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2 M. Jahanshahi and A. Ahmadkhanlu

1. Introduction

Initial and boundary value problems are one of the most important problems

in mathematical physics and engineering. In classic texts these problems are

given with classic boundary conditions such as Dirichlet and Neumann bound-

ary conditions.[1, 3, 4, 6, 7].

Also some initial-boundary value problems have been considered by non-periodic

and non-local boundary conditions [8, 2, 5]. In this paper those problems with

non-classic boundary conditions has been investigated such as non-local and

non-periodic boundary conditions.

In the first section the associated spectral problem is a self-adjoint problem, in

which the adjoint problem of the given problem eigenvalues and eigenfunctions

are determined. Next by compatibility conditions and asymptotic explosions

of Fourier Coefficients, the convergence of the solution is proved in a special

way different from many classical texts. In the second section the associated

spectral problem is a non-self-adjoint problem, consequently the eigenvalues

are complex numbers and the associated eigenfunctions don’t form a complete

basis system. In this case the eigenfunctions of problem and adjoint spectral

problem must be used. Eigenfunctions of main problem and adjoint spectral

problem form a bi-orthogonal complete basis system. These conditions deter-

mine the Fourier coefficients in formal series solution in non-self-adjoint case.

2. Self-adjoint Case with Non-periodic and Non-local

Boundary Conditions

2.1. Mathematical Statement of problem. The non-homogeneous wave

equation is considered in following form

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
+ f(x, t) x ∈ (0, 1), t > 0, (2.1)

with non-local and non-periodic boundary conditions

u(0, t) + u(1, t) = 0,

∂u(0, t)

∂x
+
∂u(1, t)

∂x
= 0, t ≥ 0. (2.2)

And with initial conditions

∂ku(x, 0)

∂tk
= ϕk(x), k = 0, 1 , x ∈ [0, 1], (2.3)

where the functions f(x, t) and ϕk(x), k = 0, 1 are real valued continuous

functions.
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Wave Equation in Non-classic Cases ... 3

2.2. Eigenvalues and Eigenfunctions. In this section, the eigenvalues of

adjoint equation of (2.1) are determined. In this way, by making use of Fourier

method that has been assumed the unknown function is written u(x, t) =

X(x)T (t) then the associated spectral problem will be in the following form

X ′′(x) + λ2X(x) = 0 (2.4){
X(0) +X(1) = 0

X ′(0) +X ′(1) = 0.
(2.5)

The general solution of equation (2.4) is

X(x) = C1 cosλx+ C2 sinλx, (2.6)

where C1, C2 are real constants and λ is a complex parameter. Applying the

boundary conditions (2.5) to the general solution (2.6) implies


C1 + C1 cosλ+ C2 sinλ = 0

λC2 − λC1 sinλ+ λC2 cosλ = 0

(2.7)

Determinant of this system can be written as follows

∣∣∣∣ 1 + cosλ sinλ

−λ sinλ λ+ λ cosλ

∣∣∣∣ = λ(1 + cosλ)2 + λ sin2 λ

= λ(1 + 2 cosλ+ cos2 λ+ sin2 λ)

= 2λ(1 + cosλ) = 4λ cos2 λ2

Then its roots are:

λ0 = 0, λk = (2k + 1)π, k ∈ Z− {0}

It is easy to see that the λ = 0 cannot be an eigenvalue. Thus the eigenvalues

and related eigenfunctions are

{
λk = (2k + 1)π

Xk1(x) = C1 cosλkx, Xk2(x) = C2 sinλkx

The linearly independent eigenfunctions are only for eigenvalues λk = (2k+

1)π, k ∈ N ∪ {0}.

Remark 1. The spectral problem (2.4)-(2.5) of the given problem (2.1)-(2.3)

is a self-adjoint problem.
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2.3. Calculating formal solution. The formal solution of equation (2.1) will

be given in the following form

u(x, t) =

∞∑
k=0

[Ak(t)Xk1(x) +Bk(t)Xk2(x)], (2.8)

where the coefficients Ak, Bk are arbitrary functions with respect to time

and Xk1, Xk2 are eigenfunctions.

Substituting this series in equation (2.1) yeilds

∞∑
k=0

[A′′k(t)Xk1(x) +B′′k (t)Xk2(x)]

= −
∞∑
k=0

((2k + 1)π)2[Ak(t)Xk1(x) +Bk(t)Xk2(x)] + f(x, t)

= −π2

∞∑
k=0

(2k + 1)2[Ak(t)Xk1(x) +Bk(t)Xk2(x)] + f(x, t).

The norms of eigenfunctions will be brought in below form:

‖Xn1‖2
(
A′′n(t) + π2(2n+ 1)2An(t)

)
=

∫ 1

0

f(x, t)Xn1(x)dx,

‖Xn2‖2
(
B′′n(t) + π2(2n+ 1)2Bn(t)

)
=

∫ 1

0

f(x, t)Xn2(x)dx.

The result from above relations is expressed ordinary differential equations

for An(t) and Bn(t):


A′′n(t) + π2(2n+ 1)2An(t) = fn1(t) ≡

∫ 1

0

f(x, t)Xn1(x)dx

B′′n(t) + π2(2n+ 1)2Bn(t) = fn2(t) ≡
∫ 1

0

f(x, t)Xn2(x)dx

(2.9)

The solutions response are expressed at below

An(t) = An1 cos(2n+ 1)πt+An2 sin(2n+ 1)πt

+

∫ t

0

sin(2n+ 1)π(t− τ)

(2n+ 1)π
fn1(τ)dτ

Bn(t) = Bn1 cos(2n+ 1)πt+Bn2 sin(2n+ 1)πt

+

∫ t

0

sin(2n+ 1)π(t− τ)

(2n+ 1)π
fn2(τ)dτ

(2.10)

where An1, An2, Bn1 and Bn2 are arbitrary real constants. Replacing these

solutions in the series (2.8) gives the formal solution of equation (2.1), that is

brought in the below
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Wave Equation in Non-classic Cases ... 5

u(x, t) =

∞∑
k=0

[Ak1 cos(2k + 1)πt+Ak2 sin(2k + 1)πt]Xk1(x)

+

∞∑
k=0

[Bk1 cos(2k + 1)πt+Bk2 sin(2k + 1)πt]Xk2(x)

+

∞∑
k=0

{
Xk1(x)

∫ t

0

sin(2k + 1)π(t− τ)

(2k + 1)π
fk1(τ)dτ

}
+

{
Xk2(x)

∫ t

0

sin(2k + 1)π(t− τ)

(2k + 1)
fk2(τ)dτ

}
(2.11)

Remark 2. The series solution (2.11) is satisfied equation (2.1) and each term

of this series is satisfied boundary conditions (2.2).

The coefficients of An1, An2, Bn1 and Bn2 are determined by imposing the

given initial conditions (2.3) for the u(x, t) and ∂u(x,t)
∂t .



∞∑
k=0

[Ak1Xk1(x) +Bk1Xk2(x)] = ϕ0(x)

∞∑
k=0

(2k + 1)π[Ak2Xk1(x) +Bk2Xk2(x)] = ϕ1(x)

Thus these coefficients are calculated in the following form
An1 =

∫ 1

0

ϕ0(ξ)Xn1(ξ)dξ, Bn1 =

∫ 1

0

ϕ0(ξ)Xn2(ξ)dξ

An2 =
1

(2n+ 1)π

∫ 1

0

ϕ1(ξ)Xn1(ξ)dξ Bn2 =
1

(2n+ 1)π

∫ 1

0

ϕ1(ξ)Xn2(ξ)dξ

(2.12)

2.4. Compatibility and Sufficient Conditions for convergence of the

Formal Series solution. In this section, some compatibility and sufficient

conditions will be obtained for the formal series (2.8) to have a classic solution.

To this end, we need to prove following theorem.

Theorem 1. Suppose the functions ϕ0 and ϕ1 in the initial conditions (2.3)

of problem (2.1)-(2.3) satisfy the following conditions:

ϕ
(k)
0 (1) = ϕ

(k)
0 (0), k = 0, 1, 2, 3 and ϕ0(x) ∈ C(4)(0, 1) (2.13)

ϕ
(k)
1 (1) = ϕ

(k)
1 (0), k = 0, 1, and ϕ1(x) ∈ C(3)(0, 1), (2.14)

and suppose the function f(x, t) satisfies:

f(1, t) = f(0, t), t > 0 (2.15)
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6 M. Jahanshahi and A. Ahmadkhanlu

and also its derivatives
∂2f(x, t)

∂x∂t
is differentiable at x = 0, x = 1, t > 0 and

there is M ∈ N such that

|∂
3f(x, t)

∂x2∂t
| ≤M (2.16)

Then the series solution (2.8) is a uniformly convergent series with respect to

x and t.

In the other words the classic solution of main problem (2.1)-(2.3) is given

by formal solution (2.11).

Proof. For establishing uniformly convergence of series (2.11), consider the as-

ymptotic expansion of the coefficients of An1, An2, Bn1 and Bn2. we give some

sufficient conditions. For this by applying repeatedly integration by parts, we

get

An1 =
√

2

∫ 1

0

ϕ0(ξ) cosλnξ dξ =
√

2ϕ0(ξ)
sin(2n+ 1)πξ

(2n+ 1)π
|10

−
√

2

∫ 1

0

ϕ′0(ξ)
sin(2n+ 1)πξ

(2n+ 1)π
dξ

=

√
2ϕ′0(ξ)

(2n+ 1)2π2
cos(2n+ 1)πξ|10

−
√

2

(2n+ 1)2π2

∫ 1

0

ϕ′′0(ξ) cos(2n+ 1)πξdξ

= −
√

2
ϕ′0(1)− ϕ′0(0)

(2n+ 1)2π2
+

√
2

(2n+ 1)4π4
(ϕ′′′0 (1)− ϕ′′′0 (0))

+

√
2

(2n+ 1)4π4

∫ 1

0

ϕ
(4)
0 (ξ) cos(2n+ 1)πξdξ

(2.17)

By the same way for Bn1, An2 and Bn2 we will get:

Bn1 =
√

2
ϕ0(1)− ϕ0(0)

(2n+ 1)π
−
√

2
ϕ′′0(1)− ϕ′′0(0)

(2n+ 1)3π3

+

√
2

(2n+ 1)4π4

∫ 1

0

ϕ
(4)
0 (ξ) sin(2n+ 1)πξdξ,

(2.18)

An2 = −
√

2
ϕ′1(1)− ϕ′1(0)

(2n+ 1)3π3
−

√
2

(2n+ 1)3π3

∫ 1

0

ϕ′′1(ξ) cos(2n+ 1)πξdξ

(2.19)

and

Bn2 =
√

2
ϕ′1(1)− ϕ′1(0)

(2n+ 1)2π2
−

√
2

(2n+ 1)3π3

∫
ϕ′′1(ξ) sin(2n+ 1)πξdξ (2.20)
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Wave Equation in Non-classic Cases ... 7

Relations (2.13)-(2.14) and the factors
√
2

(2n+1)3π3 and
√
2

(2n+1)4π4 of integrals

in (2.17), (2.18), (2.19), and (2.20) guaranty the uniformly convergence of se-

ries solution (2.11). We need only to consider the asymptotic expansion of

coefficients fk1 and fk2. For this we can write

fk1(τ) =
√

2

∫ 1

0

f(x, τ) cos(2k + 1)πxdx

=

√
2

(2k + 1)2π2

∂f(x, τ)

∂x
cos(2k + 1)πx

∣∣∣x=1

x=0

−
√

2

(2k + 1)2π2

∫ 1

0

∂2f(x, τ)

∂x2
cos(2k + 1)πxdx

=

√
2

(2k + 1)2π2

[
∂f(x, τ)

∂x
|x=1 −

∂f(x, τ)

∂x
|x=0

]
−

√
2

(2k + 1)2π2

∫ 1

0

∂2f(x, τ)

∂x2
cos(2k + 1)πxdx

consequently we have:

∫ t

0

sin(2k + 1)π(t− τ)

(2k + 1)π
fk1(τ)dτ

=

√
2

(2k + 1)3π3

∫ t

0

[
∂f(x, τ)

∂x
|x=1 −

∂f(x, τ)

∂x
|x=0

]
sin(2k + 1)π(t− τ)

−
√

2

(2k + 1)3π3

∫ t

0

sin 2kπ(t− τ)dτ

∫ 1

0

∂2f(x, τ)

∂x2
cos(2k + 1)πxdx

(2.21)

By the same way we have for fk2

fk2(τ) =
√

2

∫ 1

0

f(x, τ) sin(2k + 1)πxdx

= −
√

2
f(1, τ)− f(0, τ)

(2k + 1)π
+

√
2

(2k + 1)2π2

∫ 1

0

∂2f(x, τ)

∂x2
sin(2k + 1)πxdx

And this implies

∫ t

0

sin(2k + 1)π(t− τ)

(2k + 1)π
fk2(τ)dτ

= −
√

2

(2k + 1)2)π2

∫ 1

0

[f(1.τ)− f(0, τ)] sin(2k + 1)πxdx

−
√

2

(2k + 1)3π3

∫ t

0

sin(2k + 1)π(t− τ)dτ

∫ 1

0

∂2f(x, τ)

∂x2
sin(2k + 1)πxdx

(2.22)
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Finally the relation (2.15), (2.16), (2.17), (2.21) and (2.22) guaranty the

uniformly convergence of series solution (2.11). �

2.5. Uniqueness of solution. In this section the uniqueness of solution will

be shown. The solution of initial-boundary value problem (2.1)-(2.3) which

was presented by (2.11) is unique. For this, we prove that the homogeneous

problem corresponding to initial-boundary value problem (2.1)-(2.3) has only

a trivial solution.

Multiplying
∂u(x, τ)

∂τ
to the both side homogeneous wave equation and inte-

gration on [0, 1]× [0, t] implies

∫ 1

0

dx

∫ t

0

∂2u(x, τ)

∂τ2
∂u(x, τ)

∂τ
dτ =

∫ t

0

dτ

∫ 1

0

∂2u(x, τ)

∂x2
∂u(x, τ)

∂τ
dx

Integrating by parts method yields

1

2

∫ 1

0

dx

∫ t

0

∂

∂τ

(
∂u(x, τ)

∂τ

)2

dτ =

∫ t

0

dτ
[∂u(x, τ)

∂x

∂u(x, τ)

∂τ

∣∣∣1
x=0

−
∫ 1

0

∂u(x, τ)

∂x

∂2u(x, τ)

∂x∂τ
dx
]

Applying the boundary and compatibility conditions to the first integral on

the right-hand side leads to

∫ t

0

dτ
∂u(x, τ)

∂x

∂u(x, τ)

∂τ

∣∣∣x=1

x=0

=

∫ t

0

dτ
[(
−∂u(x, τ)

∂x

∣∣∣
x=0

)(
−∂u(x, τ)

∂τ

∣∣∣
x=0

)
−∂u(x,τ)∂x

∣∣∣
x=0

∂u(x,τ)
∂τ

∣∣∣
x=0

]
= 0

Consequently we will have:

1

2

∫ 1

0

(
∂u(x, t)

∂t

)2

dx = −1

2

∫ 1

0

dx

∫ t

0

∂

∂τ

(
∂u(x, τ)

∂x

)2

dτ

or ∫ 1

0

[(
∂u(x, t)

∂t

)2

+

(
∂u(x, t)

∂x

)2
]
dx = 0

Hence u(x, t) is a constant. Regarding the initial and boundary value condi-

tions, we get u(x, t) ≡ 0.
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Wave Equation in Non-classic Cases ... 9

3. Non Self-adjoint Case with Complex eigenvalues

3.1. Mathematical Statement of problem. In this section the wave equa-

tion with following boundary and initial conditions is considered:

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
, x ∈ (0, 1), t > 0, (3.1)

2u(0, t) = u(1, t),

∂u(x, t)

∂x
|x=0 = 0, t ≥ 0.

, (3.2)

∂ku(x, 0)

∂tk
= ϕk(x), k = 0, 1 , x ∈ [0, 1] (3.3)

3.2. Non-Self-adjoint spectral problem. At first the associated spectral

problem are obtained. For this, by using the similar manner which was applied

in section 1, the associated spectral problem

{
X ′′(x)− λ2X(x) = 0

X ′(0) = 0, X(1)− 2X(0) = 0
(3.4)

is not a self-adjoint problem. Note that the resulted boundary conditions for

adjoint problem will be different from boundary conditions of main problem

(3.4). The related eigenvalues and eigenfunctions for main spectral problem

(3.4) are

{
λk1 = ln(2 +

√
3) + 2kπi, λk2 = ln(2−

√
3) + 2kπi

Xk1 = eλk1x + e−λk1x, Xk2 = eλk2x + e−λk2x
(3.5)

and its related adjoint problem is

{
Z ′′(x)− ρ2Z(x) = 0

Z(1) = 0, Z ′(0)− 2Z ′(1) = 0,
(3.6)

also the related eigenvalues and eigenfunctions are{
ρk1 = ln(2 +

√
3) + 2kπi, ρk2 = ln(2−

√
3) + 2kπi

Zk1 = eρk1x + e−ρk1x, Zk2 = eρk2x + e−ρk2x
(3.7)

One can verify that the eigenfunctions Xk1 and Xk2 of problem (3.4) are not

linear independent. Also the eigenfunctions Zk1 and Zk2 of related adjoint

problem (3.6) are not linear independent. This subject causes the eigenfunc-

tions of the main problem (3.4) and adjoint problem (3.6) can not form a

complete basis system separately. For this, we should join eigenfunctions of

these problems together for constructing a complete basis system.
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At first these functions are orthogonal, that is

(Xk, Zn) =

∫ 1

0

(eλkx + e−λkx)(eρnx − e2ρn−ρnx)dx = 0, k 6= n (3.8)

(Xn, Zn) = −6− 4
√

3 6= 0

Generally

(Xk, Zn) = δkn[−2(3 + 2
√

3], k, n ∈ Z (3.9)

The relations (3.8) and (3.9) show that the eigenfunctions (3.5) and (3.7) form

a bi-orthogonal basis complete system.

3.3. Constructing formal solution. Firstly from time equation

T ′′(t)− λ2T (t) = 0 (3.10)

we have

Tn(t) = Ane
−λnt +Bne

λnt. (3.11)

Then we can write the formal solution for the main boundary-initial value

problem (3.1)-(3.3) as follows:

u(x, t) =
∑
n∈Z

(Ane
−λnt +Bne

λnt)Xn(x) (3.12)

Now the unknown coefficients An and Bn in (3.12) are determined. Imposing

the initial condition (3.3) to the u(x, t) and ∂u(x,t)
∂t yields

∞∑
n=0

[An +Bn]Xn(x) = ϕ0(x)

∞∑
n=0

λn[−An +Bn]Xn(x) = ϕ1(x)

Multiplying the eigenfunctions Zk(x) to the both side of above relations gives:

∞∑
n=0

[An +Bn](Xn, Zk) = (ϕ0, Zk) = −2(Ak +Bk)(3 + 2
√

3)

∞∑
n=0

λn[−An +Bn](Xn, Zk) = (ϕ1, Zk) = 2λk(Ak −Bk)(3 + 2
√

3)

Then

Ak =
(ϕ1, Zk)− λk(ϕ0, Zk)

2λk(3 + 2
√

3)

Bk =
(ϕ1, Zk) + λk(ϕ0, Zk)

2λk(3 + 2
√

3)

(3.13)
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Finally the formal solution of problem (3.1)-(3.3) is given by

u(x, t) =

∞∑
n=−∞

(e−λnt − eλnt)(ϕ1, Zn)− λn(e−λnt + eλnt)(ϕ0, Zn)

2λn(3 + 2
√

3)
Xn(x)

(3.14)

At the end of the following theorem, some sufficient conditions are given to

have a classic solution for the problem (3.1)-(3.3).

Theorem 2. Suppose the functions ϕ0(x) and ϕ1(x) in the problem (3.1)-(3.3)

satisfy the following conditions

ϕ0(0) = ϕ0(1) = ϕ′0(0) = ϕ′0(1) = ϕ′′0(0) = ϕ′′0(1), ϕ0 ∈ C(4)(0, 1) (3.15)

ϕ1(0) = ϕ1(1) = ϕ′1(0) = ϕ′1(1), ϕ1 ∈ C(3)(0, 1) (3.16)

Then the series solution (3.14) and its second derivatives with respect to x

and t are uniformly convergence.

Proof. Consider the asymptotic expansion of (ϕ0, Zn)

(ϕ0, Zn) =

∫ 1

0

ϕ0(x)Zn(x)dx =

∫ 1

0

ϕ0(x)[eρnx − e2ρn−ρnx]dx

= ϕ0(x)
eρnx + e2ρn−ρnx

ρn

∣∣∣1
0
− ϕ′0(x)

eρnx

ρn
2 +

∫ 1

0

ϕ′′0(x)
eρnx

ρn
2 dx

− e2ρnϕ′0(x)
−eρnx

−ρn2
∣∣∣1
0
− e2ρn

ρn
2

∫ 1

0

ϕ′′0(x)eρnxdx

Continuing this process and considering the relations (3.15) and the factors
e2ρn

−ρn2 of integral and by writing same asymptotic expansion for (ϕ1, Zn) and

relation (3.16) is resulted uniformly convergence of series solution (3.14). �

The uniqueness of the solution (3.14) can be proved by similar manner which

was used in Subsection 1.5.
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