Generalized Symmetric Berwald Spaces

Parastoo Habibi $^{a\ast}~$ and Asadollah Razavi b

^a Department of Mathematics Islamic Azad University, Astara branch, Astara, Iran p.habibi@iau-astara.ac.ir

 b Faculty of Mathematics and Computer Science Amirkabir University of Technology, 424 Hafez Ave., 15914 Tehran, Iran $\verb"arazavi@aut.ac.ir"$

ABSTRACT. In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space (M,F) admits a parallel s-structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of (M,F) is everywhere nonzero, then F is Riemannian.

Keywords: Homogeneous Finsler space, Symmetric space, Generalized symmetric space, Berwald space.

2000 Mathematics subject classification: 53C60, 53C35.

1. Introduction

Let (M,g) be a Riemannian symmetric space. Then for any $x \in M$, there exists an isometry $s_x : M \longrightarrow M$ such that x is an isolated fixed point of s_x and $s_x^2 = Id$. Then we have $(s_x)_{*x} = (-Id)_x$, $v_x \longrightarrow -v_x$. Now we consider a generalization of the notion of Riemannian symmetric spaces. Let (M,g) be a connected Riemannian manifold. An isometry of (M,g) with an isolated fixed point $x \in M$ is called a symmetry of (M,g) at x. A family $\{s_x | x \in M\}$ of symmetries of a connected Riemannian manifold (M,g) is called an s-structure on

^{*}Corresponding Author

Received 26 August 2012; Accepted 12 December 2012 ©2014 Academic Center for Education, Culture and Research TMU

(M,g). Clearly if each s_x satisfies the additional property s_x^2 =identity, then (M,g) is nothing but a Riemannian symmetric space.

Let (M, F) be a Finsler space, where F is positively homogeneous of degree one. Then we have two ways to define the notion of an isometry of (M, F). On the one hand, we call a diffeomorphism σ of M onto itself an isometry if $F(d\sigma_x(y)) = F(y)$, for any $x \in M$ and $y \in T_xM$. On the other hand, we can also define an isometry of (M, F) to be a one-to-one mapping of M onto itself which preserves the distance of each pair of points of M. It is well known that the two definitions are equivalent if the metric F is Riemannian. The equivalence of these two definitions in the general Finsler case is a result of S. Deng and S. Hou S Using these result, they proved that the group of isometries S S is a Finsler space S is a Lie transformation group of S and for any point S is a Lie transformation group of S and for any point S is a compact subgroup of S in this paper we study Berwald spaces admitting an S-structuer.

2. Preliminaries

We first review the basics of Finsler geometry. Standard references are [1] and [2]. We will follow the notations in [2].

2.1. Finsler Spaces.

Let M be an n-dimensional C^{∞} manifold and $TM = \bigcup_{x \in M} T_x M$ the tangent bundle.

A Finsler structure is a function $F:TM\longrightarrow [0,\infty)$ satisfying the following conditions:

- (i): F is C^{∞} on $TM \setminus \{0\}$;
- (ii): F(cv) = cF(v) for all $v \in TM$ and $c \ge 0$;
- (iii): The matrix

$$g_{ij}(v) = \frac{1}{2} \frac{\partial^2 F^2}{\partial v^i \partial v^j}(v)$$

is positive definite for all $v \in TM \setminus \{0\}$.

The positive definite matrix $(g_{ij}(v))$ defines a Riemannian structure g_v of T_xM through

$$g_v(\sum_i a^i \frac{\partial}{\partial x^i}, \sum_j b^j \frac{\partial}{\partial x^j}) = \sum_{i,j} g_{ij}(v) a^i b^j.$$

Note that $g_v(v,v) = F(v)^2$. If (M,F) is Riemannian, then g_v always coincide with the original Riemannian metric.

Let $\gamma:[0,r]\longrightarrow M$ be a piecewise C^{∞} curve. Its length is defined as

$$L(\gamma) = \int_0^r F(\gamma(t), \dot{\gamma}(t)) dt.$$

For $x_0, x_1 \in M$ denote by $\Gamma(x_0, x_1)$ the set of all piecewise C^{∞} curve γ : $[0,r] \longrightarrow M$ such that $\gamma(0) = x_0$ and $\gamma(r) = x_1$. Define a map $d_F: M \times M \longrightarrow$ $[0,\infty)$ by

$$d_F(x_0, x_1) = \inf_{\gamma \in \Gamma(x_0, x_1)} L(\gamma).$$

Of course we have $d_F(x_0, x_1) \geq 0$, where the equality holds if and only if $x_0 = x_1; d_F(x_0, x_2) \le d_F(x_0, x_1) + d_F(x_1, x_2)$. In general, since F is only a positive homogeneous function, $d_F(x_0, x_1) \neq d_F(x_1, x_0)$, therefore (M, d_F) is only a non-reversible metric space.

Define the Cartan tensor

$$C_{ijk}(x,y) = \frac{1}{4} \frac{\partial^3 F^2(x,y)}{\partial y^i \partial y^j \partial y^k},$$

we also define the formal Christoffel symbol

$$\gamma_{ij}^{k} = \frac{1}{2}g^{km} \left(\frac{\partial g_{mj}}{\partial x^{i}} + \frac{\partial g_{im}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{m}} \right)$$

Using these, we further define the nonlinear connection

$$N_j^i = \gamma_{jk}^i y^k - C_{jk}^i \gamma_{rs}^k y^r y^s.$$

According to [2], the pulled-back bundle π^*TM admits a unique linear connection, called the Chern connection. Its connection forms are characterized by the structure equation:

• Torsion freeness

$$dx^j \wedge \omega_i^i = 0;$$

• Torsion freeness
$$dx^{j} \wedge \omega_{j}^{i} = 0;$$
• Almost g -compatibility:
$$dg_{ij} - g_{kj}\omega_{i}^{k} - g_{ik}\omega_{j}^{k} = 2C_{ijk}(dy^{k} + N_{l}^{k}dx^{l}).$$

It is easy to know that torsion freeness is equivalent to the $\omega_j^i = \Gamma_{jk}^i dx^k$ and $\Gamma^i_{jk} = \Gamma^i_{kj}$.

Definition 2.1. A Finsler metric F on a manifold M is called a Berwald metric if in any standard local coordinate system (x^i, y^i) in TM, the Christoffel symbols Γ^i_{jk} are the functions of $x \in M$ only, i.e., $\Gamma^i_{jk} = \Gamma^i_{jk}(x)$.

2.2. Symmetric Fisler spaces.

Let G be a Lie group, H a closed subgroup of G. The coset space G/H has a unique smooth structure such that G is a Lie transformation group of G/H. It is called reductive if there exists a subspace \mathfrak{m} of the Lie algebra \mathfrak{g} such that

$$\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$$

where \mathfrak{h} is the Lie algebra of H and $Ad(h)\mathfrak{m} \subset \mathfrak{m}$, $\forall h \in H$. The study of invariant structures on coset spaces is an important problem in differential geometry.

Definition 2.2. A Finsler space (M, F) is called homogeneous Finsler space if the group of isometries of (M, F), I(M, F), acts transitively on M.

Every homogeneous Finsler space is forward complete [7]. Let G be a Lie group, H be a closed subgroup of G. Suppose there exists an invariant Finsler metric on G/H. Then there exists an invariant Riemannian metric on G/H.

The definition of globally symmetric Finsler space is a natural generalization of \acute{E} . Cartan's definition of Riemannian globally symmetric spaces.

Definition 2.3. A connected Finsler space (M,F) is said to be symmetric if to each $p \in M$ there is associated an isometry $\sigma_p : M \longrightarrow M$ which is

- (i): involutive $(\sigma_p^2 \text{ is the identity}).$
- (ii): has p as an isolated fixed point, that is, there is a neighborhood U of p in which p is the only fixed point of σ_p .

 σ_p is called the *symmetry* at point p.

As p is an isolated fixed point of σ_p it follows that $(d\sigma_p)_p = -id$, and therefore symmetric Finsler spaces have reversible metrics and geodesics.

Let (M, F) be a connected symmetric Finsler space, Then (M, F) is (forward-backward) complete and homogeneous that is the group of isometries of (M, F) acts transitively on M [7], [5].

Theorem 2.4 ([5]). Let (M, F) be a symmetric Finsler space. Then (M, F) is a Berwald space. Furthermore, the connection of F coincides with the Levi-Civita connection of a Riemannian metric g such that (M, g) is a Riemannian symmetric space.

3. Generalized symmetric Berwald spaces

Let (M, F) be a connected Berwald space. An isometry s_x of (M, F) for which $x \in M$ is an isolated fixed point will be called a symmetry of M at x.

Clearly, if s_x is a symmetry of (M, g) at x, then the tangent map $S_x = (s_{x*})_x$ has no invariant vector.

An s-structure on (M, F) is a family $\{s_x | x \in M\}$ of symmetries of (M, F). The corresponding tensor field S of type (1,1) defined by $S_x = (s_{x*})_x$ for each $x \in M$ is called the symmetry tensor field of s-structure [6], [8].

An s-structure $\{s_x|x\in M\}$ is called of order k $(k\geq 2)$ if $(s_x)^k=id$ for all $x\in M$ and k is the least integer of this property. Obviously a Berwald space is symmetric if and only if it admits an s-structure of order 2.

Definition 3.1. An s-structure $\{s_x|x\in M\}$ on a Berwald space (M,F) is said to be regular if it satisfies the rule

$$s_x \circ s_y = s_z \circ s_x, \qquad z = s_x(y) \tag{3.1}$$

for every two points $x, y \in M$.

Lemma 3.2. An s-structure $\{s_x\}$ on a connected Berwald space (M, F) is regular if and only if the tensor field S is invariant with respect to all symmetries s_x , i.e.

$$s_{x*}(S) = S, \qquad x \in M \tag{3.2}$$

Proof: The proof is similar to the Riemmanian case.□

Definition 3.3. An s-structure $\{s_x\}$ on a Berwald space (M, F) is said to be parallel if the tensor field S is parallel with respect to the Chern connection i.e. $\nabla S = 0$.

Theorem 3.4. Each parallel s-structure on a Berwald space is regular.

Proof: Suppose $\{s_x\}$ to be a parallel s-structure on (M,F). Let $p \in M$ be a fixed point and put $S' = s_{p*}(S)$. Because $\nabla S = 0$ and s_p is connection preserving, we have $\nabla S' = 0$. Now $S'_p = (s_{p*})_p(S_p) = S_p$, from the uniqueness of a parallel extension we have S' = S. Thus for all points $p \in M$ we get $(s_{p*})(S) = S$ and hence $\{s_x\}$ is regular by Lemma 3.2. \square .

Theorem 3.5. If a Berwald space (M, F) admits a parallel s-structure then it is locally symmetric.

Proof: Let (M, F) be a Berwald space and let $\{s_x\}$ be a parallel s-structure on (M, F). Let $X, Y, Z \in T_pM$ be tangent vectors and $\omega \in T_p^*M$ a covector at $p \in M$. By parallel translation along each geodesic through p, X, Y, Z, ω can be extended to local vector fields $\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{\omega}$ with vanishing covariant derivatives at p. Because S is parallel, the local vector fields $S\widetilde{X}, S\widetilde{Y}, S\widetilde{Z}, S^{*-1}\widetilde{\omega}$ have also vanishing covariant derivative at p. Now, because R is invariant with respect to the affine transformation $s_x, x \in M$ [5], we have

$$R(\omega, \widetilde{X}, \widetilde{Y}, \widetilde{Z}) = R(S^{*-1}\widetilde{\omega}, S\widetilde{X}, S\widetilde{Y}, S\widetilde{Z})$$
(3.3)

$$\nabla R(\omega, X, Y, Z, U) = \nabla R(S^{*-1}\widetilde{\omega}, X, Y, Z, U) \tag{3.4}$$

Differentiating covariantly (3) in the direction of SU at p and using (4) we get $\nabla R(\omega,X,Y,Z,SU) = \nabla R(S^{*-1}\widetilde{\omega},SX,SY,SZ,SU) = \nabla R(\omega,X,Y,Z,U)$. Thus $(\nabla R)_p(\omega,X,Y,Z,(I-S)U) = 0$ for all $\omega \in T_p^*M$, $X,Y,Z,U \in T_pM$ and because $(I-S)_p$ is non-singular transformation, we obtain $(\nabla R)_p = 0$. This holds for all $p \in M$ and hence $\nabla R = 0$. \square

Let (M, F) be a Berwald space, $p \in M$. Then there exists a neighborhood N_0 of the origin of the tangent space T_pM such that the exponential mapping \exp_p is C^{∞} diffeomorphism of N_0 on to a neighborhood N_p of p in M [4]. We can also assume that $N_0 = -N_0$. Now we define a mapping of N_p onto itself by

$$s_p: exp(y) \longrightarrow exp(-y)$$
 $y \in N_0$

Then s_p is called the geodesic symmetry with respect to p. M is called locally geodesic symmetric if for any $p \in M$, there exists N_p such that s_p is an isometry of N_p .

Since any isometry of (M, F) is an affine transformation with respect to the connection of F, we see that a locally geodesic symmetric Berwald space (M, F) must be locally symmetric. If F is absolutely homogeneous and (M, F) is locally symmetric, then (M, F) is locally geodesic symmetric.

Corollary 3.6. If a Berwald space (M,F) admits a parallel s-structure and F is absolutely homogeneous then it is locally geodesic symmetric.

Corollary 3.7. If a Berwald space (M,F) admits a parallel s-structure then its flag curvature is invariant under all parallel displacements.

Proof: It is a consequence of Theorem $3.5.\square$

Corollary 3.8. Let (M,F) be a complete Berwald space which admits a parallel s-structure. If the flag curvature of (M,F) is everywhere nonzero, then F is Riemannian.

Proof: It is a consequence of Theorem $3.5.\Box$

REFERENCES

- P. L. Antonelli, R. S. Ingarden and M. Matsumato, The Theory of sprays and Finsler spaces with applications in Physics and Biology, FTPH vol. 58, Kluwer, Dordecht, 1993.
- D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler Geometry, Springer-Verlag, New York, 2000.
- S. Deng, Z. Hou, The group of isometries of a Finsler space, Pacific. J. Math., 207(1), (2002), 149-155.
- S. Deng, Z. Hou, Invariant Finsler metrics on homogeneous manifolds, *Journal of Physics A: Math. Gen.*, 37, (2004), 8245-8253.

- S. Deng, Z. Hou, On symmetric Finsler spaces, Israel Journal of Mathematics, 162, (2007), 197-219.
- 6. O. Kowalski, Generalized symmetric spaces, Lect. Notes in Math., Springer Verlag, 1980.
- D. Latifi, A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys., 57, (2006), 357-366. Erratum: Rep. Math. Phys., 60, (2007), 347.
- 8. A. J. Ledger, M. Obata, Affine and Riemannian s-manifolds, *J. Differential Geometry*, **2**, (1968), 451-459.

