BCK-ideal of type 9 in H is a hyper

pseudo BCK-ideal of types 10, 11 and 12.

(ii) Every hyper pseudo BCK-ideal of type 10 in H is a hyper pseudo

BCK-ideal of type 12.

(iii) Every hyper pseudo BCK-ideal of type 11 in H is a hyper pseudo

BCK-ideal of type 12.

Proof. (i) Let I be a hyper pseudo BCK-ideal of type 9. We will prove that I

is a hyper pseudo BCK-ideal of type 10. Let y ∈ I and x ∈ ∗(y, I)⊆∩◦(y, I)�.

Then x ∈ ∗(y, I)⊆ and x ∈ ◦(y, I)�. Thus x ∗ y ⊆ I and x ◦ y � I and

so x ∗ y � I. Hence x ∈ ∗(y, I)� ∩ ◦(y, I)�. Since I is a hyper pseudo

BCK-ideal of type 9, then ∗(y, I)� ∩ ◦(y, I)� ⊆ I and so x ∈ I. Hence

∗(y, I)⊆ ∩ ◦(y, I)� ⊆ I. The proof of the other cases are similar.

The proof of cases (ii) and (iii) are the similar to the proof of case (i), by

the some modifications. �
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The following examples show that the converse of Theorem 3.10 is not correct

in general.

Example 3.11. (i) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be

defined as follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0} {0}
b {b} {b} {0}

* 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 10 but it is not a hyper pseudo BCK-ideal

of type 9. Because a ∈ ∗(b, I)� ∩ ◦(b, I)� but a 6∈ I.

(ii) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0,b}

* 0 a b

0 {0} {0} {0}
a {a} {0} {0}
b {b} {b} {0}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 11 but it is not a hyper pseudo BCK-ideal

of type 9. Because a ∈ ∗(b, I)� ∩ ◦(b, I)� but a 6∈ I.

(iii) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0} {0}
b {b} {b} {0,b}

* 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 12 but it is not a hyper pseudo BCK-ideal

of type 9. Because a ∈ ∗(0, I)� ∩ ◦(0, I)� but a 6∈ I.

(iv) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:

◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {a,b} {0,b}

* 0 a b

0 {0} {0} {0}
a {a} {0} {0}
b {b} {a} {0}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 12 but it is not a hyper pseudo BCK-ideal

of type 10. Because a ∈ ∗(b, I)⊆ ∩ ◦(b, I)� but a 6∈ I.

(v) Let H = {0, a, b} and operations ” ∗ ” and ” ◦ ” on H be defined as

follows:
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◦ 0 a b

0 {0} {0} {0}
a {a} {0,a} {0}
b {b} {b} {0}

* 0 a b

0 {0} {0} {0}
a {a} {0,a} {0,a}
b {b} {b} {0}

Then (H, ◦, ∗, 0) is a hyper pseudo BCK-algebra. We can see that I = {0, b} is

a hyper pseudo BCK-ideal of type 12 but it is not a hyper pseudo BCK-ideal

of type 11. Because a ∈ ∗(b, I)� ∩ ◦(b, I)⊆ but a 6∈ I.

In the following diagram, we can see the relationship among all of types of

hyper pseudo BCK-ideals.
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4. Characterization of generated hyper pseudo BCK-ideals

Now, in this section we characterize the hyper pseudo BCK-ideals generated

by a nonempty subset.
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Proposition 4.1. Let {Iλ|λ ∈ Λ} be a family of hyper pseudo BCK-ideals of

type i, for 1 ≤ i ≤ 12, in H. Then
⋂
λ∈Λ Iλ is a hyper pseudo BCK-ideal of

type i, for 1 ≤ i ≤ 12, in H, too.

Proof. Let I =
⋂
λ∈Λ Iλ and for any λ ∈ Λ, Iλ be a hyper pseudo BCK-ideal

of type 1. We will prove that I is a hyper pseudo BCK-ideal of type 1. Clearly

0 ∈ I. Now, let y ∈ I, x ∈ ∗(y, I)� and z ∈ ◦(y, I)�. Then x ∗ y � I and

z ◦ y � I. Since x ∗ y � I, for any u ∈ x ∗ y there exists v ∈ I such that

u � v. Since v ∈ Iλ, for any λ ∈ Λ, then x ∗ y � Iλ, for any λ ∈ Λ. Hence

x ∈ ∗(y, Iλ)� and y ∈ Iλ for any λ ∈ Λ. Since Iλ is a hyper pseudo BCK-ideal

of type 1, then ∗(y, Iλ)� ⊆ Iλ and so x ∈ Iλ for any λ ∈ Λ. Hence x ∈ I and so

∗(y, I)� ⊆ I. By the similar way, we can prove that z ∈ I and so ◦(y, I)� ⊆ I.
The proof of other cases are the similar. �

Theorem 4.2. Let A be a nonempty subset of H. By the hyper pseudo BCK-

ideal of type i, for 1 ≤ i ≤ 4, generated by A, written [A]i, we mean that

intersection of all hyper pseudo BCK-ideals of type i which contain A. Then

[A]i ⊇ {x ∈ H : (...((x◦a1)◦a2)◦ ...)◦an = {0}, for some a1, a2, ..., an ∈ A}.

Proof. We prove the theorem for type 1, but the proof of other cases are the

similar. Assume that x ∈ H satisfies the identity

(...((x ◦ a1) ◦ a2) ◦ ...) ◦ an = {0}

for some a1, a2, ..., an ∈ A. Since 0 ∈ [A]1, we have

(...((x ◦ a1) ◦ a2) ◦ ...) ◦ an = {0} ⊆ [A]1

and so (...((x ◦ a1) ◦ a2) ◦ ...) ◦ an � [A]1. Thus for each

a ∈ (...((x ◦ a1) ◦ a2) ◦ ...) ◦ an−1

we get a ◦ an � [A]1 i.e. a ∈ ◦(an, [A]1)�. Now, since [A]1 is a hyper pseudo

BCK-ideal of type 1, then ◦(an, [A]1)� ⊆ [A]1 and so a ∈ [A]1. Hence

(...((x ◦ a1) ◦ a2) ◦ ...) ◦ an−1 ⊆ [A]1

and so

(...((x ◦ a1) ◦ a2) ◦ ...) ◦ an−1 � [A]1

Continuing this process, we conclude that {x} ⊆ [A]1 and so x ∈ [A]1. There-

fore

[A]1 ⊇ {x ∈ H : (...((x◦a1)◦a2)◦ ...)◦an = {0}, for some a1, a2, ..., an ∈ A}

. �

Arc
hive

 of
 S

ID

www.SID.ir



28 R. A. Borzooei, A. Rezazadeh and R. Ameri

Theorem 4.3. Let |x∗y| <∞ and |x◦y| <∞ for all x, y ∈ H and H satisfies

the following condition

(...((x ◦ y1) ◦ y2) ◦ ...) ◦ ym = {0} iff (...((x ∗ ym) ∗ ym−1) ∗ ...) ∗ y1 = {0}

for all x, y1, y2, ..., ym ∈ H. If A is a nonempty subset of H which for all

a ∈ A, a ◦ a = {0}, then

[A]4 = {x ∈ H : (...((x◦a1)◦a2)◦ ...)◦an = {0}, for some a1, a2, ..., an ∈ A}.

Proof. LetB = {x ∈ H : (...((x◦a1)◦a2)◦...)◦an = {0}, for some a1, a2, ..., an ∈
A}. According to the Theorem 4.2, we only need to prove that [A]4 ⊆ B. To do

this, it is sufficient to show that B is a hyper pseudo-ideal of type 4 containing

A. For each a ∈ A, we have a◦a = {0} and so a ∈ B. Therefore, A ⊆ B. Since

A 6= ∅, we can take a ∈ A. By Proposition 2.4 (vi), 0 ◦ a = {0} and so 0 ∈ B.

Now, let y ∈ B and x ∈ ∗(y,B)⊆. Then x ∗ y ⊆ B. Since |x ∗ y| < ∞, then

there exist a1, ..., an ∈ A such that

(...(((x ∗ y) ◦ a1) ◦ a2) ◦ ...) ◦ an = {0}.

By using (PHK2), we see that

((...((x ◦ a1) ◦ a2) ◦ ...) ◦ an) ∗ y = {0}.

Thus for each u ∈ (...((x ◦ a1) ◦ a2) ◦ ...) ◦ an, we have u ∗ y = {0}. Since y ∈ B,
then there exist b1, ..., bm ∈ A such that (...((y ◦ b1) ◦ b2) ◦ ...) ◦ bm = {0} and

so by hypothesis (...((y ∗ bm) ∗ bm−1) ∗ ...) ∗ b1 = {0}. Hence by Proposition 2.4

(xiv),

((...((u ∗ bm) ∗ bm−1) ∗ ...) ∗ b1) ∗ {0}
= (((...((u ∗ bm) ∗ bm−1) ∗ ...) ∗ b2) ∗ b1)

∗(((...((y ∗ bm) ∗ bm−1) ∗ ...) ∗ b2) ∗ b1)

� ((...((u ∗ bm) ∗ bm−1) ∗ ...) ∗ b2) ∗ ((...((y ∗ bm) ∗ bm−1) ∗ ...) ∗ b2)

� ((...((u ∗ bm) ∗ bm−1) ∗ ...) ∗ b3) ∗ ((...((y ∗ bm) ∗ bm−1) ∗ ...) ∗ b3)

...

� u ∗ y
= {0}

Thus by Proposition 2.4 (xiii), (...((u ∗ bm) ∗ bm−1) ∗ ...) ∗ b1 = {0} and so

by hypothesis we obtain (...((u ◦ b1) ◦ b2) ◦ ...) ◦ bm = {0}. Hence

(...((((...((x ◦ a1) ◦ a2) ◦ ...) ◦ an) ◦ b1) ◦ b2) ◦ ...) ◦ bm = {0}.

Since ai, bj ∈ A, for i = 1, 2, ..., n; j = 1, 2, ...,m, then x ∈ B. Now, let y ∈ B
and z ∈ ◦(y,B)⊆. Then z ◦ y ⊆ B. Since |z ◦ y| <∞, then by the similar way,
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we get that z ∈ B. Hence ∗(y,B)⊆ ⊆ B and ◦(y,B)⊆ ⊆ B i.e. B is a hyper

pseudo-ideal of type 4 in H containing A. �
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