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1. Introduction

One way to define a binary quasigroup is that it is a groupoid (A, f) in which

for any a, b ∈ A there are unique solutions x, y to the equations f(a, x) = b,

f(y, a) = b. A loop is a quasigroup with unit (e) such that

f(e, x) = f(x, e) = x.

Groups are associative quasigroups, i.e., they satisfy:

f(f(x, y), z) = f(x, f(y, z)).
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54 A. Ehsani and Yu. M. Movsisyan

There are various generalization of a group (see, [2, 3]). Most of the notions

defined for binary quasigroups can be easily generalized to n-ary operations

which are called n-quasigroups. An n-quasigroup is an n-groupoid (A, f) (f :

An → A,n > 0) in which for every n-sequence a1, . . . , an of elements from A,

every a ∈ A and every i (1 ≤ i ≤ n), there is a unique solution x of the equation

f(a1, . . . , ai−1, x, ai+1, . . . , an) = a.

For example, 1-quasigroups are just bijections.

Let A be a nonempty set, n and m be positive integers and f : An → Am

be an arbitrary function. Then (A, f) is called [n,m]-groupoid. The n-ary

operations, f1, . . . , fm, are defined by the following:

f(x1, . . . , xn) = (y1, . . . , ym)⇔ yi = fi(x1, . . . , xn),

for every 1 ≤ i ≤ m, are called the component operations of f and they are

denoted by f = (f1, . . . , fm) [22, 23, 26]. The [n,m]-groupoid is proper iff

n,m, |Q| ≥ 2.

The [n,m]-groupoid (A, f) is called [n,m]-quasigroup (or multiquasigroup

[9, 10, 27]) iff for every injection, φ : Nn → Nn+m, where Nn = {1, . . . , n},
and every (a1, . . . , an) ∈ Qn there exists a unique (b1, . . . , bn+m) ∈ Qn+m such

that:

f(b1, . . . , bn) = (bn+1, . . . , bn+m) and bφ(i) = ai,

for i = 1, . . . , n.

It is clear that Q(f) is an [n, 1]-quasigroup iff Q(f) is an n-quasigroup [6].

Q(f) is a [1,m]-quasigroup iff there exist permutations, f1, . . . , fm, of Q such

that f(x) = (f1(x), . . . , fm(x)). It is also clear that all components of a multi-

quasigroup are quasigroup operations.

If the component operations of the [n,m]-quasigroup are binary operations,

i.e. n = 2, then we say that the [n,m]-quasigroup is a binary multiquasigroup.

Let us consider the following hyperidentities [17, 18, 19]:

g(f(x, y), f(u, v)) = f(g(x, u), g(y, v)), (Mediality) (1.1)

g(f(x, y), f(u, v)) = f(g(v, y), g(u, x)), (Paramediality) (1.2)

g(f(x, y), f(u, v)) = g(f(x, u), f(y, v)), (Co-mediality) (1.3)

g(f(x, y), f(u, v)) = g(f(v, y), f(u, x)), (Co-paramediality) (1.4)

f(x, x) = x. (Idempotency) (1.5)

The binary algebra, (A,F ), is called:

• medial, if it satisfies the identity (1.1),

• paramedial, if it satisfies the identity (1.2),

• co-medial, if it satisfies the identity (1.3),

• co-paramedial, if it satisfies the identity (1.4),

• idempotent, if it satisfies the identity (1.5),
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Binary Multiquasigroups with Medial-Like Equations 55

for every f, g ∈ F . The binary algebra, (A,F ), is called mode, if it is medial

and idempotent.

Medial groupoids, medial algebras and medial idempotent algebras (modes)

were studied in [12, 13, 24]. Paramedial groupoids and paramedial quasigroups

were studied in [7, 21, 25]. In general, the properties of mediality, paramedi-

ality, co-mediality and co-paramediality are the second order properties of the

algebras in the sense of [8, 15, 19, 17].

Definition 1.1. The binary multiquasigroup (A, f) with f = (f1, . . . , fm) is

called:

• medial, if the binary algebra, (A, f1, . . . , fm), is medial,

• paramedial, if the binary algebra, (A, f1, . . . , fm), is paramedial,

• co-medial, if the binary algebra, (A, f1, . . . , fm), is co-medial,

• co-paramedial, if the binary algebra, (A, f1, . . . , fm), is co-paramedial,

• idempotent, if the binary algebra, (A, f1, . . . , fm), is idempotent,

• mode, if the binary algebra, (A, f1, . . . , fm), is a mode.

The next characterization of binary medial multiquasigroups follows from

[4, 16, 20].

Theorem 1.2. Let (Q, f) be a binary multiquasigroup, where f = (f1, . . . , fm).

If (Q, f) is a binary medial multiquasigroup, then there exists an abelian group,

(Q,+), such that:

fi(x, y) = αix+ βiy + ci,

where αi, βi are automorphisms of the group (Q,+), and ci ∈ Q is a fixed

element and: αiβj = βjαi, αiαj = αjαi, βiβj = βjβi, for i, j = 1, . . . ,m. The

group, (Q,+), is unique up to isomorphisms. Moreover, if (Q, f) is a mode,

then

fi(x, y) = αix+ βiy,

where αi, βi are automorphisms of both the group, (Q,+), and of the algebra,

(Q, f1, . . . , fm).

2. Main Results

To characterize the paramedial, co-medial and co-paramedial multiquasi-

groups we need the concept of holomorphism for groups [14, 19].

Definition 2.1. If (Q, ·) is a group, then the bijection, α : Q→ Q, is called a

holomorphism of (Q, ·) if

α(x · y−1 · z) = αx · (αy)−1 · αz,

for every x, y, z ∈ Q. Note that this concept is equivalent to the concept of

quasiautomorphism of groups [5].
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The set of all holomorphisms of (Q, ·) is denoted by Hol(Q, ·) and it is a

group under the superposition of the mappings: (α · β)x = β(αx), for every

x ∈ Q.

Lemma 2.2. [19] Let for bijections α1, α2, α3 on the group, (Q, ·), the following

identity be satisfied:

α1(x · y) = α2(x) · α3(y),

then α1, α2, α3 ∈ Hol(Q, ·).

Lemma 2.3. [19] Every holomorphism, α, of the group, (Q, ·), has the follow-

ing form:

αx = ϕx · k,

where ϕ ∈ Aut(Q, ·) and k ∈ Q.

The triple, (α, β, γ), of the bijections from the set, G, onto the set, H, is

called an isotopism of the groupoid, (G, ·), onto the groupoid, (H, ◦), provided:

γ(x · y) = αx ◦ βy, for all x, y ∈ G. (H, ◦) is called an isotope of (G, ·), and the

groupoids, (G, ·) and (H, ◦), are called isotopic to each other. The isotopism

of (G, ·) onto (G, ·) is called the autotopism of (G, ·).
Let α and β be the permutations of G and ι denoting the identity map on

G. Then (α, β, ι) is the principal isotopism of the groupoid, (G, ·), onto the

groupoid, (G, ◦), meaning that (α, β, ι) is an isotopism of (G, ·) onto (G, ◦).

Theorem 2.4. Let (Q, f) be a binary multiquasigroup, where f = (f1, . . . , fm).

If (Q, f) is a binary paramedial multiquasigroup, then there exists an abelian

group, (Q,+), such that:

fi(x, y) = αix+ βiy + ci,

where αi, βi are automorphisms of the group, (Q,+), and ci ∈ Q is a fixed

element and: αiβj = αjβi, αiαj = βjβi, βiαj = βjαi, for i, j = 1, . . . ,m. The

group, (Q,+), is unique up to isomorphisms.

Proof. If f1 is a fixed component operation of the binary multiquasigroup,

(Q, f), then by [21], f1 is principally isotopic to the abelian group operation,

∗, on Q. Now, if fi is any component operation, then the pair of operations,

(f1, fi), is paramedial.

First, we use the main result of [1] (also see [4]). If the set, Q, forms a quasi-

group under 6 operations, Ai(x, y) (for i = 1, . . . , 6), and if these operations

satisfy the equation:

A1(A2(x, y), A3(u, v)) = A4(A5(x, u), A6(y, v)), (2.1)

for all elements, x, y, u, v, of the set, Q, then there exists an operation, ’+’,

under which Q forms an abelian group on which all these 6 quasigroups are
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isotopic. And there exist 8 one-to-one mappings, α, β, γ, δ, ε, ψ, ϕ, χ, of Q onto

itself such that:

A1(x, y) = δx+ ϕy, A2(x, y) = δ−1(αx+ βy),

A3(x, y) = ϕ−1(χx+ γy), A4(x, y) = ψx+ εy,

A5(x, y) = ψ−1(αx+ χy), A6(x, y) = ε−1(βx+ γy).

Now, let A∗
i (x, y) = Ai(y, x); then, putting it in (2.1), we have:

A1(A2(x, y), A3(u, v)) = A∗
4(A∗

6(v, y), A∗
5(u, x)), (2.2)

and

A∗
4(x, y) = A4(y, x) = ψy + εx = εx+ ψy,

A∗
5(x, y) = A5(y, x) = ψ−1(αy + χx) = ψ−1(χx+ αy),

A∗
6(x, y) = A6(y, x) = ε−1(βy + γx) = ε−1(γx+ βy),

since, (Q,+) is an abelian group. But, by the definition of paramedial pair

operations, (f1, fi), we know:

fi(f1(x, y), f1(u, v)) = f1(fi(v, y), fi(u, x)). (2.3)

So, let A1 = A∗
5 = A∗

6 = fi and A2 = A3 = A∗
4 = f1. With this assumption, we

reach the equation (2.3), from the equation (2.2). Therefore, since A1 = A∗
5,

we have:

δx+ ϕy = ψ−1(χx+ αy)

⇒ ψ(δx+ ϕy) = χx+ αy

⇒ ψ(x+ y) = χ(δ−1x) + α(ϕ−1y)

⇒ ψ ∈ Hol(Q,+),

by Lemma 2.2.

Similarly, since A1 = A∗
6, we have: ε ∈ Hol(Q,+). Therefore, by Lemma

2.3, there exist ϕ1, ψ1 ∈ Aut(Q,+) such that:

ψx = ϕ1x+ a,

εx = b+ ψ1x,

where a, b are fixed elements in Q. Hence,

f1(x, y) = A∗
4(x, y) = ψx+ εy =

ϕ1x+ a+ b+ ψ1x = ϕ1x+ c1 + ψ1x,

where c1 = a+ b is a fixed element in Q.

By the same manner, we can show that: δ, ϕ ∈ Hol(Q,+), since A2 = A∗
4

and A3 = A∗
4. So, there exist ϕ2, ψ2 ∈ Aut(Q,+) such that:

δx = ϕ2x+ d,

ϕx = e+ ψ2x,
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where d, e are fixed elements in Q. Hence,

fi(x, y) = A1(x, y) = δx+ ϕy = ϕ2x+ c2 + ψ2y,

where c2 = d+ e is a fixed element in Q.

Now, put

f1(x, y) = ϕ1(x) + ψ1(y) + c1,

fi(x, y) = ϕ2(x) + ψ2(y) + c2,

in equation (2.3), if x = 0; then we obtain ϕ1ϕ2 = ψ2ψ1, if y = 0; then

ϕ1ψ2 = ϕ2ψ1, if u = 0; then ψ1ϕ2 = ψ2ϕ1; and if v = 0, then ϕ2ϕ1 = ψ1ψ2.

Therefore, f1 and fi are principally isotopic to the group operation, +, on

Q. Thus, by transitivity of isotopy, any component operation, fi, is principally

isotopic to the same abelian group operation, +.

The uniqueness of the group, (Q,+), follows from the Albert’s theorem

[5, 13, 19]: if every two groups are isotopic, then they are isomorphic.

�

Lemma 2.5. Let for bijections α1, α2, α3, α4, α5, α6 on the group, (Q, ·), the

following identity be satisfied:

α1(α2(x · y) · z) = α3x · α4(α5y · α6z),

then α1, α2, α3, α4, α5, α6 ∈ Hol(Q, ·) (see [19] p. 36, for Moufang loops).

Lemma 2.6. Let α0 ∈ Hol(Q, ·) and k ∈ Q, then the mapping,

αx = α0x · k,

x ∈ Q, is a holomorphism of the group, (Q, ·) (see [19] p. 36, for Moufang

loops).

Theorem 2.7. Let (Q, f) be a binary multiquasigroup, where f = (f1, . . . , fm).

If (Q, f) is a binary co-medial multiquasigroup, then there exists an abelian

group, (Q,+), such that

fi(x, y) = αix+ βiy + ci,

where αi, βi are automorphisms of the group, (Q,+), and ci ∈ Q is a fixed

element and: αiβj = βiαj, for i, j = 1, . . . ,m. The group, (Q,+), is unique up

to isomorphisms.

Proof. Let f1, f2 be fixed component operations; then by the definition of co-

mediality:

f1(f2(x, y), f2(u, v)) = f1(f2(x, u), f2(y, v)).

Also, for every component operation, fi, we have:

fi(f2(x, y), f2(u, v)) = fi(f2(x, u), f2(y, v)). (2.4)

So, by the main result of [1], the algebras, (Q, f1) and (Q, f2), are isotopic to

the abelian group, (Q, ◦); and the algebras, (Q, f1) and (Q, fi), are isotopic to
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the abelian group, (Q, ·). Thus, by transitivity of isotopy, the algebra, (Q, fi),

is isotopic to (Q, ◦) and we have:

fi(x, y) = η−1
i (αix ◦ βiy),

where ηi, αi, βi are bijections of Q.

Let u = a ∈ Q, then:

fi(f2(x, y), f2(a, v)) = fi(f2(x, a), f2(y, v)).

Put f2(a, v) = pv and f2(x, a) = qx; then

fi(f2(x, y), pv) = fi(qx, f2(y, v)),

fi(f2(x, y), v) = fi(qx, f2(y, p−1v)),

fi(f2(x, y), v) = gi(x, g2(y, v)), (2.5)

where gi(x, y) = fi(qx, y) and g2(x, y) = f2(x, p−1y).

Now, we use another theorem of [1, 4]: If the set, Q, forms quasigroups

under all 4 operations, Ai(x, y) (i = 1, 2, 3, 4), and if these operations satisfy

the equation:

A1(A2(x, y), z) = A3(x,A4(y, z)),

then there exists an operation, ∗, under which Q forms a group with which

these 4 quasigroups are isotopic to the group (Q, ∗).
So, by transitivity of isotopy we have:

gi(x, y) = τ−1
i (γix ◦ εiy),

g2(x, y) = λ−1
2 (δ2x ◦ µ2y),

where, γi, τi, εi, λ2, µ2, δ2 are bijections of Q. Putting it in equation (2.5), we

have:

η−1
i (αi(η

−1
2 (α2x ◦ β2y)) ◦ βiv) = τ−1

i (γix ◦ εi(λ−1
2 (δ2y ◦ µ2v))),

(τiη
−1
i )(αi(η

−1
2 (α2x ◦ β2y)) ◦ βiv) = γix ◦ εi(λ−1

2 (δ2y ◦ µ2v)),

(τiη
−1
i )(αi(η

−1
2 (x ◦ y)) ◦ v) = γi(α

−1
2 x) ◦ εi(λ−1

2 (δ2(β−1
2 y) ◦ µ2(β−1

i v))),

(τiη
−1
i )(αiη

−1
2 (x ◦ y) ◦ v) = γi(α

−1
2 x) ◦ εiλ−1

2 (δ2(β−1
2 y) ◦ µ2(β−1

i v)),

Therefore, by Lemma 2.5, θ = η−1
2 αi ∈ Hol(Q, ◦).

If fi = f2, then θ2 = η−1
2 α2 and if fi = f0, then αi = α0 .

Hence,

η2 = α0θ
−1,

α2 = η2θ2 = α0θ
−1θ2.
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Thus, for every component operation, f∗ = f2 ∈ F , we have:

f∗(x, y) = f2(x, y) = η−1
2 (α2x ◦ β2y) =

(α0θ
−1)−1((α0θ

−1θ2)x ◦ β2y) = (θα−1
0 )((α0θ

−1θ2)x ◦ β2y) =

(θα−1
0 )((θ2(θ−1(α0x))) ◦ β2y) = α−1

0 (θ(θ2(θ−1(α0x))) ◦ θ(β2y)) =

α−1
0 ((θ−1θ2θ)(α0x) ◦ θ(β2y)) =

α−1
0 ((θ−1θ2θ)(α0x) ◦ ((θ−1θ2θ)e)

−1 ◦ ((θ−1θ2θ)e) ◦ θ(β2y)) =

α−1
0 (µ(α0x) ◦ τy),

where,

µx = (θ−1θ2θ)x ◦ ((θ−1θ2θ)e)
−1,

τx = ((θ−1θ2θ)e) ◦ θ(β2x).

Since, θ−1θ2θ ∈ Hol(Q, ◦), by Lemma 2.6, µ ∈ Hol(Q, ◦).
Now, we define the new operation, +, by the following rule:

x+ y = α−1
0 (α0x ◦ α0y),

then,

f∗(x, y) = α−1
0 (µ(α0x) ◦ τy) =

α−1
0 (α0(α−1

0 (µ(α0x))) ◦ α0(α−1
0 (τy))) =

α−1
0 (µ(α0x)) + α−1

0 (τy) = (α0µα
−1
0 )x+ (τα−1

0 )y =

ϕx+ σy,

where, ϕ = α0µα
−1
0 and σ = τα−1

0 , and ϕ ∈ Aut(Q,+) because:

ϕ(x+ y) = (α0µα
−1
0 )(x+ y) = (ηα−1

0 )α0(x+ y) =

(µα−1
0 )(α0x ◦ α0y) = α−1

0 (µ(α0x ◦ α0y)) =

α−1
0 (µ(α0x) ◦ µ(α0y)) = α−1

0 ((α−1
0 ϕα0)(α0x) ◦ (α−1

0 ϕα0)(α0y)) =

α−1
0 (α0(ϕx) ◦ α0(ϕy)) = ϕx+ ϕy.

Hence, by insertion equation (2.4), we have:

ϕi(ϕ2x+ σ2y) + σi(ϕ2u+ σ2v) = ϕi(ϕ2x+ σ2u) + σi(ϕ2y + σ2v).

Put ϕ2x = σ2y = 0, ϕ2u = u, σ2v = v; then:

σi(u+ v) = ϕi(σ2ϕ
−1
2 u) + σi(ϕ2σ

−1
2 0 + v).

So, by Lemma 2.2, σi ∈ Hol(Q,+). Thus, by Lemma 2.3, there exists

ψi ∈ Aut(Q,+) such that:

σi(x) = ψi(x) + ci,

where ci ∈ Q.

Hence, every component operation, fi, is represented by the following rule:

fi(x, y) = ϕi(x) + ψi(y) + ci,
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where ci ∈ Q and ϕi, ψi ∈ Aut(Q,+). �

Theorem 2.8. Let (Q, f) be a binary multiquasigroup, where f = (f1, . . . , fm).

If (Q, f) is a binary co-paramedial multiquasigroup, then there exists an abelian

group, (Q,+), such that:

fi(x, y) = αix+ βiy + ci,

where αi, βi are automorphisms of the group, (Q,+), and ci ∈ Q is a fixed

element and αiαj = βiβj, for i, j = 1, . . . ,m. The group, (Q,+), is unique up

to isomorphisms.

Proof. The proof is similar to that of Theorem 2.7. �
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