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Abstract. In this paper we study generalized symmetric Berwald

spaces. We show that if a Berwald space (M,F ) admits a parallel s−structure

then it is locally symmetric. For a complete Berwald space which admits

a parallel s-structure we show that if the flag curvature of (M,F ) is ev-

erywhere nonzero, then F is Riemannian.
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1. Introduction

Let (M, g) be a Riemannian symmetric space. Then for any x ∈ M , there

exists an isometry sx : M −→ M such that x is an isolated fixed point of sx
and s2x = Id. Then we have (sx)∗x = (−Id)x, vx −→ −vx. Now we consider a

generalization of the notion of Riemannian symmetric spaces. Let (M, g) be a

connected Riemannian manifold. An isometry of (M, g) with an isolated fixed

point x ∈ M is called a symmetry of (M, g) at x. A family {sx|x ∈ M} of sym-

metries of a connected Riemannian manifold (M, g) is called an s−structure on
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(M, g). Clearly if each sx satisfies the additional property s2x =identity, then

(M, g) is nothing but a Riemannian symmetric space.

Let (M,F ) be a Finsler space, where F is positively homogeneous of degree

one. Then we have two ways to define the notion of an isometry of (M,F ).

On the one hand, we call a diffeomorphism σ of M onto itself an isometry if

F (dσx(y)) = F (y), for any x ∈ M and y ∈ TxM . On the other hand, we can

also define an isometry of (M,F ) to be a one-to-one mapping of M onto itself

which preserves the distance of each pair of points of M . It is well known that

the two definitions are equivalent if the metric F is Riemannian. The equiva-

lence of these two definitions in the general Finsler case is a result of S. Deng

and Z. Hou [3]. Using these result, they proved that the group of isometries

I(M,F ) of a Finsler space (M,F ) is a Lie transformation group of M and for

any point x ∈ M , the isotropic subgroup Ix(M,F ) is a compact subgroup of

I(M,F ). These results are important to study homogeneous Finsler spaces.

In this paper we study Berwald spaces admitting an s−structuer.

2. Preliminaries

We first review the basics of Finsler geometry. Standard references are [1]

and [2]. We will follow the notations in [2].

2.1. Finsler Spaces.

Let M be an n-dimensional C∞ manifold and TM =
⋃

x∈M TxM the tan-

gent bundle.

A Finsler structure is a function F : TM −→ [0,∞) satisfying the following

conditions:

(i): F is C∞ on TM \ {0};

(ii): F (cv) = cF (v) for all v ∈ TM and c ≥ 0;

(iii): The matrix

gij(v) =
1

2

∂2F 2

∂vi∂vj
(v)

is positive definite for all v ∈ TM \ {0}.

The positive definite matrix (gij(v)) defines a Riemannian structure gv of TxM

through

gv(
∑

i

ai
∂

∂xi
,
∑

j

bj
∂

∂xj
) =

∑

i,j

gij(v)a
ibj .

Note that gv(v, v) = F (v)2. If (M,F ) is Riemannian, then gv always coincide

with the original Riemannian metric.
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Let γ : [0, r] −→ M be a piecewise C∞ curve. Its length is defined as

L(γ) =

∫ r

0

F (γ(t), γ̇(t))dt.

For x0, x1 ∈ M denote by Γ(x0, x1) the set of all piecewise C∞ curve γ :

[0, r] −→ M such that γ(0) = x0 and γ(r) = x1. Define a map dF : M×M −→

[0,∞) by

dF (x0, x1) = inf
γ∈Γ(x0,x1)

L(γ).

Of course we have dF (x0, x1) ≥ 0, where the equality holds if and only if

x0 = x1; dF (x0, x2) ≤ dF (x0, x1) + dF (x1, x2). In general, since F is only a

positive homogeneous function, dF (x0, x1) 6= dF (x1, x0), therefore (M,dF ) is

only a non-reversible metric space.

Define the Cartan tensor

Cijk(x, y) =
1

4

∂3F 2(x, y)

∂yi∂yj∂yk
,

we also define the formal Christoffel symbol

γk
ij =

1

2
gkm

(
∂gmj

∂xi
+

∂gim
∂xj

−
∂gij
∂xm

)
.

Using these, we further define the nonlinear connection

N i
j = γi

jky
k − Ci

jkγ
k
rsy

rys.

According to [2], the pulled-back bundle π∗TM admits a unique linear con-

nection, called the Chern connection. Its connection forms are characterized

by the structure equation:

• Torsion freeness

dxj ∧ ωi
j = 0;

• Almost g−compatibility:

dgij − gkjω
k
i − gikω

k
j = 2Cijk(dy

k +Nk
l dx

l).

It is easy to know that torsion freeness is equivalent to the ωi
j = Γi

jkdx
k and

Γi
jk = Γi

kj .

Definition 2.1. A Finsler metric F on a manifold M is called a Berwald

metric if in any standard local coordinate system (xi, yi) in TM , the Christoffel

symbols Γi
jk are the functions of x ∈ M only, i.e., Γi

jk = Γi
jk(x).

Arc
hive

 of
 S

ID

www.SID.ir



66 P. Habibi and A. Razavi

2.2. Symmetric Fisler spaces.

Let G be a Lie group, H a closed subgroup of G. The coset space G/H has

a unique smooth structure such that G is a Lie transformation group of G/H.

It is called reductive if there exists a subspace m of the Lie algebra g such that

g = h+m

where h is the Lie algebra of H and Ad(h)m ⊂ m, ∀h ∈ H. The study of

invariant structures on coset spaces is an important problem in differential

geometry.

Definition 2.2. A Finsler space (M,F ) is called homogeneous Finsler space

if the group of isometries of (M,F ), I(M,F ), acts transitively on M .

Every homogeneous Finsler space is forward complete [7]. Let G be a Lie

group, H be a closed subgroup of G. Suppose there exists an invariant Finsler

metric on G/H. Then there exists an invariant Riemannian metric on G/H.

The definition of globally symmetric Finsler space is a natural generalization

of É. Cartan’s definition of Riemannian globally symmetric spaces.

Definition 2.3. A connected Finsler space (M,F ) is said to be symmetric

if to each p ∈ M there is associated an isometry σp : M −→ M which is

(i): involutive (σ2
p is the identity).

(ii): has p as an isolated fixed point, that is, there is a neighborhood U of

p in which p is the only fixed point of σp.

σp is called the symmetry at point p.

As p is an isolated fixed point of σp it follows that (dσp)p = −id, and therefore

symmetric Finsler spaces have reversible metrics and geodesics.

Let (M,F ) be a connected symmetric Finsler space, Then (M,F ) is (forward-

backward) complete and homogeneous that is the group of isometries of (M,F )

acts transitively on M [7], [5].

Theorem 2.4 ([5]). Let (M,F ) be a symmetric Finsler space. Then (M,F )

is a Berwald space. Furthermore, the connection of F coincides with the Levi-

Civita connection of a Riemannian metric g such that (M, g) is a Riemannian

symmetric space.

3. Generalized symmetric Berwald spaces

Let (M,F ) be a connected Berwald space. An isometry sx of (M,F ) for

which x ∈ M is an isolated fixed point will be called a symmetry of M at x.
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Clearly, if sx is a symmetry of (M, g) at x, then the tangent map Sx = (sx∗)x
has no invariant vector.

An s−structure on (M,F ) is a family {sx|x ∈ M} of symmetries of (M,F ).

The corresponding tensor field S of type (1,1) defined by Sx = (sx∗)x for each

x ∈ M is called the symmetry tensor field of s−structure [6], [8].

An s−structure {sx|x ∈ M} is called of order k (k ≥ 2) if (sx)
k = id for all

x ∈ M and k is the least integer of this property. Obviously a Berwald space

is symmetric if and only if it admits an s−structure of order 2.

Definition 3.1. An s−structure {sx|x ∈ M} on a Berwald space (M,F ) is

said to be regular if it satisfies the rule

sx ◦ sy = sz ◦ sx, z = sx(y) (3.1)

for every two points x, y ∈ M .

Lemma 3.2. An s−structure {sx} on a connected Berwald space (M,F ) is

regular if and only if the tensor field S is invariant with respect to all symmetries

sx, i.e.

sx∗(S) = S, x ∈ M (3.2)

Proof: The proof is similar to the Riemmanian case.�

Definition 3.3. An s−structure {sx} on a Berwald space (M,F ) is said to

be parallel if the tensor field S is parallel with respect to the Chern connection

i.e. ∇S = 0.

Theorem 3.4. Each parallel s−structure on a Berwald space is regular.

Proof: Suppose {sx} to be a parallel s−structure on (M,F ). Let p ∈ M

be a fixed point and put S′ = sp∗(S). Because ∇S = 0 and sp is connection

preserving, we have ∇S′ = 0. Now S′

p = (sp∗)p(Sp) = Sp, from the uniqueness

of a parallel extension we have S′ = S. Thus for all points p ∈ M we get

(sp∗)(S) = S and hence {sx} is regular by Lemma 3.2.� .

Theorem 3.5. If a Berwald space (M,F ) admits a parallel s−structure then

it is locally symmetric.

Proof: Let (M,F ) be a Berwald space and let {sx} be a parallel s−structure

on (M,F ). Let X,Y, Z ∈ TpM be tangent vectors and ω ∈ T ∗

pM a covector at

p ∈ M . By parallel translation along each geodesic through p, X,Y, Z, ω can be

extended to local vector fields X̃, Ỹ , Z̃, ω̃ with vanishing covariant derivatives

at p. Because S is parallel, the local vector fields SX̃, SỸ , SZ̃, S∗−1ω̃ have also

vanishing covariant derivative at p. Now, because R is invariant with respect

to the affine transformation sx, x ∈ M [5], we have

R(ω, X̃, Ỹ , Z̃) = R(S∗−1ω̃, SX̃, SỸ , SZ̃) (3.3)
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∇R(ω,X, Y, Z, U) = ∇R(S∗−1ω̃,X, Y, Z, U) (3.4)

Differentiating covariantly (3) in the direction of SU at p and using (4) we

get ∇R(ω,X, Y, Z, SU) = ∇R(S∗−1ω̃, SX, SY, SZ, SU) = ∇R(ω,X, Y, Z, U).

Thus (∇R)p(ω,X, Y, Z, (I − S)U) = 0 for all ω ∈ T ∗

pM , X,Y, Z, U ∈ TpM and

because (I − S)p is non-singular transformation, we obtain (∇R)p = 0. This

holds for all p ∈ M and hence ∇R = 0.�

Let (M,F ) be a Berwald space, p ∈ M . Then there exists a neighborhood

N0 of the origin of the tangent space TpM such that the exponential mapping

expp is C∞ diffeomorphism of N0 on to a neighborhood Np of p in M [4]. We

can also assume that N0 = −N0. Now we define a mapping of Np onto itself

by

sp : exp(y) −→ exp(−y) y ∈ N0

Then sp is called the geodesic symmetry with respect to p. M is called locally

geodesic symmetric if for any p ∈ M , there exists Np such that sp is an isome-

try of Np.

Since any isometry of (M,F ) is an affine transformation with respect to

the connection of F , we see that a locally geodesic symmetric Berwald space

(M,F ) must be locally symmetric. If F is absolutely homogeneous and (M,F )

is locally symmetric, then (M,F ) is locally geodesic symmetric.

Corollary 3.6. If a Berwald space (M,F ) admits a parallel s−structure

and F is absolutely homogeneous then it is locally geodesic symmetric.

Corollary 3.7. If a Berwald space (M,F ) admits a parallel s−structure

then its flag curvature is invariant under all parallel displacements.

Proof: It is a consequence of Theorem 3.5.�

Corollary 3.8. Let (M,F ) be a complete Berwald space which admits a

parallel s−structure. If the flag curvature of (M,F ) is everywhere nonzero,

then F is Riemannian.

Proof: It is a consequence of Theorem 3.5.�
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