Iranian Journal of Mathematical Sciences and Informatics Vol. 9, No. 1 (2014), pp 53-62

Binary Multiquasigroups with Medial-Like Equations

Amir Ehsani $^{a\ast}~$ and Yuri Movsisyan b

^a Department of Mathematics, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

a.ehsani@mahshahriau.ac.ir

b Department of Mathematics and Mechanics, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia yurimovsisyan@yahoo.com

ABSTRACT. In this paper paramedial, co-medial and co-paramedial binary multiquasigroups are considered and a characterization of the corresponding component operations of these multiquasigroups is given.

Keywords: Medial, Paramedial, Co-medial, Co-paramedial, Multiquasigroup, Mode.

2010 Mathematics subject classification: 20N05, 20N15, 03C05, 08A05, 08A35.

1. Introduction

One way to define a binary quasigroup is that it is a groupoid (A, f) in which for any $a, b \in A$ there are unique solutions x, y to the equations f(a, x) = b, f(y, a) = b. A loop is a quasigroup with unit (e) such that

$$f(e, x) = f(x, e) = x.$$

Groups are associative quasigroups, i.e., they satisfy:

$$f(f(x,y),z) = f(x,f(y,z)).$$

Received 31 July 2012; Accepted 27 May 2013 © 2014 Academic Center for Education, Culture and Research TMU

^{*}Corresponding Author

There are various generalization of a group (see, [2, 3]). Most of the notions defined for binary quasigroups can be easily generalized to n-ary operations which are called n-quasigroups. An n-quasigroup is an n-groupoid (A, f) $(f: A^n \to A, n > 0)$ in which for every n-sequence a_1, \ldots, a_n of elements from A, every $a \in A$ and every i $(1 \le i \le n)$, there is a unique solution x of the equation

$$f(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n) = a.$$

For example, 1-quasigroups are just bijections.

Let A be a nonempty set, n and m be positive integers and $f: A^n \to A^m$ be an arbitrary function. Then (A, f) is called [n, m]-groupoid. The n-ary operations, f_1, \ldots, f_m , are defined by the following:

$$f(x_1,\ldots,x_n)=(y_1,\ldots,y_m)\Leftrightarrow y_i=f_i(x_1,\ldots,x_n),$$

for every $1 \leq i \leq m$, are called the component operations of f and they are denoted by $f = (f_1, \ldots, f_m)$ [22, 23, 26]. The [n, m]-groupoid is proper iff $n, m, |Q| \geq 2$.

The [n,m]-groupoid (A,f) is called [n,m]-quasigroup (or multiquasigroup [9, 10, 27]) iff for every injection, $\phi: N_n \to N_{n+m}$, where $N_n = \{1, \ldots, n\}$, and every $(a_1, \ldots, a_n) \in Q^n$ there exists a unique $(b_1, \ldots, b_{n+m}) \in Q^{n+m}$ such that:

$$f(b_1, \dots, b_n) = (b_{n+1}, \dots, b_{n+m})$$
 and $b_{\phi(i)} = a_i$,

for $i = 1, \ldots, n$.

It is clear that Q(f) is an [n,1]-quasigroup iff Q(f) is an n-quasigroup [6]. Q(f) is a [1,m]-quasigroup iff there exist permutations, f_1,\ldots,f_m , of Q such that $f(x)=(f_1(x),\ldots,f_m(x))$. It is also clear that all components of a multiquasigroup are quasigroup operations.

If the component operations of the [n, m]-quasigroup are binary operations, i.e. n = 2, then we say that the [n, m]-quasigroup is a binary multiquasigroup. Let us consider the following hyperidentities [17, 18, 19]:

$$g(f(x,y), f(u,v)) = f(g(x,u), g(y,v)), \quad \text{(Mediality)}$$
(1.1)

$$g(f(x,y), f(u,v)) = f(g(v,y), g(u,x)), \quad \text{(Paramediality)}$$
(1.2)

$$g(f(x,y), f(u,v)) = g(f(x,u), f(y,v)), \quad \text{(Co-mediality)}$$
(1.3)

$$g(f(x,y), f(u,v)) = g(f(v,y), f(u,x)),$$
 (Co-paramediality) (1.4)

$$f(x,x) = x.$$
 (Idempotency) (1.5)

The binary algebra, (A, F), is called:

- medial, if it satisfies the identity (1.1),
- paramedial, if it satisfies the identity (1.2),
- co-medial, if it satisfies the identity (1.3),
- co-paramedial, if it satisfies the identity (1.4),
- idempotent, if it satisfies the identity (1.5),

for every $f, g \in F$. The binary algebra, (A, F), is called mode, if it is medial and idempotent.

Medial groupoids, medial algebras and medial idempotent algebras (modes) were studied in [12, 13, 24]. Paramedial groupoids and paramedial quasigroups were studied in [7, 21, 25]. In general, the properties of mediality, paramediality, co-mediality and co-paramediality are the second order properties of the algebras in the sense of [8, 15, 19, 17].

Definition 1.1. The binary multiquasigroup (A, f) with $f = (f_1, \ldots, f_m)$ is called:

- medial, if the binary algebra, (A, f_1, \ldots, f_m) , is medial,
- paramedial, if the binary algebra, (A, f_1, \ldots, f_m) , is paramedial,
- co-medial, if the binary algebra, (A, f_1, \ldots, f_m) , is co-medial,
- co-paramedial, if the binary algebra, (A, f_1, \ldots, f_m) , is co-paramedial,
- idempotent, if the binary algebra, (A, f_1, \ldots, f_m) , is idempotent,
- mode, if the binary algebra, (A, f_1, \ldots, f_m) , is a mode.

The next characterization of binary medial multiquasigroups follows from [4, 16, 20].

Theorem 1.2. Let (Q, f) be a binary multiquasigroup, where $f = (f_1, \ldots, f_m)$. If (Q, f) is a binary medial multiquasigroup, then there exists an abelian group, (Q,+), such that:

$$f_i(x,y) = \alpha_i x + \beta_i y + c_i,$$

where α_i, β_i are automorphisms of the group (Q, +), and $c_i \in Q$ is a fixed element and: $\alpha_i \beta_j = \beta_j \alpha_i, \alpha_i \alpha_j = \alpha_j \alpha_i, \beta_i \beta_j = \beta_j \beta_i, \text{ for } i, j = 1, \dots, m.$ The group, (Q, +), is unique up to isomorphisms. Moreover, if (Q, f) is a mode, then

$$f_i(x,y) = \alpha_i x + \beta_i y,$$

 $f_i(x,y)=\alpha_i x+\beta_i y,$ where α_i,β_i are automorphisms of both the group, (Q,+), and of the algebra, $(Q, f_1, \ldots, f_m).$

2. Main Results

To characterize the paramedial, co-medial and co-paramedial multiquasigroups we need the concept of holomorphism for groups [14, 19].

Definition 2.1. If (Q,\cdot) is a group, then the bijection, $\alpha:Q\to Q$, is called a holomorphism of (Q, \cdot) if

$$\alpha(x \cdot y^{-1} \cdot z) = \alpha x \cdot (\alpha y)^{-1} \cdot \alpha z,$$

for every $x, y, z \in Q$. Note that this concept is equivalent to the concept of quasiautomorphism of groups [5].

The set of all holomorphisms of (Q, \cdot) is denoted by $Hol(Q, \cdot)$ and it is a group under the superposition of the mappings: $(\alpha \cdot \beta)x = \beta(\alpha x)$, for every $x \in Q$.

Lemma 2.2. [19] Let for bijections $\alpha_1, \alpha_2, \alpha_3$ on the group, (Q, \cdot) , the following identity be satisfied:

$$\alpha_1(x \cdot y) = \alpha_2(x) \cdot \alpha_3(y),$$

then $\alpha_1, \alpha_2, \alpha_3 \in Hol(Q, \cdot)$.

Lemma 2.3. [19] Every holomorphism, α , of the group, (Q, \cdot) , has the following form:

$$\alpha x = \varphi x \cdot k,$$

where $\varphi \in Aut(Q, \cdot)$ and $k \in Q$.

The triple, (α, β, γ) , of the bijections from the set, G, onto the set, H, is called an isotopism of the groupoid, (G, \cdot) , onto the groupoid, (H, \circ) , provided: $\gamma(x \cdot y) = \alpha x \circ \beta y$, for all $x, y \in G$. (H, \circ) is called an isotope of (G, \cdot) , and the groupoids, (G, \cdot) and (H, \circ) , are called isotopic to each other. The isotopism of (G, \cdot) onto (G, \cdot) is called the autotopism of (G, \cdot) .

Let α and β be the permutations of G and ι denoting the identity map on G. Then (α, β, ι) is the principal isotopism of the groupoid, (G, \cdot) , onto the groupoid, (G, \circ) , meaning that (α, β, ι) is an isotopism of (G, \cdot) onto (G, \circ) .

Theorem 2.4. Let (Q, f) be a binary multiquasigroup, where $f = (f_1, \ldots, f_m)$. If (Q, f) is a binary paramedial multiquasigroup, then there exists an abelian group, (Q, +), such that:

$$f_i(x,y) = \alpha_i x + \beta_i y + c_i,$$

where α_i, β_i are automorphisms of the group, (Q, +), and $c_i \in Q$ is a fixed element and: $\alpha_i\beta_j = \alpha_j\beta_i, \alpha_i\alpha_j = \beta_j\beta_i, \beta_i\alpha_j = \beta_j\alpha_i$, for i, j = 1, ..., m. The group, (Q, +), is unique up to isomorphisms.

Proof. If f_1 is a fixed component operation of the binary multiquasigroup, (Q, f), then by [21], f_1 is principally isotopic to the abelian group operation, *, on Q. Now, if f_i is any component operation, then the pair of operations, (f_1, f_i) , is paramedial.

First, we use the main result of [1] (also see [4]). If the set, Q, forms a quasi-group under 6 operations, $A_i(x, y)$ (for i = 1, ..., 6), and if these operations satisfy the equation:

$$A_1(A_2(x,y), A_3(u,v)) = A_4(A_5(x,u), A_6(y,v)), \tag{2.1}$$

for all elements, x, y, u, v, of the set, Q, then there exists an operation, '+', under which Q forms an abelian group on which all these 6 quasigroups are

isotopic. And there exist 8 one-to-one mappings, $\alpha, \beta, \gamma, \delta, \epsilon, \psi, \varphi, \chi$, of Q onto itself such that:

$$A_1(x,y) = \delta x + \varphi y, \qquad A_2(x,y) = \delta^{-1}(\alpha x + \beta y),$$

$$A_3(x,y) = \varphi^{-1}(\chi x + \gamma y), \quad A_4(x,y) = \psi x + \epsilon y,$$

$$A_5(x,y) = \psi^{-1}(\alpha x + \chi y), \quad A_6(x,y) = \epsilon^{-1}(\beta x + \gamma y).$$

Now, let $A_i^*(x,y) = A_i(y,x)$; then, putting it in (2.1), we have:

$$A_1(A_2(x,y), A_3(u,v)) = A_4^*(A_6^*(v,y), A_5^*(u,x)), \tag{2.2}$$

and

$$A_4^*(x,y) = A_4(y,x) = \psi y + \epsilon x = \epsilon x + \psi y,$$

$$A_5^*(x,y) = A_5(y,x) = \psi^{-1}(\alpha y + \chi x) = \psi^{-1}(\chi x + \alpha y),$$

$$A_6^*(x,y) = A_6(y,x) = \epsilon^{-1}(\beta y + \gamma x) = \epsilon^{-1}(\gamma x + \beta y),$$

since, (Q, +) is an abelian group. But, by the definition of paramedial pair operations, (f_1, f_i) , we know:

$$f_i(f_1(x,y), f_1(u,v)) = f_1(f_i(v,y), f_i(u,x)).$$
 (2.3)

So, let $A_1 = A_5^* = A_6^* = f_i$ and $A_2 = A_3 = A_4^* = f_1$. With this assumption, we reach the equation (2.3), from the equation (2.2). Therefore, since $A_1 = A_5^*$, we have:

$$\delta x + \varphi y = \psi^{-1}(\chi x + \alpha y)$$

$$\Rightarrow \psi(\delta x + \varphi y) = \chi x + \alpha y$$

$$\Rightarrow \psi(x + y) = \chi(\delta^{-1}x) + \alpha(\varphi^{-1}y)$$

$$\Rightarrow \psi \in Hol(Q, +),$$

by Lemma 2.2.

Similarly, since $A_1 = A_6^*$, we have: $\epsilon \in Hol(Q, +)$. Therefore, by Lemma 2.3, there exist $\varphi_1, \psi_1 \in Aut(Q, +)$ such that:

$$\psi x = \varphi_1 x + a,$$

$$\epsilon x = b + \psi_1 x,$$

where a, b are fixed elements in Q. Hence,

$$f_1(x,y) = A_4^*(x,y) = \psi x + \epsilon y =$$

 $\varphi_1 x + a + b + \psi_1 x = \varphi_1 x + c_1 + \psi_1 x,$

where $c_1 = a + b$ is a fixed element in Q.

By the same manner, we can show that: $\delta, \varphi \in Hol(Q, +)$, since $A_2 = A_4^*$ and $A_3 = A_4^*$. So, there exist $\varphi_2, \psi_2 \in Aut(Q, +)$ such that:

$$\delta x = \varphi_2 x + d,$$
$$\varphi x = e + \psi_2 x,$$

where d, e are fixed elements in Q. Hence,

$$f_i(x,y) = A_1(x,y) = \delta x + \varphi y = \varphi_2 x + c_2 + \psi_2 y,$$

where $c_2 = d + e$ is a fixed element in Q.

Now, put

$$f_1(x,y) = \varphi_1(x) + \psi_1(y) + c_1,$$

 $f_i(x,y) = \varphi_2(x) + \psi_2(y) + c_2,$

in equation (2.3), if x = 0; then we obtain $\varphi_1 \varphi_2 = \psi_2 \psi_1$, if y = 0; then $\varphi_1\psi_2=\varphi_2\psi_1$, if u=0; then $\psi_1\varphi_2=\psi_2\varphi_1$; and if v=0, then $\varphi_2\varphi_1=\psi_1\psi_2$.

Therefore, f_1 and f_i are principally isotopic to the group operation, +, on Q. Thus, by transitivity of isotopy, any component operation, f_i , is principally isotopic to the same abelian group operation, +.

The uniqueness of the group, (Q, +), follows from the Albert's theorem [5, 13, 19]: if every two groups are isotopic, then they are isomorphic.

Lemma 2.5. Let for bijections $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6$ on the group, (Q, \cdot) , the following identity be satisfied:

$$\alpha_1(\alpha_2(x \cdot y) \cdot z) = \alpha_3 x \cdot \alpha_4(\alpha_5 y \cdot \alpha_6 z),$$

then $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6 \in Hol(Q, \cdot)$ (see [19] p. 36, for Moufang loops).

Lemma 2.6. Let $\alpha_0 \in Hol(Q, \cdot)$ and $k \in Q$, then the mapping,

$$\alpha x = \alpha_0 x \cdot k$$

 $\alpha x = \alpha_0 x \cdot k,$ $x \in Q$, is a holomorphism of the group, (Q,\cdot) (see [19] p. 36, for Moufang loops).

Theorem 2.7. Let (Q, f) be a binary multiquasigroup, where $f = (f_1, \ldots, f_m)$. If (Q, f) is a binary co-medial multiquasigroup, then there exists an abelian group, (Q, +), such that

$$f_i(x,y) = \alpha_i x + \beta_i y + c_i,$$

where α_i, β_i are automorphisms of the group, (Q, +), and $c_i \in Q$ is a fixed element and: $\alpha_i \beta_j = \beta_i \alpha_j$, for i, j = 1, ..., m. The group, (Q, +), is unique up to isomorphisms.

Proof. Let f_1, f_2 be fixed component operations; then by the definition of comediality:

$$f_1(f_2(x,y), f_2(u,v)) = f_1(f_2(x,u), f_2(y,v)).$$

Also, for every component operation, f_i , we have:

$$f_i(f_2(x,y), f_2(u,v)) = f_i(f_2(x,u), f_2(y,v)).$$
 (2.4)

So, by the main result of [1], the algebras, (Q, f_1) and (Q, f_2) , are isotopic to the abelian group, (Q, \circ) ; and the algebras, (Q, f_1) and (Q, f_i) , are isotopic to

www.SID.ir

the abelian group, (Q, \cdot) . Thus, by transitivity of isotopy, the algebra, (Q, f_i) , is isotopic to (Q, \circ) and we have:

$$f_i(x,y) = \eta_i^{-1}(\alpha_i x \circ \beta_i y),$$

where $\eta_i, \alpha_i, \beta_i$ are bijections of Q.

Let $u = a \in Q$, then:

$$f_i(f_2(x,y), f_2(a,v)) = f_i(f_2(x,a), f_2(y,v)).$$

Put $f_2(a, v) = pv$ and $f_2(x, a) = qx$; then

$$f_i(f_2(x,y), pv) = f_i(qx, f_2(y,v)),$$

$$f_i(f_2(x,y), v) = f_i(qx, f_2(y, p^{-1}v)),$$

$$f_i(f_2(x,y), v) = g_i(x, g_2(y,v)),$$
(2.5)

where $g_i(x, y) = f_i(qx, y)$ and $g_2(x, y) = f_2(x, p^{-1}y)$.

Now, we use another theorem of [1, 4]: If the set, Q, forms quasigroups under all 4 operations, $A_i(x,y)$ (i=1,2,3,4), and if these operations satisfy the equation:

$$A_1(A_2(x,y),z) = A_3(x,A_4(y,z)),$$

then there exists an operation, *, under which Q forms a group with which these 4 quasigroups are isotopic to the group (Q,*).

So, by transitivity of isotopy we have:

$$g_i(x,y) = \tau_i^{-1}(\gamma_i x \circ \epsilon_i y),$$

$$g_2(x,y) = \lambda_2^{-1}(\delta_2 x \circ \mu_2 y),$$

where, $\gamma_i, \tau_i, \epsilon_i, \lambda_2, \mu_2, \delta_2$ are bijections of Q. Putting it in equation (2.5), we have:

$$\begin{split} &\eta_{i}^{-1}(\alpha_{i}(\eta_{2}^{-1}(\alpha_{2}x\circ\beta_{2}y))\circ\beta_{i}v)=\tau_{i}^{-1}(\gamma_{i}x\circ\epsilon_{i}(\lambda_{2}^{-1}(\delta_{2}y\circ\mu_{2}v))),\\ &(\tau_{i}\eta_{i}^{-1})(\alpha_{i}(\eta_{2}^{-1}(\alpha_{2}x\circ\beta_{2}y))\circ\beta_{i}v)=\gamma_{i}x\circ\epsilon_{i}(\lambda_{2}^{-1}(\delta_{2}y\circ\mu_{2}v)),\\ &(\tau_{i}\eta_{i}^{-1})(\alpha_{i}(\eta_{2}^{-1}(x\circ y))\circ v)=\gamma_{i}(\alpha_{2}^{-1}x)\circ\epsilon_{i}(\lambda_{2}^{-1}(\delta_{2}(\beta_{2}^{-1}y)\circ\mu_{2}(\beta_{i}^{-1}v))),\\ &(\tau_{i}\eta_{i}^{-1})(\alpha_{i}\eta_{2}^{-1}(x\circ y)\circ v)=\gamma_{i}(\alpha_{2}^{-1}x)\circ\epsilon_{i}\lambda_{2}^{-1}(\delta_{2}(\beta_{2}^{-1}y)\circ\mu_{2}(\beta_{i}^{-1}v)), \end{split}$$

Therefore, by Lemma 2.5, $\theta=\eta_2^{-1}\alpha_i\in Hol(Q,\circ)$. If $f_i=f_2$, then $\theta_2=\eta_2^{-1}\alpha_2$ and if $f_i=f_0$, then $\alpha_i=\alpha_0$. Hence,

$$\eta_2 = \alpha_0 \theta^{-1},$$

$$\alpha_2 = \eta_2 \theta_2 = \alpha_0 \theta^{-1} \theta_2.$$

Thus, for every component operation, $f_* = f_2 \in F$, we have:

$$f_{*}(x,y) = f_{2}(x,y) = \eta_{2}^{-1}(\alpha_{2}x \circ \beta_{2}y) = (\alpha_{0}\theta^{-1})^{-1}((\alpha_{0}\theta^{-1}\theta_{2})x \circ \beta_{2}y) = (\theta\alpha_{0}^{-1})((\alpha_{0}\theta^{-1}\theta_{2})x \circ \beta_{2}y) = (\theta\alpha_{0}^{-1})((\theta_{2}(\theta^{-1}(\alpha_{0}x))) \circ \beta_{2}y) = \alpha_{0}^{-1}(\theta(\theta_{2}(\theta^{-1}(\alpha_{0}x))) \circ \theta(\beta_{2}y)) = \alpha_{0}^{-1}((\theta^{-1}\theta_{2}\theta)(\alpha_{0}x) \circ \theta(\beta_{2}y)) = \alpha_{0}^{-1}((\theta^{-1}\theta_{2}\theta)(\alpha_{0}x) \circ ((\theta^{-1}\theta_{2}\theta)e)^{-1} \circ ((\theta^{-1}\theta_{2}\theta)e) \circ \theta(\beta_{2}y)) = \alpha_{0}^{-1}(\mu(\alpha_{0}x) \circ \tau y),$$

where,

$$\mu x = (\theta^{-1}\theta_2\theta)x \circ ((\theta^{-1}\theta_2\theta)e)^{-1},$$

$$\tau x = ((\theta^{-1}\theta_2\theta)e) \circ \theta(\beta_2x).$$

Since, $\theta^{-1}\theta_2\theta \in Hol(Q, \circ)$, by Lemma 2.6, $\mu \in Hol(Q, \circ)$. Now, we define the new operation, +, by the following rule:

$$x + y = \alpha_0^{-1}(\alpha_0 x \circ \alpha_0 y),$$

then,

$$f_*(x,y) = \alpha_0^{-1}(\mu(\alpha_0 x) \circ \tau y) = \alpha_0^{-1}(\alpha_0(\alpha_0^{-1}(\mu(\alpha_0 x))) \circ \alpha_0(\alpha_0^{-1}(\tau y))) = \alpha_0^{-1}(\mu(\alpha_0 x)) + \alpha_0^{-1}(\tau y) = (\alpha_0 \mu \alpha_0^{-1})x + (\tau \alpha_0^{-1})y = \varphi x + \sigma y,$$

where, $\varphi = \alpha_0 \mu \alpha_0^{-1}$ and $\sigma = \tau \alpha_0^{-1}$, and $\varphi \in Aut(Q, +)$ because:

$$\varphi(x+y) = (\alpha_0 \mu \alpha_0^{-1})(x+y) = (\eta \alpha_0^{-1})\alpha_0(x+y) = (\mu \alpha_0^{-1})(\alpha_0 x \circ \alpha_0 y) = \alpha_0^{-1}(\mu(\alpha_0 x \circ \alpha_0 y)) = \alpha_0^{-1}(\mu(\alpha_0 x) \circ \mu(\alpha_0 y)) = \alpha_0^{-1}((\alpha_0^{-1} \varphi \alpha_0)(\alpha_0 x) \circ (\alpha_0^{-1} \varphi \alpha_0)(\alpha_0 y)) = \alpha_0^{-1}(\alpha_0(\varphi x) \circ \alpha_0(\varphi y)) = \varphi x + \varphi y.$$

Hence, by insertion equation (2.4), we have:

$$\varphi_i(\varphi_2 x + \sigma_2 y) + \sigma_i(\varphi_2 u + \sigma_2 v) = \varphi_i(\varphi_2 x + \sigma_2 u) + \sigma_i(\varphi_2 y + \sigma_2 v).$$

Put $\varphi_2 x = \sigma_2 y = 0$, $\varphi_2 u = u$, $\sigma_2 v = v$; then:

$$\sigma_i(u+v) = \varphi_i(\sigma_2\varphi_2^{-1}u) + \sigma_i(\varphi_2\sigma_2^{-1}0+v).$$

So, by Lemma 2.2, $\sigma_i \in Hol(Q, +)$. Thus, by Lemma 2.3, there exists $\psi_i \in Aut(Q, +)$ such that:

$$\sigma_i(x) = \psi_i(x) + c_i,$$

where $c_i \in Q$.

Hence, every component operation, f_i , is represented by the following rule:

$$f_i(x,y) = \varphi_i(x) + \psi_i(y) + c_i,$$

where $c_i \in Q$ and $\varphi_i, \psi_i \in Aut(Q, +)$.

Theorem 2.8. Let (Q, f) be a binary multiquasigroup, where $f = (f_1, \ldots, f_m)$. If (Q, f) is a binary co-paramedial multiquasigroup, then there exists an abelian group, (Q, +), such that:

$$f_i(x,y) = \alpha_i x + \beta_i y + c_i,$$

where α_i, β_i are automorphisms of the group, (Q, +), and $c_i \in Q$ is a fixed element and $\alpha_i \alpha_j = \beta_i \beta_j$, for i, j = 1, ..., m. The group, (Q, +), is unique up to isomorphisms.

Proof. The proof is similar to that of Theorem 2.7.

ACKNOWLEDGMENTS

The first author thanks the Islamic Azad University for financial support of the research project entitled: Quasigroups with medial-like (entropic-like) properties.

References

- J. Aczél, V. D. Belousov, M. Hosszú, Generalized Associativity and Bisymmetry on Quasigroups, Acta Math. Sci. Hung., 11, (1960), 127-136.
- S. M. Anvariyeh, S. Mirvakili, Canonical (m,n)-ary hypermodules over Krasner (m,n)ary hyperrings, *Iranian Journal of Mathematical Sciences and Informatics*, 7(2), (2012), 17-34.
- H. Babaei, M. Jafarpour, S. Sh. Mousavi, R-parts in hyperrings, Iranian Journal of Mathematical Sciences and Informatics, 7(1), (2012), 59-71.
- V. D. Belousov, Systems of quasigroups with generalized identities, Uspekhi. Math. Nauk., 20, (1965), 75-146. [English transl. in Russian Math. Surveys. 20, (1965), 73-143.]
- V. D. Belousov, Foundations of the theory of quasigroups and loops. Nauka. Moscow, 1967.
- 6. V. D. Belousov, n-ary quasigroups. Shtiinca, Kishinev, 1972.
- J. Cho, J. Ježek, T. Kepka, Paramedial groupoids, Czechoslavak Math. J., 49(2), (1999), 227-240.
- A. Church, Introduction to Mathematical logic. Princeton University Press. 1: Princeton, 1956.
- G. Čupona, J. Ušan, Z. Stojaković, Multiquasigroups and some related structures, Prilosi MANU, I, (1980), No. 2, 5-12.
- G. Čupona, Z. Stojaković, J. Ušan, On finite multiquasigroups, Publ. Inst. Math., 29(43), (1981), 53-59.
- 11. W. A. Dudek, , V. S. Trokhimenko, Algebras of multiplace functions. Kremenchug, 2010.
- 12. J. Ježek, T. Kepka, Medial groupoids. Monograph of Acad. Praha, 93/2, 1983.
- 13. A. G. Kurosh, General algebra. M. Nauka, 1974, (Russian).
- 14. S. MacLane, Homology. Springer-Verlag, Fourth Printing, 1994.
- A. I. Maltsev, The metamathematics of algebraic systems. collected papers 1936-1967 (Translated and edited by B. F. Wells III). North-Holland, Amsterdam, 1970.
- Yu. M. Movsisyan, Generalization of Toyoda theoram. Proceeding of the Loops'99, Prague, 1999.

- Yu. M. Movsisyan, Hyperidentities and hypervarieties in algebras. Yerevan State University Press. Yerevan, 1990 (Russian).
- Yu. M. Movsisyan, Hyperidentities in algebras and varieties, Uspekhi Math. Nauk., 53,
 (1998), 61-114. English translation in: Russian Math. Surveys, 53, (1998), No. 1, 57-108.
- 19. Yu. M. Movsisyan, Introduction to the theory of algebras with hyperidentities. Yerevan State University Press. Yerevan, 1986 (Russian).
- Yu. M. Movsisyan, E. Nazari, Transitive Modes, Demonstratio Mathematica., XLIV(3), (2011), 511-522.
- P. Němec, T. Kepka, T-quasigroups I, Acta Univ. Carolin. Math. Phys., 12(1), (1971), 39-49.
- 22. M. Polonijo, Structure theorem for C^{n+1} -systems, Glasnik Mat., 16(38), (1981), 211-217.
- 23. M. Polonijo, On C^{n+1} -systems and [n,m]-groupoids, Algebraic Conference, Beograd, 1982.
- 24. A. Romanowska, J. D. H. Smith, Modes. World Scientific, 2002.
- V. A. Shcherbakov, D. I. Pushkashu, On the structure of finite paramedial quasigroups, Comment. Math. Univ. Carolin., 51(2), (2010), 357-370.
- Z. Stojaković, On bisymetric [n, m]-groupoids, Review of research Faculty of Science-University of Novi Sad., 12, (1982), 399-405.
- 27. Z. Stojaković, Dj Paunić, Identities on multiquasigroups. Proc. Symp. On n-ary structures, 195-200, 1982.