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Abstract. In this paper we develop an analog of the notion of the con-

jugacy graph of finite groups for the finite semigroups by considering the

Green relations of a finite semigroup. More precisely, by defining the

new graphs ΓL(S), ΓR(S), ΓH(S), ΓJ (S) and ΓD(S) (we name them

the Green graphs) related to the Green relations L,R, J,H and D of a

finite semigroup S, we first attempt to prove that the graphs ΓL(S) and

ΓH(S) have exactly one connected component, and this graphs for reg-

ular semigroups are complete. Next, we give a necessary condition for

a finite semigroup to be regular. This study shows an intrinsic differ-

ence between the conjugacy graphs (of groups) and the Green graphs (of

semigroups) as well. Finally, our calculations include two kinds of semi-

groups, mostly involving the well known Lucas numbers, and examining

the proved assertions.
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1. Introduction

Graphs related to various algebraic structures have been actively investi-

gated in the literature. Several classes of graphs associated to groups and
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semigroups have turned out useful and have also been applied in several prac-

tical areas. Let us refer the readers to the survey article [11] and articles

[8, 15, 17], containing an extensive bibliography devoted to numerous applica-

tions of such graphs. In particular, the Cayley graphs of semigroups are closely

related to automata theory, as explained, for example, in the monograph [12]

and articles [13, 14], where the readers can find many more references on graphs

associated to semigroups.

Also, for a finite group G, E.A. Bertram [4] has attached a conjugacy graph

Γ(G), which is an undirected graph with t vertices c1, c2, ..., ct where ci’s are

the conjugacy classes of G and two vertices ci and cj are adjacent in Γ(G) if

and only if gcd(|ci|, |cj |) > 1, (gcd is used for the greatest common divisor).

The study of this graph is essential for the non-abelian groups and it is proved

in [4] that n(Γ(G)) ≤ 2 where n(Γ(G)) is the number of connected components

of Γ(G). Also M. Fang [7] studied this graph in the classification of groups

for the graphs containing no triangles, in 2003. The recently obtained result

is due to Adan-Bante [1] in 2005 which is to study the conjugacy classes of

finite p-groups which could be quite related to the study of conjugacy graphs

of groups.

In this paper we generalize the notion of conjugacy graph of groups for

finitely presented finite semigroups. This paper concentrates on a very specific

study, the new Green graphs. They have not been considered in the literature

before.

Our notations are fairly standard. In the group and semigroup presentations

one may consult [6,10,16] and in the theoretical semigroup ideas one may see

[9]. Also our computational examples will be in continuations of the articles

[2, 3, 5]. The notation Kn is used for the complete graph with n vertices.

For a finite semigroup S, the left Green relation in S is defined by aLb ⇔
S1a = S1b, for every elements a and b of S, where S1 = S if S posses an

identity element, otherwise S1 = S ∪ {1}, such that, 1s = s1 = s, for every

s ∈ S. The other Green relations R, J,H and D may be defined in a similar

way:

aRb⇔ aS1 = bS1,

aJb⇔ S1aS1 = S1bS1,

aHb⇔ (aLb and aRb),

aDb⇔ (∃c ∈ S, aLc and cRb), for every elements a and b of S.

Definition 1.1. For a finite semigroup S the left Green graph of S, de-

noted by ΓL(S), is an undirected graph with vertices L1, L2, ..., Lk of left Green

classes of S (L-classes), and two vertices Li and Lj are adjacent if and only if

gcd(|Li|, |Lj |) > 1. The other Green graphs ΓR(S),ΓJ(S), ΓH(S) and ΓD(S)
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are defined in a similar way.

Let n(ΓL(S)) be the number of connected components of the graph ΓL(S),

(a similar notation is used for ΓR(S), ΓJ(S), ΓH(S) and ΓD(S)). For a pre-

sentation π = 〈X|R〉, let G = Gp(π) and S = Sg(π) be the group and the

semigroup presented by π, respectively. A natural question may be posed here

is that: for a semigroup S when the Green graphs may be isomorphic, and also

which Green graphs of which semigroups may have just one non-zero connected

component. In the next sections we investigate these questions by providing

certain infinite classes of finite semigroups.

Our main results in this paper are:

Theorem A. For every finite and non-commutative semigroup S, n(ΓL(S)) =

n(ΓH(S)) = 1.

Theorem B. Let S be a finite regular semigroup. Then, ΓD(S) ' ΓJ(S) '
ΓR(S). Moreover, ΓL(S) ' ΓH(S) which is a complete graph.

Theorem C. If all of five Green graphs are isomorphic, then the semigroup S

is regular.

Corollary D. The Green graphs of a commutative semigroup S, coincide and

are not the zero graphs (in spite of the conjugacy graph of an abelian finite

group being a zero graph).

2. Green graphs with one connected component

For a finite semigroup S let gcd(|L1|, |L2|) ≥ 1 where, L1 = [x]L and L2 =

[y]L are two arbitrary left Green classes of S. Then there are two cases. If

gcd(|L1|, |L2|) > 1 then obviously ΓL(S) has exactly one connected component.

However, for the case gcd(|L1|, |L2|) = 1 we have the following lemma which

will be used in the proof of Theorem A.

Lemma 2.1. Let S be a finite semigroup, and let L1 and L2 be two left

Green classes of S with representatives a1 and a2, respectively. If CS(ai) is

the centralizer of ai in S, (i=1, 2) and gcd(|L1|, |L2|) = 1, then the following

conditions hold:

(i) S = CS(a1)CS(a2),

(ii) |L1| = 1 or |L2| = 1,

(iii) L1L2 is a left Green class of S.

Proof. (i). Let pn be the highest power of a prime p dividing |S| and n ≥ 1.

Clearly it suffices to show that either pn||CS(a1)| or pn||CS(a2)|. If p doesn’t
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divide |L1| then pn||CS(a1)|, and if p divides |L1| then p doesn’t divide |L2|.
Since (|L1|, |L2|) = 1, we get pn||CS(a2)|.

On the other hand, CS(a1)CS(a2) ⊆ S and pn ≤ |CS(a1)CS(a2)| ≤ |S| = pn.

So, S = CS(a1)CS(a2).

(ii) If |L1|, |L2| > 1, then |L1| = ( |S|
|CS(a1)| ) > 1 and |L2| = ( |S|

|CS(a2)| ) > 1,

so (|L1|, |L2|) = 1 yields ( |S|
|CS(a1)| ,

|S|
|CS(a2)| ) = 1. Consequently, p| |S|

|CS(a1)| and

p| |S|
|CS(a2)| thus p|1, which is a contradiction.

(iii) We have to show that for every x, y ∈ L1L2, xS = yS. By considering

(ii), we can suppose that L1 = [a1]L = {a1}, thus if x ∈ L1L2 then, there

exists an element c1 ∈ L2 such that x = a1c1. Also if y ∈ L1L2, there exists an

element c2 ∈ L2 such that y = a1c2. Then we get:

xS = a1c1S = a1(c1S) = a1(a2S) = a1(c2S) = a1c2S = yS. �

Proof of Theorem A. Let L1 and L2 be two left Green classes of S. If

gcd(|L1|, |L2|) = 1 then |L1| = 1 or |L2| = 1 (by the Lemma 2.1.) So the non-

central left Green classes are the vertices of a unique component of ΓL(S) and

then, ΓL(S) has exactly one non-zero component such that every two vertices

are adjacent, this means that n(ΓL(S)) = 1. Proving n(ΓH(S)) = 1 is now

quite easy by considering the definition of H relation. �

3. Green graphs of regular semigroups

Let S be a finite semigroup, then ΓD(S) ' ΓJ(S) is a quick result of the

identification of Green relations D and J (see [9]).

Proof of Theorem B. By the above comment, ΓJ(S) ' ΓD(S). So it is

sufficient to show that ΓR(S) ' ΓJ(S). For every J-class [x]J , if y ∈ [x]J ,

there exist u1, v1, u2, v2 ∈ S such that y = u1xv1 and x = u2yv2. So, y =

u1xv1 = (u1x)v1 = x′v1 and then y ∈ [x′]R. Also if y ∈ [z]R, then there

exists k ∈ S such that y = zk, and by the regularity of S, there exists r ∈ S,

such that z = zrz. So y = zrzk = z(rz)k = zlk ∈ [l]J . Thus, every J-class

is equal to an R-class. Now, if [x1]J = [x′1]R and [x2]J = [x′2]R such that

gcd(|[x1]J |, |[x2]J |) > 1, then gcd(|[x′1]R|, |[x′2]R|) > 1. Thus there is a bijection

between the vertex sets of ΓR(S) and ΓJ(S) such that two adjacent vertices of

ΓR(S) map to the adjacent vertices of ΓJ(S). This shows that ΓR(S) ' ΓJ(S).

For the other part of theorem it is obvious that each H-class of the semigroup

S is a subset of a L-class. Let x ∈ [a]L then, there exist u, v ∈ S such that

x = ua and a = vx. By regularity of S there exists r ∈ S such that a = ara.

So x = ua = uara = ua(ra) = uak ∈ [a]J = [a]R, and x ∈ [a]L ∩ [a]R = [a]H .

This proves that ΓH(S) ' ΓL(S) which is a complete graph by considering H

relation. �
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Note that, Theorem B is valid for finite periodic semigroups and for inverse

semigroups.

Proof of Theorem C. Let S be a finite semigroup that all of five Green

graphs are isomorphic. Then for a fixed element x ∈ S, there exists a J-class

[a]J such that x ∈ [a]J . So, there are u, v, u′, v′ ∈ S such that x = uav

and a = u′xv′. The relations x = uav and a = u′xv′ imply u ∈ [x]R and

v ∈ [x]L. Consequently, there exist r, s ∈ S such that u = xr and v = sx.

So x = uav = (xr)a(sx) = x(ras)x = xkx. This implies that x is a regular

element and consequently S is a regular semigroup. �

Proof of Corollary D. For a commutative semigroup S, it may be easily

checked that ΓL(S) ' ΓR(S) ' ΓJ(S) ' ΓH(S) ' ΓD(S). However ΓR(S) may

have at least two connected vertices, in general. This is in contrary by the fact

that for an abelian group, the conjugacy graph is always a zero graph. �

4. Conclusion

In this chapter we examine five classes of non-commutative finitely presented

semigroups as follows:

S1 =< a, b|a3 = a, bna = a, abab2 = b >,

S2 =< a, b|a3 = a, bn+1 = b, abab2 = b >,

S3 =< a, b|a3 = a, b2n+1 = b, ab2abn−1 = ba >,

S4 =< a, b|a3 = a, b2n+1 = b, abn−1ab2 = ba >,

S5 =< a, b|ab = ba1+p
α−γ

, a = a1+p
α

, b = b1+p
β

>,

where, p ≥ 2 is a prime, n, α, β and γ are integers such that n ≥ 2, α ≥ 2γ,

β ≥ γ ≥ 1, and α + β ≥ 3. For more information on the finiteness and the

orders of these semigroups one may see [2,3,6]. For the classes S1, S2 and S5

we prove their regularity and construct the related Green graphs which will

examine the results of Chapter 3. In the two remained classes S3 and S4, by

showing the non-regularity we compute the Green graphs which are also an

examining of the results of Chapter 3. There are two comments on Theorems

A and B.

First of all, we mention that the results of this chapter have been influenced

by computational evidence running on computer by GAP software [18].

S1 and S2 are examples of finite regular semigroups. Proving the regularity

is easy by using the relators of the semigroups, and using GAP [18], we get the

numerical results as follows:

ΓR(S1) = ΓJ(S1) = ΓD(S1) = K1,

ΓL(S1) = ΓH(S1) = K2.

ΓR(S2) = ΓJ(S2) = ΓD(S2) = K2,

ΓL(S2) = ΓH(S2) = K4.
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This computation shows that n(ΓR(S1)) = 0 and n(ΓR(S2)) = 1. So, the

assertion of Theorem A doesn’t hold for Green R relation in general.

The semigroup S5 is an example of regular semigroup as well which dis-

tinguishing Theorems B and C. Indeed we can easily show that ΓL(S5) '
ΓR(S5) ' ΓJ(S5) ' ΓH(S5) ' ΓD(S5) ' K3. So the converse of Theorem B

doesn’t hold.

Since the semigroups S3 and S4 are not regular, for, we may use the general

forms of their elements to show that the regularity condition doesn’t hold for

at least one element in each of the semigroups S3 and S4.

Our main results of computations in this chapter are the following proposi-

tions:

Proposition 4.1. For every integer n ≥ 2,

(i) ΓR(S3) = K5,

(ii) ΓJ(S3) = ΓD(S3) = K4,

(iii) ΓL(S3) =

{
K2n+4, if n is odd,

K2n+3, if n is even,

(iv) ΓH(S3)=

{
4nK1 ∪K4, if n is odd,

4nK1 ∪K3, if n is even.

Proof. First of all we note that for every integers i, j and n where (n ≥ 2,

1 ≤ i, j ≤ 2n) the following relations hold in S3:

ba = a2ba, bia = (a2b)ia, bia2 = (a2b)ia2,

biabj = (a2b)i(abj), bia2bj = (a2b)i+1bj−1,

(the proof of these relations are easy by considering the relators of S3). Also

we may note that every element of S3 is in the form bα1aε1bα2aε2 ...bαkaεk .bδ,

where, εi ∈ {1, 2} and αi, δ ∈ {1, 2, ..., 2n}, and this element will be decomposed

as a product of the elements of R-classes of S3.

(i) For every n ≥ 2 the order of S3 is (4ngn + 2 + 6n), or (2ngn + 2 + 10n), if

n is odd or even, respectively ({gn} is the sequence of Lucas numbers defined

as g0 = 2, g1 = 1, gn = gn−1 + gn−2, (n ≥ 2)). Then, by using the relators

a3 = a, b2n+1 = b and ab2abn−1 = ba of S3 and GAP [11] we get the following

R-classes for S3:
R1 = [a]R = {a, a2}, R2 = [b]R = {bi|i = 1, ..., 2n},
R3 = [ab]R = {abi|i = 1, ..., 2n}, R4 = [a2b]R = {a2bi|i = 1, ..., 2n},
R5 = [ba]R = S3 − (R1 ∪R2 ∪R3 ∪R4),

where, |R1| = 2, |R2| = |R3| = |R4| = 2n and

|R5| =
{

4ngn, if n is odd,

2ngn + 4n, if n is even.
Hence, gcd(|Ri|, |Rj |) ≥ 2, for every 1 ≤ i, j ≤ 5. This proves that ΓR(S3) =

K5.
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(ii) By using the same method as above we get the D-classes as follows:

D1 = [a]D = R1, D2 = [b]D = R2,

D3 = [a2b]D = {aibj |1 ≤ i ≤ 2, 1 ≤ j ≤ 2n}, D4 = [ba]D = R5.

Then, |D1| = 2, |D2| = 2n, |D3| = 4n, |D4| = |R5|.
Thus, gcd(|Di|, |Dj |) ≥ 2, for every 1 ≤ i, j ≤ 4, which proves that

ΓJ(S3) ' ΓD(S3) = K4.

(iii) For every even values of n, there are exactly (2n+ 3) L-classes for S3 as

follows:

L1 = [a]L = R1, L2 = [b]L = R2,

Li = [abi−2]L = {abi−2, a2bi−2}, (i = 3, 4, ..., (2n+ 2)),

L2n+3 = [ba2]L = S3 − (L1 ∪ L2 ∪ ... ∪ L2n+2).

So, |L1| = |L3| = |L4| = ... = |L2n+2| = 2, |L2| = 2n. Since n is even, then

by considering the order of S3 we get |L2n+3| = 2ngn + 4n. Consequently,

gcd(|Li|, |Lj |) ≥ 2, for every 1 ≤ i, j ≤ (2n+ 3) and then ΓL(S3) = K2n+3, for

all even values of n.

For the odd values of n we have exactly (2n+ 4) L-classes as follows:

L1 = [a]L = R1, L2 = [b]L = R2,

Li = [abi−2]L = {abi−2, a2bi−2}, (i = 3, 4, ..., (2n+ 2)),

L2n+3 = [ba2]L, L2n+4 = [ba2b]L,

where, L2n+3 ∪ L2n+4 = S3 − (L1 ∪ L2 ∪ ... ∪ L2n+2). So,


|L1| = |L3| = |L4| = ... = |L2n+2| = 2,

|L2| = 2n,

|L2n+3| = |L2n+4| = 2ngn.

Thus, gcd(|Li|, |Lj |) ≥ 2, for every 1 ≤ i, j ≤ (2n + 4) which shows that

ΓL(S3) = K2n+4, for all odd values of n.

(iv) There are exactly (4n+ 3) H-classes of S3 for even values of n, and they

are:

H1 = [a]H = {a, a2}, H1+i = [abi]H = {abi}, (i = 1, 2, ..., 2n),

H2n+1+j = [a2bj ]H = {a2bj}, (j = 1, 2, ..., 2n),

H4n+2 = [b]H = {b, b2, b3, ..., b2n},
H4n+3 = [ba2]H = S3 − (H1 ∪H2 ∪ ... ∪H4n+2). So,

|H2| = |H3| = |H4| = ... = |H4n+1| = 1,

|H1| = 2,

|H4n+2| = 2n,

|H4n+3| = 2ngn + 4n.
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Consequently, gcd(|Hi|, |Hj |) ≥ 2, just for the values i, j = 1, 4n + 2, 4n + 3.

Hence ΓH(S3) = 4nK1 ∪K3, for all even values of n.

There are (4n+ 4) numbers of H-classes for S3 as follows:

H1 = [a]H = {a, a2}, H1+i = [abi]H = {abi}, (i = 1, 2, ..., 2n),

H2n+1+j = [a2bj ]H = {a2bj}, (j = 1, 2, ..., 2n),

H4n+2 = [b]H = {b, b2, b3, ..., b2n},
H4n+3 = [ba2]H , H4n+4 = [ba2b]H ,

for odd values of n, where H4n+3 ∪H4n+4 = S3− (H1 ∪H2 ∪ ...∪H4n+2). So,
|H2| = |H3| = |H4| = ... = |H4n+1| = 1,

|H1| = 2,

|H4n+2| = 2n,

|H4n+3| = |H4n+4| = 2ngn.

Consequently, gcd(|Hi|, |Hj |) ≥ 2, just for the values i, j = 1, 4n+2, 4n+3, 4n+

4. Hence ΓH(S3) = 4nK1 ∪K4. This complete the proof. �

Proposition 4.2. For every integer n ≥ 2,

(i) ΓR(S4) = K5,

(ii) ΓJ(S4) = ΓD(S4) = K4,

(iii) ΓL(S4) = K2n+4,

(iv) ΓH(S4) = 4nK1 ∪K4.

Proof. A similar method to that of Proposition 4.1 may be used for S4. �
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