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Abstract. In this article, we consider the matrix equation AXB = C,

where A, B, C are given matrices and give new necessary and sufficient

conditions for the existence of the diagonal solutions and monomial solu-

tions to this equation. We also present a general form of such solutions.

Moreover, we consider the least squares problem minX ‖C − AXB‖F
where X is a diagonal or monomial matrix. The explicit expressions of

the optimal solution and the minimum norm solution are both provided.

Keywords: Matrix equation, Diagonal matrix, Monomial matrix, Least squares

problem.

2000 Mathematics subject classification: 15A24, 15A06.

1. Introduction

Let Rm×n be the set of all m × n real matrices. For A ∈ Rm×n, let

AT , A−, AL, A+ and ‖A‖F be the transpose, the generalized inverse(g-inverse),

least squares g-inverse, the Moore-Penrose g-inverse and the Frobenius norm

of A, respectively. We denote by In and Om×n the n × n identity matrix and

the m×n zero matrix, respectively. A⊗B and vec(A) stand for the Kronecker

product of matrices A and B and the vec notation of matrix A, respectively

(see [14], [1] or [8]). For v ∈ Rn, ‖v‖2 represents the Euclidean norm of v.
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32 M. Aman

Some authors have studied the problem general solution to the matrix equa-

tion

AXB = C (1.1)

where A ∈ Rm×n, B ∈ Rn×p and C ∈ Rm×p are known matrices. For in-

stance, Dai[4], Magnus[10], Khatri and Mitra[6], Zhang[18] and Cvetković-Ilić

[3] have derived the general symmetric, L-structured, hermitian and nonnega-

tive definite, hermitian nonnegative definite and positive definite and reflexive

solutions to the matrix equation (1.1), respectively. The Re-nonnegative defi-

nite solutions for the equation (1.1) were investigated by Wang and Yang [17]

and Cvetković-Ilić [2]. Hou et al.[7] gave iteration methods for computing the

least squares symmetric solution of the equation (1.1), in which the authors

presented an algorithm to solve the minimum Frobenius norm residual prob-

lem: min ‖AXB−C‖F with unknown symmetric matrix X. Tian[16] gave the

maximal and minimal ranks of solutions of the equation (1.1).

Matrix equations play an important role in applied mathematics and engi-

neering sciences. For example, the matrix equation (1.1) arises in the multi-

static antenna array processing problem in the scattering theory(see [12], [15]

and [9]). In this problem, we obtain a matrix equation in the form AXB = C

whose diagonal and monomial solutions are feasible solutions of the problem.

Lev-Ari in [9] compute a solution to the multistatic antenna array processing

problem by using Kronecker, Khatri-Rao and Schur-Hadamard matrix prod-

ucts. Also, matrix equations appear naturally in solving the differential equa-

tions or the controllable linear time-invariant system(see [5] and [11]). For ap-

proximating of solutions for matrix equations with unknown matrix X ∈ Rm×n,

we can choose N = n(m− 1) or M = m(n− 1) unknowns arbitrarily and con-

vert the matrix equations to new one whose diagonal or monomial solutions

are feasible [5].

In this article we use the singular value decomposition(SVD) and examine

necessary and sufficient conditions for the existence of diagonal solutions and

monomial solutions to the matrix equation (1.1). Also, we derive representa-

tion of the general diagonal solutions and monomial solutions to this matrix

equation. Moreover, we consider the least squares problem minX ‖C−AXB‖F
subject to the constraint that X is a diagonal or monomial matrix and, com-

pute the general solution and the unique solution of minimum 2-norm to this

problem.

Now, we state some well known results which are used in the next section.

Lemma 1.1. Let A ∈ Rm×n and b ∈ Rm be given. Then,

(i) (see [1, P. 53] and [14]) the linear system Ax = b is consistent if and

only if for some A−,

AA−b = b
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in which case the general solution is

x = A−b + (In −A−A)h

for arbitrary h ∈ Rn.

(ii) (see [1, P. 105] and [14, Section 6.5]) the general solution to the least

squares problem

min
x∈Rn

‖b−Ax‖2

is of the form

x = ALb + (In −A−A)y

where AL is a least squares g-inverse and A− is a g-inverse of A and

y ∈ Rn is arbitrary.

(iii) (see [8, P. 66]) the unique solution of the least squares problem

min
x∈Rn

‖b−Ax‖22 + ‖x‖22

is x = A+b.

2. The diagonal solutions

In this section, we present the general diagonal solutions to the matrix equa-

tion (1.1).

Suppose that the diagonal D = diag(d1, d2, ..., dn) is a solution to the equa-

tion (1.1), then

ADB = C.

This relation can be written using the vec notation and the Kronecker product

in the equivalent form

n∑
i=1

(bTi∗ ⊗ a∗i)di = vec(C)

where bi∗ and a∗i are the i−th row of B and the i−th column of A, respec-

tively. This shows that the diagonal D = diag(d1, d2, ..., dn) is a solution to the

equation (1.1) if and only if the vector d = (d1, d2, ..., dn)T satisfies the linear

system

V d = vec(C) (2.1)

where

V = [ bT1∗ ⊗ a∗1 , bT2∗ ⊗ a∗2 , ... , bTn∗ ⊗ a∗n ]. (2.2)

Therefore, the matrix equation (1.1) has a diagonal solution if and only if the

linear system (2.1) is consistent. By Lemma 1.1(i), (2.1) is consistent if and

only if

V V −vec(C) = vec(C).

The following theorem follows from these observations.
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34 M. Aman

Theorem 2.1. Let A ∈ Rm×n, B ∈ Rn×p and C ∈ Rm×p be given. Then

equation (1.1) has a diagonal solution if and only if

V V −vec(C) = vec(C) (2.3)

where V is defined by (2.2), in which case the general diagonal solution is

D = diag(dT ) where the vector d satisfies

d = V −vec(C) + (In − V −V )h (2.4)

for arbitrary h ∈ Rn.

In the following, we rewrite the matrix V and the solution to (2.1) with more

details. First, we give the following lemma.

Lemma 2.2. Given matrices A ∈ Rm×n and B ∈ Rn×p. Then the matrix V

in (2.2) satisfies

V = (BT ⊗A)PE (2.5)

where P is a symmetric permutation matrix of size n2×n2 and E is an n2×n

matrix of the form

E =

[
In
O

]
(2.6)

where O is an (n2 − n)× n zero matrix.

Proof. The i−th column of V satisfies

bTi∗ ⊗ a∗i = BT ei ⊗Aei = (BT ⊗A)(ei ⊗ ei),

where ei is the i−th column of the n× n identity matrix. Substituting this in

(2.2) yields,

V = (BT ⊗A)F,

where

F = [ e1 ⊗ e1 , e2 ⊗ e2 , ... , en ⊗ en ].

It is easy to see that the matrix F can be transformed into the matrix E in (2.6)

by reordering of its rows. This operation can be achieved by a premultiplication

F by permutation matrix

P =

n∏
i=2

Gi,((i−1)n+i), (2.7)

where Gi,((i−1)n+i) is an interchange matrix (the identity matrix with its i−th

row and ((i− 1)n + i)−th row interchanged). Thus we have

E = PF.

Note that the matrix P is unitary and also symmetric, since there is no overlap

between the interchange matrices(see [13, P. 73]). Therefore we obtain

F = PE.

This completes the proof. �
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Lemma 2.3. Let A ∈ Rm×n and B ∈ Rn×p be given. Let

UT
A

[
ΣA O

O O

]
WA and UT

B

[
ΣB O

O O

]
WB (2.8)

be singular value decompositions of A and B, respectively, where ΣA and ΣB are

diagonal and nonsingular. Then there are two symmetric permutation matrices

P1 and P2 such that

(WT
B ⊗ UT

A )P1

[
ΣA ⊗ ΣB O

O O

]
P2(UB ⊗WA) (2.9)

is a singular value decomposition of (BT ⊗A).

In the above lemma, two permutation matrices P1 and P2 have been used

to permute the rows and columns of the diagonal matrix[
ΣA O

O O

]
⊗
[

ΣB O

O O

]
,

to convert this matrix to the following matrix.[
ΣA ⊗ ΣB O

O O

]
.

On the other hand, These permutations have not any overlapping. Therefore,

P1 and P2 are symmetric. This shows that the matrices P1 and P2 satisfied in

the above lemma can be computed, easily.

Theorem 2.4. Let A ∈ Rm×n, B ∈ Rn×p and C ∈ Rm×p be given. Let

rank(A) = r1 and rank(B) = r2, and let the matrices UA, UB ,WA,WB ,ΣA,ΣB,

P1 and P2 satisfy (2.8) and (2.9). Then equation (1.1) has a diagonal solution

if and only if

(ŨT
1 ΣW̃11W̃

−
11Σ−1Ũ1 + ŨT

1 ΣW̃11HŨ2)vec(C) = vec(C) (2.10)

for arbitrary matrix H ∈ Rn×(mp−r1r2), in which case the general diagonal

solution is D = diag(dT ) where the vector d satisfies

d = (W̃−11Σ−1Ũ1 + HŨ2)vec(C) + (In − W̃−11W̃11)h (2.11)

for arbitrary h ∈ Rn where Σ = ΣA⊗ΣB, Ũ1 is an r1r2×mp matrix consisting

of the first r1r2 rows of the matrix P1(WB ⊗ UA), Ũ2 is an (mp− r1r2)×mp

matrix consisting of the last (mp− r1r2) rows of the matrix P1(WB ⊗UA) and

W̃11 is an r1r2 × n matrix whose (i, j)−th entry is equal to the (i, ((j − 1)n +

j))−th entry of the matrix P2(UB ⊗WA).

Proof. Denote by Ũ the matrix P1(WB ⊗ UA) and by W̃ the matrix P2(UB ⊗
WA). Substituting (2.9) into (2.5), we obtain

V = ŨT

[
Σ O

O O

]
W̃P

[
In
O

]
. (2.12)
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36 M. Aman

We note that the postmultiplication of W̃ by the permutation matrix P in (2.7)

is equivalent to interchanging the columns i and ((i− 1)n+ i) of the matrix W̃

for i = 2, 3, ..., n. Therefore the product

W̃P

[
In
O

]
is equal to an n2×n matrix W̃1 which consists of the n columns w̃∗((i−1)n+i), i =

1, 2, ..., n of W̃ . Now partition W̃1 as[
W̃11

W̃21

]
(2.13)

where W̃11 is of size r1r2 × n, then (2.12) becomes

V = ŨT

[
Σ Or1r2×(n2−r1r2)

O(mp−r1r2)×r1r2 O(mp−r1r2)×(n2−r1r2)

] [
W̃11

W̃21

]

= ŨT

[
ΣW̃11

O(mp−r1r2)×n

]

= ŨT

[
Σ Or1r2×(mp−r1r2)

O(mp−r1r2)×r1r2 I(mp−r1r2)

][
W̃11

O(mp−r1r2)×n

]
. (2.14)

We now compute a g-inverse of V in terms of a g-inverse of W̃11. To do this,

we know that [
W̃11

O

]− [
Σ−1 O

O I

]
Ũ

is a g-inverse of V (see [1, P. 43]). On the other hand, it is easy to verify that[
W̃11

O

]−
= [W̃−11 , H]

for arbitrary matrix H ∈ Rn×(mp−r1r2). Then we have

V − = [W̃−11 , H]

[
Σ−1 O

O I

]
Ũ . (2.15)

Substituting (2.14) and (2.15) into (2.3) gives

ŨT

[
ΣW̃11W̃

−
11Σ−1 ΣW̃11H

O O

]
Ũvec(C) = vec(C)

and Substituting (2.14) and (2.15) into (2.4) gives

d = [W̃−11Σ−1 , H]Ũvec(C) + (In − W̃−11W̃11)h.
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By partitioning the matrix Ũ as [
Ũ1

Ũ2

]
where Ũ1 consists of the r1r2 first rows of Ũ , and substituting it into the two

above relations, we obtain (3.8) and (3.9).

The proof is complete. �

Proposition 2.5. Let A ∈ Rm×n, B ∈ Rn×p and C ∈ Rm×p be given. If

D = diag(d1, d2, ..., dn) is a diagonal solution to (1.1) ,then the number of

nonzero diagonal entries of D is at least rc where rc is the rank of the matrix

C.

Proof. The proof is an immediate consequence of the fact that

rank(ADB) ≤ min{rank(A), rank(D), rank(B)}.

�

Now, we consider the more general case where the linear system (2.1) may

be inconsistent. In this case, we solve the least squares problem

minX ‖C −AXB‖F
subject to : X ∈ Rn×n and X is diagonal,

(2.16)

where A,B and C are given matrices, or equivalently, the least squares problem

do = arg min
d∈Rn

‖vec(C)− V d‖2 (2.17)

where V is defined by (2.2). It is evident that do is a solution of the problem

(2.17) if and only if Xo = diag(dTo ) is a solution of the problem (2.16). To solve

the above least squares problems, we need the following algorithm.

Algorithm 1.

1. Input W̃11 ∈ Rr×n and nonsingular diagonal matrix Σ of size r × r.

2. Calculate the integer rw according to

rw = rank(W̃11).

3. Find permutation matrices Q1 ∈ Rr×r and Q1 ∈ Rn×n satisfying the

relations

W̃11 = Q1

[
Ŵ1 Ŵ2

Ŵ3 Ŵ4

]
Q2

where the rw × rw matrix Ŵ1 is full rank.

4. Find the diagonal matrix Σ̂ satisfying

ΣQ1 = Q1Σ̂.
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38 M. Aman

5. Partition Σ̂ as

Σ̂ =

[
Σ̂1 O

O Σ̂2

]
where the diagonal matrices Σ̂1 and Σ̂2 are of sizes rw × rw and (r −
rw)× (r − rw), respectively.

6. Solve the matrix equation

Y (Σ̂1Ŵ1) = Σ̂2Ŵ3.

7. Calculate the matrix Lw according to

Lw = QT
2

[
L1 L2

O O

]
QT

1

where L1 = Ŵ−11 Σ̂−11 (Irw + Y TY )−1 and L2 = L1Y
T .

8. Solve the matrix equation

Ŵ1Y
′ = Ŵ2

9. Calculate the matrix Mw according to

Mw = QT
2

[
Irw
Y ′

T

]
(Irw + Y ′Y ′

T
)−1L1[Irw Y T ]QT

1 .

�
The matrices (Irw + Y TY ) and (Irw + Y ′Y ′

T
) in the above algorithm are

nonsingular, since these matrices are symmetric positive definite.

Lemma 2.6. Let W̃11 ∈ Rr×n and nonsingular diagonal matrix Σ ∈ Rr×r be

given. Let Lw and Mw be the matrices obtained from Algorithm 1. Then Lw

is a least squares g-inverse and Mw is the Moore-Penrose g-inverse of ΣW̃11.

Proof. By straightforward computations, it can be shown that Lw satisfy

ΣW̃11LwΣW̃11 = ΣW̃11 and (ΣW̃11Lw)T = ΣW̃11Lw,

and Mw satisfy

ΣW̃11MwΣW̃11 = ΣW̃11 , (ΣW̃11Mw)T = ΣW̃11Mw

MwΣW̃11Mw = Mw and (MwΣW̃11)T = MwΣW̃11.

Therefore, Lw is a least squares g-inverse of ΣW̃11 and (ΣW̃11)+ = Mw. �

Theorem 2.7. Let A ∈ Rm×n, B ∈ Rn×p and C ∈ Rm×p be given and let

the matrices UA, UB ,WA,WB ,ΣA,ΣB , P1 and P2 satisfy (2.8) and (2.9). Let

r1, r2,Σ, Ũ , W̃ , Ũ1, Ũ2 and W̃11 be as in Theorem 2.4. Then the general solution

to the least squares problem (2.17) is of the form

do = LwŨ1vec(C) + (I − W̃−11W̃11)h,

for arbitrary h ∈ Rn where Lw is a least squares g-inverse of ΣW̃11 obtained

from Algorithm 1.
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Diagonal and Monomial Solutions of the Matrix Equation AXB = C 39

In addition, the unique solution of minimum 2-norm is

dmo = MwŨ1vec(C)

where Mw is the Moore-Penrose g-inverse of ΣW̃11 obtained from Algorithm 1.

Proof. From (2.14), above lemma and the definition of least squares g-inverse,

it follows that

[Lw H ′]Ũ (2.18)

is a least squares g-inverse of V where H ′ ∈ Rn×(mp−r1r2) is any solution of

the matrix equation

W̃11H
′ = O. (2.19)

We know that the general solution of (2.19) is

H ′ = (I − W̃−11W̃11)H

where W̃−11 is an arbitrary g-inverse of W̃11 and H an arbitrary matrix in

Rn×(mp−r1r2)[14, P. 215]. By substituting this into (2.18), a least squares g-

inverse of V is obtained as

LwŨ1 + (I − W̃−11W̃11)HŨ2. (2.20)

Similarly, it can be verified that

V + = MwŨ1. (2.21)

It follows from (2.15), (2.20) and Lemma 1.1(ii) that the general least squares

solution of (2.17) is

do = LwŨ1vec(C) + (I − W̃−11W̃11)(HŨ2vec(C) + y) (2.22)

where H ∈ Rn×(mp−r1r2) and y ∈ Rn are arbitrary. It is easy to show that

for every h ∈ Rn, there are H ∈ Rn×(mp−r1r2) and y ∈ Rn such that h =

(HŨ2vec(C) + y). This proves the first part of the theorem.

The second part of the theorem can be easily proved from (2.21) and Lemma

1.1(iii). �

3. The monomial solutions

In this section, we obtain the general monomial solutions to the matrix

equation (1.1) by using the general diagonal solution presented in the previous

section.

A square matrix is called monomial if each its row and column contains at

most one non-zero entry. It is easy to verify that a matrix M is a monomial

matrix if and only if it can be written as a product of a diagonal matrix D and

a permutation matrix P , i.e.,

M = DP.
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40 M. Aman

If we denote by monom(m1,j1 ,m2,j2 , ...,mn,jn), an n × n monomial matrix

whose all entries are equal to zero except probably its (i, ji)−th entry, i =

1, 2, ..., n, which is equal to mi,ji , then the above relation can be written as

monom(m1,j1 ,m2,j2 , ...,mn,jn) = diag(m1,j1 ,m2,j2 , ...,mn,jn)PT (3.1)

in which P is the permutation matrix

[ej1 , ej2 , ..., ejn ]

where eji is the ji−th column of the n× n identity matrix.

Assume that the monomial matrix monom(m1,j1 ,m2,j2 , ...,mn,jn) is a solu-

tion to the matrix equation (1.1). By (3.1) we obtain

ADmBm = C (3.2)

where Bm = [ej1 , ej2 , ..., ejn ]TB and Dm = diag(m1,j1 ,m2,j2 , ...,mn,jn). This

shows that the monomial matrix monom(m1,j1 ,m2,j2 , ...,mn,jn) is a solution

to (1.1) if and only if the diagonal matrix Dm is a solution to (3.2). Therefore

by Lemma 2.2, (3.2) is equivalent to

(Bm
T ⊗A)PEdm = vec(C) (3.3)

where P and E are defined by (2.7) and (2.6), respectively, and dm is a col-

umn vector whose components are the diagonal entries of Dm(i.e., Dm =

diag(dm
T )). Replacing Bm and A by [ej1 , ej2 , ..., ejn ]TB and AIn, respectively,

in (3.3) gives

(BT ⊗A)([ej1 , ej2 , ..., ejn ]⊗ In)PEdm = vec(C) (3.4)

Denote by Pm, the permutation matrix ([ej1 , ej2 , ..., ejn ]⊗In)P in (3.4). We

now show that Pm is not unique. Toward this end, we can rewrite the relation

(3.2) by using vec notation as follows:

[bTj1∗ ⊗ a∗1 , bTj2∗ ⊗ a∗2 , ... , bTjn∗ ⊗ a∗n]dm = vec(C) (3.5)

where bi∗ and a∗i are the i−th row of B and the i−th column of A, respectively.

Then, similarly, we have

(BT ⊗A)[ej1 ⊗ e1 , ej2 ⊗ e2 , ... , ejn ⊗ en]dm = vec(C). (3.6)

To transform the matrix [ej1 ⊗ e1 , ej2 ⊗ e2 , ... , ejn ⊗ en] into the matrix

E in (2.6), premultiply this matrix by permutation matrix

P ′m =

n∏
i=1

Gi,((ji−1)n+i).

Thus, (3.6) becomes

(BT ⊗A)P ′mEdm = vec(C). (3.7)

Comparing this with (3.4) yields the desired result, i.e., the permutation

matrix Pm is not unique. But the n first columns of these permutation matrices

are the same.
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Now by Theorem 2.1 and Lemma 2.3 and similar to Theorem 2.4 we can

write the following theorem.

Theorem 3.1. Suppose the hypothesis of Theorem 2.4 is satisfied. Then equa-

tion (1.1) has a monomial solution of the form (3.1) if and only if

(ŨT
1 ΣW̃m11W̃m

−
11Σ−1Ũ1 + ŨT

1 ΣW̃m11HŨ2)vec(C) = vec(C) (3.8)

for arbitrary matrix H ∈ Rn×(mp−r1r2), in which case the general monomial

solution of the form (3.1) is diag(dTm)PT where the vector dm satisfies

dm = (W̃m

−
11Σ−1Ũ1 + HŨ2)vec(C) + (In − W̃m

−
11W̃m11)h (3.9)

for arbitrary h ∈ Rn where W̃m11 is an r1r2 × n matrix whose (i, t)−th entry

is equal to the (i, ((jt − 1)n + t))−th entry of the matrix P2(UB ⊗WA).

The above theorem introduces an algorithm for computing the general mono-

mial solution of the matrix equation (1.1). This algorithm depends on a per-

mutation {j1, j2, ..., jn} of the set {1, 2, ..., n}. Then we can compute all of the

monomial solutions of (1.1), with implementation these algorithm for all of the

permutations of the set {1, 2, ..., n}.
Now, we consider the least squares problem

minX ‖C −AXB‖F
subject to : X ∈ Rn×n and X = monom(m1,j1 ,m2,j2 , ...,mn,jn),

(3.10)

where A,B and C are given matrices, or equivalently, the least squares problem

dmo = arg min
dm∈Rn

‖vec(C)− Vmdm‖2 (3.11)

where Vm = [bTj1∗ ⊗ a∗1 , bTj2∗ ⊗ a∗2 , ... , bTjn∗ ⊗ a∗n]. It is evident that dmo is

a solution of the problem (3.11) if and only if Xo = diag(dTmo)PT is a solution

of the problem (3.10). By a similar argument to Theorem 2.7, we can easily

derive the following theorem.

Theorem 3.2. Let A ∈ Rm×n, B ∈ Rn×p and C ∈ Rm×p be given and let

the matrices UA, UB ,WA,WB ,ΣA,ΣB , P1 and P2 satisfy (2.8) and (2.9). Let

r1, r2,Σ, Ũ , W̃ , Ũ1 and Ũ2 be as in Theorem 2.4 and let W̃m11 be as in Theorem

3.1. Then the general solution to the least squares problem (3.11) is of the form

dmo = LwmŨ1vec(C) + (I − W̃m

−
11W̃m11)h,

for arbitrary h ∈ Rn where Lwm
is a least squares g-inverse of ΣW̃m11 obtained

from Algorithm 1.

In addition, the unique solution of minimum 2-norm is

dmmo = MwmŨ1vec(C)

where Mwm
is the Moore-Penrose g-inverse of ΣW̃m11 obtained from Algorithm

1.
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