Application of the Norm Estimates for Univalence of Analytic **Functions**

Rasoul Aghalary*

Department of Mathematics, Faculty of Science, Urmia University Urmia, Iran.

E-mail: raghalary@yahoo.com, raghalary@urmia.ac.ir

ABSTRACT. By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.

Keywords: Starlike functions, Differential subordination, Integral operators.

2000 Mathematics subject classification: Primary 30C45. Secondary 30C80.

1. Introduction

Let \mathcal{H} Denote the class of all analytic functions in the open unit disc $\Delta =$ $\{z \in \mathbb{C} : |z| < 1\}$. For a positive integer n and $a \in \mathbb{C}$, let $\mathcal{H}[a,n]$ and \mathcal{A}_n denote the following classes of analytic functions

$$\mathcal{A}_n = \{ f \in \mathcal{H} : f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \dots, z \in \Delta \}$$

$$\mathcal{H}[a, n] = \{ f \in \mathcal{H} : f(z) = a + a_nz^n + a_{n+1}z^{n+1} + \dots, z \in \Delta \}.$$

and

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, z \in \Delta \}.$$

Also let S denote the class of all univalent functions in A. We denote by S^* the familiar class of functions in A which are starlike (with respect to origin).

Received 15 January 2012; Accepted 19 October 2013 ©2014 Academic Center for Education, Culture and Research TMU

^{*}Corresponding Author

Suppose f and g belongs to \mathcal{H} , we say that f(z) is subordinate to g(z); written $f \prec g$ or $f(z) \prec g(z)$, if there exists an analytic function w such that w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)) on Δ . In particular, if g(z) is univalent in Δ , then it is known that

$$f(z) \prec g(z) \iff f(0) = g(0) \quad and \quad f(\Delta) \subseteq g(\Delta).$$

For $\alpha \in \mathbb{C}$, let $J_{\alpha}[f]$ denote the nonlinear integral operator defined by

$$J_{\alpha}[f](z) = \int_{0}^{z} \left(\frac{f(t)}{t}\right)^{\alpha} dt.$$

In [8], Kim and Merkes showed that $J_{\alpha}(S) = \{J_{\alpha}[f] : f \in S\} \subseteq S$ when $|\alpha| < 1/4$. Also Aksent'ev and Nezhmetdinov proved in [1] that $J_{\alpha}[S^*] \subseteq S$ precisely when $|\alpha| < 1/2$ or $\alpha \in [1/2, 1/3]$. Also such results for other spaces were investigated in [4, 10, 11].

For a constant $\beta \in \mathbb{C}, \lambda > 0$ and $\sigma \geq 0$ consider the classes $\mathcal{U}(\beta, \lambda)$ and $\mathcal{U}_{\sigma}(n,\lambda)$ defined by

$$\mathcal{U}(eta,\lambda) = \{f \in \mathcal{A}_n : |zf''(z) - eta(f'(z) - 1)| < \lambda\}$$

and

$$\mathcal{U}_{\sigma}(n,\lambda) = \{ f \in \mathcal{U}(n,\lambda) : |f^{(n+1)}(0)| \le (n+1)!\sigma \}.$$

Recently, the class $\mathcal{U}(\beta,\lambda)$ and $\mathcal{U}_{\sigma}(n,\lambda)$ have been studied by Miller and Mocanu [9] and Kuroki and Owa [6]. It is shown that in [9], $\mathcal{U}(\beta,\lambda) \subseteq S^*$ for $0 \le \beta < n \text{ and } \lambda = n - \beta.$

Let $f:\Delta\to\mathbb{C}$ be analytic and locally univalent. The pre-Schwarzian derivative \mathcal{T}_f of f is defined by

$$\mathcal{T}_f(z) = \frac{f''(z)}{f'(z)}.$$

Also, the quantity
$$||f||=\sup_{z\in\Delta}(1-|z|^2)|\mathcal{T}_f(z)|$$

is called the norm of \mathcal{T}_f .

In this paper we find conditions on parameters β, λ, σ and α such that

$$J_{\alpha}[\mathcal{U}(\beta,\lambda)] \subseteq S$$
 and $J_{\alpha}[\mathcal{U}_{\sigma}(n,\lambda)] \subseteq S$.

For proving our results we need the following two lemmas.

Lemma 1.1. (see[2,3]) Let f be analytic and locally univalent in Δ . Then if ||f|| < 1 then f is univalent, and the constant 1 is sharp.

Lemma 1.2. (see [5]) Let h(z) be a convex univalent function with h(0) = aand let $Re\gamma > 0$. If $p(z) \in \mathcal{H}[a, n]$ and

$$p(z) + \frac{zp'(z)}{\gamma} \prec h(z),$$

then

$$p(z) \prec q(z) \prec h(z)$$
,

where

$$q(z) = \frac{\gamma}{nz^{\gamma/n}} \int_0^z h(t) t^{\gamma/n-1} dt.$$

This result is sharp.

2. Main Results

Theorem 2.1. Let λ, μ, σ be non-negative numbers with $\mu = \sigma + \frac{\lambda}{n+2} \le 1$. For a function $f \in \mathcal{U}_{\sigma}(n,\lambda)$, we have

$$||J_{\alpha}[f]|| \le \frac{2|\alpha|\mu}{1+\sqrt{1-\mu^2}}.$$
 (2.1)

for every $\alpha \in \mathbb{C}$. In the case n=1 the equality holds above precisely when $f(z) = z + az^2$ with $a = \mu < 1$.

Proof. Taking a logarithmic differentiation, we obtain, $\mathcal{T}_{J_{\alpha}[f]}(z) = \alpha \mathcal{T}_{J_{1}[f]}(z)$ and thus

$$||J_{\alpha}[f]|| = |\alpha|||J_1[f]||.$$

 $||J_{\alpha}[f]|| = |\alpha|||J_1[f]||.$ Therefore it suffices to consider $||J_1[f]||$. Let $f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \ldots$ be in $\mathcal{U}_{\sigma}(n,\lambda)$ and $G(z) = J_1[f](z)$. If we set $p(z) = f'(z) - (1+n)\frac{f(z)}{z}$, then we have then we have

$$p(z) = -n + a_{n+2}z^{n+1} + \dots$$

and we observe that $p(z) \in \mathcal{H}[-n, n+1]$. Further it is easy to see that, $f \in$ and we observe $\mathcal{U}_{\sigma}(n,\lambda)$ is equivalent to $p(z)+zp'(z)\prec -n+\lambda z.$

$$p(z) + zp'(z) \prec -n + \lambda z. \tag{2.2}$$

Applying Lemma 1.2 to the (2.2), we obtain

$$p(z) \prec \frac{1}{(n+1)z^{1/(n+1)}} \int_0^z [-n+\lambda t] t^{1/(n+1)-1} dt = -n + \frac{\lambda}{n+2} z.$$

$$f'(z) - (n+1)\frac{f(z)}{z} = -n + \frac{\lambda}{n+2}\omega(z), \tag{2.3}$$

where ω is an analytic function in Δ with $|\omega(z)| \leq 1$ and $\omega(0) = \omega'(0) = \dots =$ $\omega^{(n)}(0) = 0$. By setting $g(z) = \frac{f(z)}{z} - 1$, we may rewrite the relation (2.3) as

$$zg'(z) - ng(z) = \frac{\lambda}{n+2}\omega(z).$$

Solving this differential equation we have

$$g(z) = a_{n+1}z^n + \frac{\lambda}{n+2} \int_0^1 \frac{\omega(tz)}{t^{n+1}} dt.$$
 (2.4)

Since $|a_{n+1}| + \frac{\lambda}{n+2} \le \mu$, and in view of Schwarz's lemma $|\omega(z)| \le |z|^{n+1}$ for $z \in \Delta$, (2.4) implies that

$$|g(z)| \le |z|^n \left(|a_{n+1}| + \frac{\lambda}{n+2} |z| \right) < \mu.$$

So $\mathcal{F}(z) := f(z)/z$ is subordinate to the function $q(z) := 1 + \mu z$ and this means that $\mathcal{F}(z) = q(\omega_1(z))$ where $\omega_1(z)$ is Schwarz function. Hence

$$||G|| = \sup_{z \in \Delta} (1 - |z|^2) \left| \frac{\mathcal{F}'(z)}{\mathcal{F}(z)} \right| = \sup_{z \in \Delta} (1 - |z|^2) \frac{|q'(\omega_1(z))||\omega_1'(z)|}{|q(\omega_1(z))|}$$

But, by the Schwarz-Pick lemma, we know that

$$|\omega_1'(z)| \le \frac{1 - |\omega_1(z)|^2}{1 - |z|^2}.$$

Therefore we obtain

$$||G|| \leq \sup_{z \in \Delta} (1 - |z|^2) \frac{|q'(\omega_1(z))|(1 - |\omega_1(z)|^2)}{(1 - |z|^2)|q(\omega_1(z))|} \leq \sup_{z \in \Delta} (1 - |z|^2) \left| \frac{q'(z)}{q(z)} \right|.$$

Since

$$\frac{q'(z)}{q(z)} = \frac{\mu}{1 + \mu z},$$

a computation shows that

$$\sup_{z \in \Delta} (1 - |z|^2) \left| \frac{q'(z)}{q(z)} \right| = \mu \sup_{0 < t < 1} \frac{1 - t^2}{1 - \mu t} = \frac{2\mu}{1 + \sqrt{1 - \mu^2}}.$$

Thus inequality (2.1) follows. Now for function $f(z) = z + az^2$ with 0 < a < 1

$$||J_{\alpha}[f]|| = \sup_{z \in \Delta} (1 - |z|^2) \frac{|\alpha||a|}{|1 + az|}.$$

But

$$||J_{\alpha}[f]|| = \sup_{z \in \Delta} (1 - |z|^2) \frac{|\alpha||a|}{|1 + az|}.$$
$$(1 - |z|^2) \frac{|\alpha||a|}{|1 + az|} \le (1 - |z|^2) |\alpha| \frac{|a|}{1 - |a||z|},$$

$$\sup_{z \in \Delta} (1 - |z|^2) \frac{|\alpha||a|}{|1 + az|} \le \sup_{z \in \Delta} (1 - |z|^2) \frac{|\alpha||a|}{1 - |a||z|} = \frac{2|\alpha|a|}{1 + \sqrt{1 - a^2}}.$$

We note that in the last equality sup has taken on the point $|z| = \frac{1 - \sqrt{1 - a^2}}{a}$. On the other hand by putting z = t we obtain

$$|\alpha|a\frac{1-t^2}{1+at} \le \sup_{z \in \Delta} (1-|z|^2) \frac{|\alpha||a|}{|1+az|}.$$

By putting $t = \frac{1-\sqrt{1-a^2}}{-a}$ on the left hand side we have $|\alpha|a\frac{1-t^2}{1+at} = |\alpha|\frac{2a}{1+\sqrt{1-a^2}}$. Hence equality holds for the function $f(z) = z + az^2$.

Corollary 2.2. Let λ, σ be non-negative numbers with $\sigma + \frac{\lambda}{n+2} \leq 1$ and $\alpha \in \mathbb{C}$ satisfy the condition

$$|\alpha| \le \frac{1 + \sqrt{1 - (\sigma + \frac{\lambda}{n+2})^2}}{2(\sigma + \frac{\lambda}{n+2})}.$$

Then $J_{\alpha}(\mathcal{U}_{\sigma}(n,\lambda)) \subseteq S$.

Letting $a_{n+1} = 0$ in the corollary 2.1, we obtain the following corollary.

Corollary 2.3. Let $0 < \lambda \le n+2$ and α be complex number which satisfy the condition

$$|\alpha| \le \frac{n+2+\sqrt{(n+2)^2-\lambda^2}}{2\lambda}.$$

Then $J_{\alpha}(\mathcal{U}_0(n,\lambda)) \subseteq S$.

By putting $\lambda = n + 2$ in the corollary 2.2 we obtain the following example.

EXAMPLE 2.4. Let α, c be complex numbers with |c| < 1 and $|\alpha| \le 1/2$. Then the function

$$F(z) = \int_0^z (1 + cu^{n+1})^\alpha du$$

is univalent in Δ .

is univalent in Δ . EXAMPLE 2.5. Let the function $f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2}$ be such that $|a_{n+1}| + |a_{n+2}| < 1$ and α be complex number satisfy $|\alpha| \le 1/2$. Then function

$$G(z) = \int_0^z (1 + a_{n+1}u^n + a_{n+2}u^{n+1})^\alpha du$$

is univalent in Δ .

Theorem 2.6. Let β be a complex number with $0 \le Re\beta < n$ and λ be nonnegative number which satisfy the condition $0 < \lambda \le (n - Re\beta)(n + 1)$. For a function $f \in \mathcal{U}(\beta, \lambda)$ and for any $\alpha \in \mathbb{C}$ we have

$$||J_{\alpha}[f]|| \le \frac{2|\alpha|\mu}{1 + \sqrt{1 - \mu^2}},$$
 (2.5)

where $\mu = \lambda/(n+1)(n-Re\beta)$. If, in addition, $\lambda < 2(1-Re\beta)$, then equality holds for the case n = 1 when $f(z) = z + az^2$ for a constant a with $a = \mu$.

Proof. Suppose that $f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + ...$ be in $\mathcal{U}(\beta, \lambda)$ and set $\mathcal{F} = J_1[f]$. By letting $p(z) := f'(z) - (1+\beta)\frac{f(z)}{z} = -\beta + (n-\beta)a_{n+1}z^n + ...$ it is obvious that $p(z) \in \mathcal{H}[-\beta, n]$.

Further, $f \in \mathcal{U}(\beta, \lambda)$ is seen to be equivalent to

$$p(z) + zp'(z) \prec -\beta + \lambda z.$$
 (2.6)

Applying lemma 1.2, to (2.6) we obtain

$$p(z) \prec \frac{1}{nz^{\frac{1}{n}}} \int_0^z (-\beta + \lambda t) t^{\frac{1}{n} - 1} dt,$$

or equivalently

$$f'(z) - (1+\beta)\frac{f(z)}{z} \prec -\beta + \frac{\lambda}{n+1}z. \tag{2.7}$$

We may write the last subordination a

$$f'(z) - (1+\beta)\frac{f(z)}{z} = -\beta + \frac{\lambda}{n+1}\omega(z),$$
 (2.8)

where ω is an analytic function with $\omega(0) = \omega'(0) = \dots = \omega^{n-1}(0) = 0$ and $|\omega(z)| < 1 \text{ for } z \in \Delta.$

If we consider $g(z) = \frac{f(z)}{z} - 1$, then (2.8) becomes

$$zg'(z) - \beta g(z) = \frac{\lambda}{n+1}\omega(z).$$

An algebraic computation yields that

$$g(z) = \frac{\lambda}{n+1} \int_0^1 \frac{\omega(tz)}{t^{\beta+1}} dt. \tag{2.9}$$

Since $\omega(0) = \omega'(0) = \dots = \omega^{n-1}(0) = 0$ and $|\omega(z)| < 1$, Schwarz's lemma gives that $|\omega(z)| < |z|^n$ for $z \in \Delta$ and therefore

$$\left|\frac{f(z)}{z} - 1\right| < \frac{\lambda}{(n+1)(n - Re\beta)} |z|^n < \frac{\lambda}{(n+1)(n - Re\beta)} = \mu.$$

Now following the same as proof of Theorem 2.1 we get our result.

By putting $\beta = 0$ in the Theorem 2.2 we obtain the following corollary.

Corollary 2.7. Let $0 < \lambda \le n(n+1)$. If $f(z) \in \mathcal{A}_n$ satisfy the condition $|zf''(z)| < \lambda$, then $||J_{\alpha}[f]|| \le \frac{2|\alpha|\mu}{1+\sqrt{1-\mu^2}}$, where $\mu = \frac{\lambda}{n(n+1)}$. The result is sharp in the case

n=1 for the function $f(z)=z+az^2$ with $|a|=\mu$.

We remark that the special case of corollary 2.3 was obtained in [7]. (see Theorem 2.7)

Corollary 2.8. Let $0 < \lambda \le (n - Re\beta)(n+1)$ and α be a complex number with

$$|\alpha| \le \frac{(n - Re\beta)(n+1) + \sqrt{(n - Re\beta)^2(n+1)^2 - \lambda^2}}{2\lambda}.$$

Then $J_{\alpha}(\mathcal{U}(\beta,\lambda)) \subseteq S$.

Let $0 \le Re\beta < n$ and a function $g(z) \in \mathcal{H}$ satisfy the condition

$$|g(z)| \le \frac{4(n+1)(n-Re\beta)}{5}.$$

Also let $f(z) \in \mathcal{A}_n$ satisfy the differential equation

$$zf''(z) - \beta(f'(z) - 1) = z^n g(z). \tag{2.10}$$

Then, it is clear that

$$|zf''(z) - \beta(f'(z) - 1)| = |z|^n |g(z)| \le \frac{4(n+1)(n - Re\beta)}{5}.$$

Hence, from corollary 2.4, we observe that for $|\alpha| \leq 1$, we have $J_{\alpha}[f] \in S$. By letting $\alpha = 1$ we have the following example

Example 2.9. Let β be a complex number with $0 \leq Re\beta < n$ and $g(z) \in \mathcal{H}$ satisfy

$$|g(z)| \le 4(n+1)(n - Re\beta).$$

Then the function $F(z) \in \mathcal{A}_n$ satisfying the differential equation

$$z^{2}F'''(z) + (2-\beta)zF''(z) - \beta F'(z) + \beta = z^{n}g(z)$$
 (2.11)

is univalent in Δ .

It is easy to see that the solution of (2.11) is

$$F(z) = z + z^{n+1} \int_0^1 \int_0^1 \int_0^1 g(rstz) r^{n-\beta-1} t^n s^n dr ds dt.$$

So we may rewrite example 2.3 in the following equivalent form

EXAMPLE 2.10. Let β be a complex number with $0 \le Re\beta < n$ and $g(z) \in \mathcal{H}$ satisfy

$$|g(z)| \le 4(n+1)(n - Re\beta)$$

 $|g(z)| \leq 4(n+1)(n-Re\beta).$ Then the function $F(z) \in \mathcal{A}_n$ defined by

$$F(z)=z+z^{n+1}\int_0^1\int_0^1\int_0^1g(rstz)r^{n-\beta-1}t^ns^ndrdsdt.$$
 ent in $\Delta.$

is univalent in Δ .

The author wish to express his gratitude to the referee for his useful comments and suggestions that have improved the presentation of this paper.

References

- 1. L. A. Aksentev, I. R. Nezhmetdinov, Sufficient conditions for univalence of certain integral representation, Trudy Sem. Kraev. Zadacham, 18, (1982), 3-11.
- 2. J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math, 255, (1972), 23-43.
- 3. J. Becker, Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math, 354, (1984), 74-94.
- 4. M. R. Eslachi, S. Amani, The best uniform polynomial approximation of two classes of rational functions, Iranian Journal of Mathematical Sciences and Informatics, 7(2), (2012), 93-102.
- 5. D. J. Hallenbeck, St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc, **52**, (1975), 191-195.

- K. Kuroki, S. Owa, Double integral operators concerning starlike of order β, International Journal of Differential Equations, (2009), 1-13.
- Y. C. Kim, S. Ponnusamy, T. Sugawa, Geometric properties of nonlinear integral transforms of analytic functions, Proc. Japan Acad. Ser A, 80, (2004), 57-60.
- Y. J. Kim, E. P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J, 12, (1972), 249-253.
- S. S. Miller, P. T. Mocanu, Double integral starlike operators, Integral Transforms and Special Functions, 19 (7-8), (2008), 591-597.
- M. Obradovic, Simple sufficient conditions for univalence, Mat. Vesnik, 49, (1997), 241-244.
- 11. A. Taghavi, R. Hosseinzadeh, Uniform boundedness principle for operators on hypervector spaces, *Iranian Journal of Mathematical Sciences and Informatics*, **7** (2), (2012), 9-16.