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Abstract. Let P (G,λ) be the chromatic polynomial of a graph G. A

graph G is chromatically unique if for any graph H, P (H,λ) = P (G,λ)

implies H is isomorphic to G. In this paper, we determine the chro-

maticity of all Turán graphs with at most three edges deleted. As a

by product, we found many families of chromatically unique graphs and

chromatic equivalence classes of graphs.
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1. Introduction

All graphs considered in this paper are finite and simple. Graph polynomials

are a well-developed area useful for analyzing properties of graphs. Chromatic

polynomial, characteristic polynomial and domination polynomial are some

examples of these polynomials (see [1, 2, 6]). For a graph G, we denote by

P (G;λ) (or P (G)), the chromatic polynomial of G. Two graphs G and H are

said to be chromatically equivalent (simply χ-equivalent), denoted G ∼ H if

P (G) = P (H). Let [G] denote the equivalence class determined by the graph

G. A graphG is said to be chromatically unique (simply χ-unique) if [G] = {G}.

A family G of graphs is said to be chromatically closed (simply χ-closed) if for

any graph G ∈ G, P (H) = P (G) implies that H ∈ G. For two families of graphs

G1 and G2, if P (G1) ̸= P (G2) for each G1 ∈ G1 and each G2 ∈ G2, then G1 and

G2 are said to be chromatically disjoint (simply χ-disjoint). Many families of

χ-unique graphs are known (see [7, 8, 11, 12, 13]).

For a graph G, let e(G), v(G), t(G), Q(G), K(G) and χ(G) respectively be

the number of vertices, edges, triangles, induced 4-cycle subgraph, complete

subgraph K4 and chromatic number of G. By G, we denote the complement of

G. Let On be an edgeless graph with n vertices. Suppose S is a set of s edges of

G. Denote by G−S the graph obtained from G by deleting all edges in S and

by ⟨S⟩ the graph induced by S. For t ≥ 2 and 1 ≤ p1 ≤ p2 ≤ · · · ≤ pt, let F =

K(p1, p2, . . . , pt) be a complete t-partite graph with partition sets Vi such that

|Vi| = pi for i = 1, 2, . . . , t. The Turán graph, denoted T = K(t1×p, t2×(p+1)),

is the unique complete t-partite graph having t1 ≥ 1 partite sets of size p and

t2 partite sets of size p+1. In this paper, we determine the chromaticity of all

Turán graphs with at most s (≤ 3) edges deleted for p ≥ s+2. As a by product,

we found many families of chromatically unique graphs and equivalent classes

of graphs.
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Chromaticity of Turán graphs with at most three edges deleted 47

2. Preliminary results and notations

Let K−s(p1, p2, . . . , pt) be the family {K(p1, p2, . . . , pt) − S |S ⊂ E(G) and

|S| = s}. For p1 ≥ s + 1, we denote by K
−K(1,s)
i,j (p1, p2, . . . , pt) the graph in

K−s(p1, p2, . . . , pt) where the s edges in S induced a K(1, s) with center in

Vi and all the end-vertices in Vj , and by K−sK2
i,j (p1, p2, . . . , pt) the graph in

K−s(p1, p2, . . . , pt) where the s edges in S induced a matching with one end-

vertex in Vi and another end-vertex in Vj . For convenience, we let T −s =

K−s(t1×p, t2× (p+1)), T
−K(1,s)
i,j = K

−K(1,s)
i,j (t1×p, t2× (p+1)) and T−sK2

i,j =

K−sK2
i,j (t1 × p, t2 × (p+ 1)). Hence, each graph in T −s has t1 ≥ 1 partite sets

of size p and t2 partite sets of size p+ 1.

For a graph G and a positive integer k, a partition {A1, A2, . . . , Ak} of V (G) is

called a k-independent partition in G if each Ai is a non-empty independent set

of G. Let α(G, k) denote the number of k-independent partitions in G. If G is of

order n, then P (G,λ) =
∑n

k=1 α(G, k)(λ)k where (λ)k = λ(λ−1) · · · (λ−k+1)

(see [14]). Therefore, α(G, k) = α(H, k) for each k = 1, 2, . . . , if G ∼ H.

For a graph G with p vertices, the polynomial σ(G, x) =
∑p

k=1 α(G, k)xk is

called the σ-polynomial ofG (see [3]), and the polynomial h(G, x) =
∑p

k=1 α(G, k)xk

is called the adjoint polynomial of G (see [9]). If h(G, x) = h(H,x) then we say

G is adjointly equivalent toH, denoted G ∼h H. A family G of graphs is said to

be adjoint closed (simply χh-closed) if for any graph G ∈ G, h(H,x) = h(G, x)

implies that H ∈ G. Clearly, the conditions P (G,λ) = P (H,λ), σ(G, x) =

σ(H,x) and h(G, x) = h(H,x) are equivalent for any graphs G and H.

For disjoint graphs G and H, G + H denotes the disjoint union of G and

H, and mG the disjoint union of m copies of G; G ∨ H denotes the graph

whose vertex-set is V (G) ∪ V (H) and whose edge-set is {xy|x ∈ V (G) and

y ∈ V (H)} ∪E(G) ∪E(H). Throughout this paper, all the t-partite graphs G

under consideration are 2-connected with χ(G) = t. For terms used but not

defined here we refer to [16].
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Lemma 2.1. (see [7]) Let G and H be two graphs with H ∼ G, then v(G) =

v(H), e(G) = e(H), t(G) = t(H) and χ(G) = χ(H). Moreover, α(G, k) =

α(H, k) for each k = 1, 2, . . . , and

−Q(G) + 2K(G) = −Q(H) + 2K(H).

Note that if χ(G) = 3, then G ∼ H implies that Q(G) = Q(H).

Lemma 2.2. (Brenti [3]) Let G and H be two disjoint graphs. Then

σ(G ∨H,x) = σ(G, x)σ(H,x).

In particular,

σ(K(n1, n2, . . . , nt), x) =
t∏

i=1

σ(Oni , x).

The above lemma is equivalent to the following:

Remark. Let G and H be two disjoint graphs. Then

h(G+H,x) = h(G, x)h(H,x).

In particular,

h(K(n1, n2, . . . , nt), x) =
t∏

i=1

h(Kni , x).

For an edge e = v1v2 of a graph G, then G ∗ e is defined as follows: the vertex

set of G ∗ e is (V (G)\{v1, v2}) ∪ {u}, and the edge set of G ∗ e is {e′ | e′ ∈

E(G), e′ is not incident with v1 or v2} ∪ {uv | v ∈ NG(v1) ∩NG(v2)}. For ex-

ample, let e1 be an edge of C4 and e2 an edge of K4. Then C4 ∗ e1 = K1 +K2

and K4 ∗ e2 = K3.

Lemma 2.3. (Liu [10]) Let G be a graph with e ∈ E(G). Then

h(G, x) = h(G− e, x) + h(G ∗ e, x),

In particular, if e = uv does not belong to any triangle of G, then

h(G, x) = h(G− e, x) + xh(G− {u, v}, x),

where G− e (respectively G−{u, v}) denote the graph obtained by deleting the

edge e (respectively the vertices u and v) from G.
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Denote by β(G) the minimum real root of h(G).

Lemma 2.4. (Zhao [17]) Let G be a connected graph such that G contains H

as a proper subgraph. Then

β(G) < β(H).

Lemma 2.5. (Teo and Koh [15]) The graph K(p, q) is χ-unique for all q ≥

p ≥ 2.

Suppose F = K(p1, p2, . . . , pt) and G = F − S for a set S of s edges of G. A

non-empty independent set of G is improper if it is not a subset of a partite

set of G. Otherwise, it is proper. A k-independent partition in G is improper

if it contains at least one improper independent set. Define αk(G) = α(G, k)−

α(F, k) for k ≥ t+ 1. Hence, αk(G) is the number of k-independent partitions

in G that contains at least one improper independent set.

Lemma 2.6. (Zhao [17]) Let F = K(p1, p2, . . . , pt) and G = F − S. If p1 ≥

s+ 1, then

s ≤ αt+1(G) = α(G, t+ 1)− α(F, t+ 1) ≤ 2s − 1,

αt+1(G) = s if and only if the subgraph induced by any r ≥ 2 edges in S is not

a complete multipartite graph, and αt+1(G) = 2s − 1 if and only if all s edges

in S share a common end-vertex and the other end-vertices belong to the same

Vi for some i.

Lemma 2.7. (Dong et al. [5]) Let p1, p2 and s be positive integers with 3 ≤

p1 ≤ p2, then

(i) K
−K(1,s)
1,2 (p1, p2) is χ-unique for 1 ≤ s ≤ p2 − 2,

(ii) K
−K(1,s)
2,1 (p1, p2) is χ-unique for 1 ≤ s ≤ p1 − 2, and

(iii) K−sK2(p1, p2) is χ-unique for 1 ≤ s ≤ p2 − 1.

Lemma 2.8. (Zhao [17]) Let s ≥ 1, p ≥ 2 and t1 ≥ 1. If p ≥ s+ 2, then T −s

is χ-closed.

Lemma 2.9. (Zhao [17]) Suppose s ≥ 1 and p ≥ s+ 2, then
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(i) every T
−K(1,s)
i,j is χ-unique for any (i, j) where 1 ≤ i ̸= j ≤ t and

|Vi| = |Vj | = p, or |Vi| = p, |Vj | = p + 1, or |Vi| = p + 1, |Vj | = p, or

|Vi| = |Vj | = p+ 1.

(ii) T−sK2
1,2 is χ-unique if t1 = 2.

3. Graphs in T −s for |S| = s ≤ 2 and p ≥ s+ 2

It is well known that the Turán graph is χ-unique [4]. By Lemma 2.9, all graphs

in T −1 are χ-unique for p ≥ 3. We shall now determine the chromaticity of all

graphs in T −2 for p ≥ 4. Let G be a graph in T −2. Denote by G′ the (disjoint

union of all) non-complete component(s) of G. It is then easy to verify by

exhaustive construction that T −2 contains 25 non-isomorphic graphs, named

G2,i (1 ≤ i ≤ 25), with the graph G′
2,i shown in Table 1. Note that each “circle”

associated with G′
2,i is a complete graph of order p or p+ 1 as indicated.

Suppose F = K(p1, p2, . . . , pt). For G = F − S, denote by ti(G) the number

of triangles in G that contains i deleted edges in S for i = 1, 2, 3. Suppose

G ∈ T −s. An edge e = uv in S is of Type A (respectively, Type B and

Type C) if u ∈ Vi, v ∈ Vj for 1 ≤ i < j ≤ t1 (respectively, for 1 ≤ i ≤ t1,

t1 + 1 ≤ j ≤ t, and for t1 + 1 ≤ i < j ≤ t). Denote by s1(G) (respectively,

s2(G) and s3(G)) the number of Type A (respectively, Type B and Type C)

edges in S.

By Lemma 2.6, we have 2 ≤ αt+1(G) ≤ 3. Note that for 1 ≤ i ≤ 25, t(G2,i) =

t(F )−2(t1p+t2(p+1))+4p+k where 0 ≤ k = s2(G2,i)+2s3(G2,i)+t2(G2,i) ≤ 5.

We compute the ordered pair (αt+1(G2,i), k) for each G2,i (1 ≤ i ≤ 25), and

the results are shown in Table 1.

We then partition the family T −2 according to the value (αt+1(G2,i), k), and

each part of the partition is denoted by G(αt+1(G2,i), k). Hence, we have the

following classification of the graphs.
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p p

G′
2,2

(2,0)

G′
2,1

p

G′
2,3 G′

2,4

p+1

(3,0)(2,2)
p+1p+1

G′
2,6 G′

2,7

p

p+1

p

G′
2,8

p

p+1

p p

p+1

(3,4)
p

p

p+1

(3,2)

G′
2,5

p+1p

(3,2)

p

(2,0)

(2,4)

G′
2,10

p

p+1

p+1 p

p+1

G′
2,11 G′

2,12

(2,2) (2,3)

Table 1 (1 of 2): Non-complete component(s) of G2,i (1 ≤ i ≤ 25)
for G2,i ∈ K−2(t1 × p, t2 × (p+ 1))

p

G′
2,9

p

p+1

(2,2)(2,1)

p+1
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p

pp

(2,1)
p+1

pp

p

p
p+1

(2,3)(2,2)

(2,0)

G′
2,14 G′

2,15 G′
2,16

p

p+1

p

pp

p+1

p+1
p

p+1

p+1

p+1

(2,4)

p+1p+1

(2,4)

G′
2,18 G′

2,19 G′
2,20

G′
2,13

p+1

(2,5)

p

p+1

(2,3)

G′
2,17

Table 1 (2 of 2): Non-complete component(s) of G2,i (1 ≤ i ≤ 25)
for G2,i ∈ K−2(t1 × p, t2 × (p+ 1))

(2,2) (2,2) (2,3)
p+1 p+1p+1

p+1

p+1

pp

p

p p p

p

p

p+1

p+1

p+1

G′
2,21 G′

2,22 G′
2,23 G′

2,24

G′
2,25

(2,1)

p+1

p+1

(2,4)

p+1

p+1

G1 = G(2, 0) = {G2,1;G2,8;G2,20};

G2 = G(2, 1) = {G2,9;G2,14;G2,21};

G3 = G(2, 2) = {G2,2;G2,10;G2,11;G2,15;G2,22;G2,23};

G4 = G(2, 3) = {G2,12;G2,16;G2,17;G2,24};

G5 = G(2, 4) = {G2,3;G2,13;G2,18;G2,25};

G6 = G(2, 5) = {G2,19};

G7 = G(3, 0) = {G2,4};

G8 = G(3, 2) = {G2,5;G2,6};

G9 = G(3, 4) = {G2,7}.

Note that for an edgeless graph On, α(On, 2) = 2n−1 − 1 and α(On, 3) =

1
3! (3

n − 3 · 2n + 3). We now present our main theorem of this section.
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Theorem 3.1. For integers p ≥ 4, t1 ≥ 1 and t1 + t2 ≥ 3, all the graphs in

T −2 are χ-unique except that {G2,16, G2,17 | t1, t2 ≥ 2} is a χ-equivalence class.

Proof. By Lemma 2.8, T −2 is χ-closed. Observe that for 1 ≤ i < j ≤ 9 and

each graph H ′ ∈ Gi and each graph H ′′ ∈ Gj , either αt+1(H
′) ̸= αt+1(H

′′) or

t(H ′) ̸= t(H ′′). By Lemma 2.1, H ′ ̸∼ H ′′. Hence, each Gi and Gj (1 ≤ i < j ≤

9) are χ-disjoint. Since T −2 is χ-closed, we conclude that each Gi (1 ≤ i ≤ 9)

is χ-closed. It follows immediately that G2,4, G2,7 and G2,19 are χ-unique. By

Lemma 2.9(i), we also know that G2,5 and G2,6 are χ-unique.

We now determine the chromaticity of the graphs in Gi for 1 ≤ i ≤ 5. It suffices

to show that for any two graphs G′ and G′′ in Gi, either αk(G
′) ̸= αk(G

′′)

for k = t + 2 or t + 3, or β(G′) ̸= β(G′′). Otherwise, we shall show that

h(G′, x) = h(G′′, x). Since the proofs in determining the chromaticity of each

graph in Gi are similar for 1 ≤ i ≤ 5, we shall only elaborate in more details

for graphs in G2 and G3.

(1). Graphs in G1. We first note that by Lemma 2.9(ii), G2,1 is χ-unique. Now

observe that if G2,8 ∼ G2,20, then Lemma 2.2 implies that h(Kp + G′
2,8, x) =

h(G′
2,20, x). However, Lemma 2.4 implies that β(Kp + G′

2,8) = β(G′
2,8) <

β(G′
2,20), a contradiction. Hence, all the graphs in G1 are χ-unique.

(2). Graphs in G2. We compute αt+2(G) for each G ∈ G2.

Let V = {V1, V2, . . . , Vt} be the unique t-independent partition of G ∈ T −2.

Suppose V ′ = {V ′
1 , V

′
2 , . . . , V

′
t , V

′
t+1, V

′
t+2} is an improper (t + 2)-independent

partition in G. Since p ≥ 4, V ′ has at most two improper independent sets.

If V ′ contains exactly two improper independent sets, say V ′
t+1 and V ′

t+2, then

Vi\(V ′
t+1 ∪ V ′

t+2) is a proper independent set in V ′ for each 1 ≤ i ≤ t. If V ′

contains exactly one improper independent set, say V ′
t+2, then we may assume

that Vi ∩ V ′
t+2 = ∅ for i = 1, 2, . . . , t − 2, and Vi ∩ V ′

t+2 ̸= ∅ for i = t − 1, t.

Hence, there exist exactly two proper independent sets in V ′, say V ′
t and V ′

t+1
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such that V ′
t ∪V ′

t+1 = V for V ∈ {V1, V2, . . . , Vt−2, Vt−1\V ′
t+2, Vt\V ′

t+2}. Define

f1 = (t1 + 2)(2p−1 − 1) + (t2 − 2)(2p − 1),

f2 = (2p−2 − 1) + t1(2
p−1 − 1) + (t2 − 1)(2p − 1),

f3 = 2(2p−2 − 1) + (t1 − 2)(2p−1 − 1) + t2(2
p − 1).

Hence,

αt+2(G2,i) = 1 + f2 + f3 for i = 9, 21,

αt+2(G2,14) = 2f3.

Since p ≥ 4, αt+2(G2,14)−αt+2(G2,i) = 2p−2−1 > 0 for i = 9, 21. We now show

that G2,9 ̸∼ G2,21. By Lemma 2.4, β(G2,9) = β(G′
2,9) < β(G′

2,21) = β(G2,21),

a contradiction. Hence, all the graphs in G2 are χ-unique.

(3). Graphs in G3. By a similar argument as in (2) above, we have for each

graph G ∈ G3,

αt+2(G2,i) = 1 + 2f2 for i = 2, 10, 11, 23,

αt+2(G2,15) = f2 + f3,

αt+2(G2,22) = 1 + f1 + f3.

Since p ≥ 4, αt+2(G2,15) − αt+2(G2,i) = 2p−2 − 1 > 0 for i = 2, 10, 11, 22,

23. We need to compute αt+3(G2,i) for i = 2, 10, 11, 22, 23. Suppose V ′ =

{V ′
1 , V

′
2 , . . . , V

′
t , V

′
t+1, V

′
t+2, V

′
t+3} is an improper (t + 3)-independent partition

in G. If V ′ contains exactly two improper independent sets, say V ′
t+2 and

V ′
t+3, then exactly one of Vi\(V ′

t+2 ∪ V ′
t+3) (1 ≤ i ≤ t) needs to be partitioned

into two proper independent sets. Note that V ′ has at most two improper

independent sets. If V ′ contains exactly one improper independent set, say

V ′
t+3, then either exactly one of Vi\V ′

t+3 (1 ≤ i ≤ t) needs to be partitioned

into three proper independent sets, or else exactly two of Vi\V ′
t+3 (1 ≤ i ≤ t)
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need to be partitioned into two proper independent sets respectively. Define

g1 =

[
t1 + 2

3!
(3p − 3 · 2p + 3) +

t2 − 2

3!
(3p+1 − 3 · 2p+1 + 3)

]
+

[(
t1 + 2

2

)
(2p−1 − 1)2 + (t1 + 2)(t2 − 2)(2p−1 − 1)(2p − 1) +

(
t2 − 2

2

)
(2p − 1)2

]
,

g2 =

[
1

3!
(3p−1 − 3 · 2p−1 + 3) +

t1
3!
(3p − 3 · 2p + 3) +

t2 − 1

3!
(3p+1 − 3 · 2p+1 + 3)

]
+

[
t1(2

p−2 − 1)(2p−1 − 1) +

(t2 − 1)(2p−2 − 1)(2p − 1) +

(
t1
2

)
(2p−1 − 1)2 +

t1(t2 − 1)(2p−1 − 1)(2p − 1) +

(
t2 − 1

2

)
(2p − 1)2

]
,

g3 =

[
2

3!
(3p−1 − 3 · 2p−1 + 3) +

t1 − 2

3!
(3p − 3 · 2p + 3) +

t2
3!
(3p+1 − 3 · 2p+1 + 3)

]
+

[
(2p−2 − 1)2 +

2(t1 − 2)(2p−2 − 1)(2p−1 − 1) + 2t2(2
p−2 − 1)(2p − 1) +(

t1 − 2

2

)
(2p−1 − 1)2 + (t1 − 2)t2(2

p−1 − 1)(2p − 1) +

(
t2
2

)
(2p − 1)2

]
.

Hence,

αt+3(G2,2) = [(2p−3 − 1) + (2p−2 − 1) + (t1 − 1)(2p−1 − 1)+

(t2 − 1)(2p − 1)] + 2g2,

αt+3(G2,10) = [3(2p−2 − 1) + (t1 − 2)(2p−1 − 1) + (t2 − 1)(2p − 1)]+

2g2,
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at+3(G2,11) = [(2p−3 − 1) + (t1 + 1)(2p−1 − 1) + (t2 − 2)(2p − 1)] + 2g2,

αt+3(G2,22) = [2(2p−2 − 1) + t1(2
p−1 − 1) + (t2 − 2)(2p − 1)]+

g1 + g3,

αt+3(G2,23) = 2(2p−2 − 1) + t1(2
p−1 − 1) + (t2 − 2)(2p − 1) + 2g2.

Since p ≥ 4, by Software Maple,

αt+3(G2,22)− αt+3(G2,2) = 22p−4 − 3(2p−3) > 0,

αt+3(G2,2)− αt+3(G2,10) = 2p−3 > 0,

αt+3(G2,10)− αt+3(G2,11) = 2p−3 > 0,

αt+3(G2,11)− αt+3(G2,23) = 2p−3 > 0.

Hence, all the graphs in G3 are χ-unique.

(4). Graphs in G4. For each graph G ∈ G4,

αt+2(G2,i) = 1 + f1 + f2 for i = 12, 24,

αt+2(G2,j) = 2f2 for j = 16, 17.

Since p ≥ 4, αt+2(G2,j)−αt+2(G2,i) = 2p−2−1 > 0. By Lemma 2.4, β(G2,12) =

β(G′
2,12) < β(G′

2,24) = β(G2,24).

By Lemmas 2.2 and 2.3, we have

h(G2,16, x) = [h(Kp, x)]
t1−2[h(Kp+1, x)]

t2−1h(G′
2,16, x)

= [h(Kp, x)]
t1−2[h(Kp+1, x)]

t2−1[(h(Kp, x))
2h(Kp+1, x)+

2xh(Kp−1, x)(h(Kp, x))
2]

and

h(G2,17, x) = [h(Kp, x)]
t1−1[h(Kp+1, x)]

t2−2h(G′
2,17, x)

= [h(Kp, x)]
t1−1[h(Kp+1, x)]

t2−2[h(Kp, x)(h(Kp+1, x))
2+

2xh(Kp−1, x)h(Kp, x)h(Kp+1, x)].

Clearly, G2,16 ∼ G2,17 for t1, t2 ≥ 2. Hence, all the graphs in G4 are χ-unique

except that {G2,16, G2,17 | t1, t2 ≥ 2} is a χ-equivalence class.

(5). Graphs in G5. For each G ∈ G5,

αt+2(G2,i) = 1 + 2f1 for i = 3, 13, 25,
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αt+2(G2,18) = f1 + f2.

Since p ≥ 4, αt+2(G2,18) > αt+2(G2,i) = 2p−2 − 1 > 0. We now compare

αt+3(G2,3), αt+3(G2,13) and αt+3(G2,25). We have

αt+3(G2,3) = [2(2p−2 − 1) + t1(2
p−1 − 1) + (t2 − 2)(2p − 1)] + 2g1,

αt+3(G2,13) = [(2p−2 − 1) + (t1 + 2)(2p−1 − 1) + (t2 − 3)(2p − 1)] + 2g1,

αt+3(G2,25) = [(t1 + 4)(2p−1 − 1) + (t2 − 4)(2p − 1)] + 2g1.

Since p ≥ 4, by Software Maple, αt+3(G2,3) − αt+3(G2,13) = αt+3(G2,13) −

αt+3(G2,25) = 2p−2 − 1 > 0. Hence, all the graphs in G5 are χ-unique.

The proof is now complete.

4. Graphs in T −3 for p ≥ 5

Let u, v and w be a vertex of the complete graphs Kp,Kq and Kr respectively.

Denote by Kp ·Kq the graph obtained from Kp +Kq by adding the edge uv.

For convenience, let K+
p = K1 ·Kp. Also let Kp∗Kq ∗Kr be the graph obtained

from Kp +Kq +Kr by adding two edges uv and vw.

We now list all the 25 possible “structures” induced by three edges deleted

from the Turán graph which can be obtained by brute force construction (with

respect to the partite sets) in Figure 1.

Since each circle in Figure 1 is a partite set of size p or p+ 1, we obtain from

the “structures” in Figure 1, 213 non-isomorphic graphs in T −3, named G3,i

(1 ≤ i ≤ 213). A table of the graphs G′
3,i similar to that of Table 1 is available

upon request. Note that each “circle” associated with G′
3,i is a complete graph

of order p or p + 1 as indicated. For example, the top left “structure” in

Figure 1 will give us three non-isomorphic graphs G3,1, G3,2 and G3,3 as shown

in Figure 2.

By Lemma 2.6, we have 3 ≤ αt+1(G3,i) ≤ 7 for 1 ≤ i ≤ 213. Also note

that for 1 ≤ i ≤ 213, t(G3,i) = t(F ) − 3(t1p + t2(p + 1)) + 6p + k where
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0 ≤ k = s2(G3,i) + 2s3(G3,i) + t2(G3,i) − t3(G3,i) ≤ 9. We now compute the

ordered pair (αt+1(G3,i), k) for each G3,i (1 ≤ i ≤ 213). A table of G′(3, i) with

(αt+1(G3,i), k) is also available upon request. We then partition the family T −3

according to the value (αt+1(G3,i), k), and each part of the partition is denoted

by G(αt+1(G3,i), k).

Figure 1. List of “structures” induced by three edges
deleted from K(t1 × p, t2 × (p+ 1))

G′
3,1 G′

3,2 G′
3,3

p p+1 p+1 p+1p p

Figure 2: Graphs obtained from top left structure in Figure 1.

Hence, we have the following classification of the graphs.

G1 = G(3, 0) = {G3,1;G3,15;G3,35;G3,83;G3,104;G3,140;G3,168;G3,204};
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G2 = G(3, 1) = {G3,19;G3,36;G3,59;G3,84;G3,105;G3,114;G3,141;G3,148;

G3,169;G3,170;G3,186;G3,205};

G3 = G(3, 2) = {G3,16;G3,25;G3,37;G3,60;G3,85;G3,86;G3,106;G3,107;

G3,115;G3,116;G3,130;G3,143;G3,149;G3,150;G3,171;G3,172;

G3,173;G3,175;G3,187;G3,188;G3,206;G3,207}

G4 = G(3, 3) = {G3,2;G3,20;G3,21;G3,38;G3,39;G3,61;G3,87;G3,108;G3,109;

G3,117;G3,118;G3,119;G3,131;G3,142;G3,145;G3,152;G3,153;

G3,160;G3,174;G3,176;G3,177;G3,179;G3,189;G3,190;G3,191;

G3,193;G3,208;G3,209};

G5 = G(3, 4) = {G3,17;G3,26;G3,27;G3,40;G3,62;G3,63;G3,88;G3,89;G3,110;

G3,111;G3,120;G3,121;G3,122;G3,123;G3,132;G3,133;G3,144;

G3,151;G3,156;G3,161;G3,178;G3,180;G3,181;G3,182;G3,192;

G3,194;G3,195;G3,197;G3,210;G3,211};

G6 = G(3, 5) = {G3,22;G3,23;G3,41;G3,64;G3,90;G3,112;G3,124;G3,125;G3,126;

G3,134;G3,135;G3,146;G3,154;G3,155;G3,163;G3,183;G3,184;

G3,196;G3,198;G3,199;G3,200;G3,212};

G7 = G(3, 6) = {G3,3;G3,18;G3,28;G3,29;G3,42;G3,65;G3,91;G3,113;G3,127;

G3,128;G3,136;G3,137;G3,147;G3,157;G3,158;G3,162;G3,165;

G3,185;G3,201;G3,202;G3,213};

G8 = G(3, 7) = {G3,24;G3,66;G3,129;G3,138;G3,159;G3,164;G3,203};

G9 = G(3, 8) = {G3,30;G3,139;G3,166};

G10 = G(3, 9) = {G3,167};

G11 = G(4, 0) = {G3,4;G3,43;G3,51;G3,92};

G12 = G(4, 1) = {G3,44;G3,52;G3,67;G3,93};

G13 = G(4, 2) = {G3,31;G3,45;G3,53;G3,68;G3,75;G3,94;G3,95;G3,96};

G14 = G(4, 3) = {G3,5;G3,6;G3,46;G3,47;G3,54;G3,55;G3,69;G3,76;G3,97;G3,98};

G15 = G(4, 4) = {G3,32;G3,48;G3,56;G3,70;G3,71;G3,77;G3,99;G3,100;G3,101};

G16 = G(4, 5) = {G3,49;G3,57;G3,72;G3,78;G3,79;G3,102};

G17 = G(4, 6) = {G3,7;G3,33;G3,50;G3,58;G3,73;G3,80;G3,103};

G18 = G(4, 7) = {G3,74;G3,81};

G19 = G(4, 8) = {G3,34;G3,82};
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G20 = G(5, 0) = {G3,8};

G21 = G(5, 3) = {G3,9};

G22 = G(5, 6) = {G3,10};

G23 = G(7, 0) = {G3,11};

G24 = G(7, 3) = {G3,12;G3,13};

G25 = G(7, 6) = {G3,14}.

We can now present our main result of this section.

Theorem 4.1. For integers p ≥ 5, t1 ≥ 1 and t1 + t2 ≥ 3, all the graphs in

K−3(t1 × p, t2 × (p+ 1)) are χ-unique except that

{G3,19, G3,148 | t1 ≥ 4, t2 ≥ 0}, {G3,20, G3,118 | t1 ≥ 3, t2 ≥ 1},

{G3,21, G3,61, G3,152 | t1, t2 ≥ 2}, {G3,22, G3,124, G3,155 | t1, t2 ≥ 2},

{G3,24, G3,159 | t1 ≥ 1, t2 ≥ 4}, {G3,26, G3,132 | t1 ≥ 3, t2 ≥ 1},

{G3,28, G3,136 | t1, t2 ≥ 2}, {G3,32, G3,77 | t1 ≥ 2, t2 ≥ 1},

{G3,65, G3,157 | t1 ≥ 1, t2 ≥ 3}, {G3,85, G3,106 | t1 ≥ 3, t2 ≥ 1},

{G3,90, G3,112 | t1 ≥ 1, t2 ≥ 3}, {G3,117, G3,189, G3,193 | t1 ≥ 4, t2 ≥ 2},

{G3,125, G3,198 | t1 ≥ 2, t2 ≥ 3}, {G3,127, G3,158 | t1 ≥ 1, t2 ≥ 3},

{G3,128, G3,202 | t1 ≥ 1, t2 ≥ 4}, {G3,162, G3,165 | t1, t2 ≥ 3},

{G3,192, G3,197 | t1, t2 ≥ 3} and {G3,196, G3,200 | t1 ≥ 2, t2 ≥ 4}

are χ-equivalence classes.

Proof. By Lemma 2.8, T −3 is χ-closed. Observe that for 1 ≤ i < j ≤ 25 and

each graph H ′ ∈ Gi and each graph H ′′ ∈ Gj , either αt+1(H
′) ̸= αt+1(H

′′) or

t(H ′) ̸= t(H ′′). By Lemma 2.1, H ′ ̸∼ H ′′. Hence, each Gi and Gj (1 ≤ i < j ≤

25) are χ-disjoint. Since T −3 is χ-closed, we conclude that each Gi (1 ≤ i ≤ 25)

is χ-closed. It follows immediately that G3,8, G3,9, G3,10, G3,11, G3,14 and G2,167

are χ-unique. By Lemma 2.9(i), we also know that G3,12 and G3,13 are χ-

unique.

We now determine the chromaticity of the graphs in Gi for i ∈ {1, 2, . . . , 19}\{10}.

It suffices to show that for any two graphs G′ and G′′ in Gi, either αk(G
′) ̸=

αk(G
′′) for k = t+2, t+3 or t+4, or β(G′) ̸= β(G′′). Otherwise, we shall show

that h(G′, x) = h(G′′, x). We use an argument similar to that in the proof of
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Theorem 3.1. In what follows, fi and gi (i = 1, 2, 3) are as defined in the proof

of Theorem 3.1.

(1). Graphs in G1. Define

d1 = 2(2p−3 − 1) + (t1 − 2)(2p−1 − 1) + t2(2
p − 1),

d2 = (2p−3 − 1) + 2(2p−2 − 1) + (t1 − 3)(2p−1 − 1) + t2(2
p − 1),

d3 = 4(2p−2 − 1) + (t1 − 4)(2p−1 − 1) + t2(2
p − 1).

So,

αt+3(G3,1) = 1 + 3d1 + 3g3,

αt+3(G3,i) = 1 + 3d2 + 3g3 for i = 15, 140,

αt+3(G3,35) = 1 + d1 + 2d2 + 3g3,

αt+3(G3,83) = 1 + d1 + 2d3 + 3g3,

αt+3(G3,104) = 1 + 2d2 + d3 + 3g3

αt+3(G3,168) = 1 + d2 + 2d3 + 3g3,

αt+3(G3,204) = 1 + 3d3 + 3g3.

Since p ≥ 5,

αt+3(G3,1)− αt+3(G3,35) = 2p−2 > 0,

αt+3(G3,35)− αt+3(G3,i) = 2p−3 > 0 for i = 15, 140,

αt+3(G3,i)− αt+3(G3,j) = 2p−3 > 0 for j = 83, 104,

αt+3(G3,j)− αt+3(G3,168) = 2p−3 > 0,

αt+3(G3,168)− αt+3(G3,204) = 2p−3 > 0.

So, αt+3(G3,1) > αt+3(G3,35) > αt+3(G3,15) = αt+3(G3,140) > αt+3(G3,83) =

αt+3(G3,104) > αt+3(G3,168) > αt+3(G3,204).

Let Ij
k(G) be the number of k-independent partitions with j ≥ 1 improper

independent sets. Then, αk(G) =
∑

j≥1 I
j
k(G). We now compare αt+4(G3,15)
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with αt+4(G3,140).

αt+4(G3,15) = I1
t+4(G3,15) + I2

t+4(G3,15) +

[3(2p−3 − 1) + (t1 − 3)(2p−1 − 1) + t2(2
p − 1)],

αt+4(G3,140) = I1
t+4(G3,140) + I2

t+4(G3,140) +

[(2p−4 − 1) + 3(2p−2 − 1) + (t1 − 4)(2p−1 − 1) + t2(2
p − 1)].

Note that Ij
t+4(G3,15) = Ij

t+4(G3,140) for j = 1, 2. Since p ≥ 5, αt+4(G3,15) −

αt+4(G3,140) = 2p−4 > 0.

We now show that h(G3,83, x) ̸= h(G3,104, x). By Lemmas 2.2 and 2.3,

h(G3,83, x) =

[
h(Kp, x)

]t1−4[
h(Kp+1, x)

]t2[
(h(Kp ·Kp, x))

2 +

xh(Kp ·Kp, x)h(Kp−1 ·Kp−1, x)

]
,

h(G3,104, x) =

[
h(Kp, x)

]t1−4[
h(Kp+1, x)

]t2[
(h(Kp ·Kp, x))

2 +

x(h(Kp ·Kp−1, x))
2

]
.

By Lemma 2.4, β(Kp ·Kp) < β(Kp ·Kp−1). Therefore, β(G3,83) < β(G3,104).

Hence, all the graphs in G1 are χ-unique.

The chromaticity of graphs in Gi, i = {2, 3, . . . , 19}\{10} can be similarly

determined as in (1). Since it is long and rather repetitive, the proofs are

omitted. The proof is now complete.

A diagram of all the χ-equivalence classes obtained in Theorem 4.1 is presented

in Figure 3 for easy reference and comparison.

Remarks. Observe that graphs G3,162 and G3,165 can be obtained from G2,16

and G2,17 respectively with one more edge deleted. For t1, t2 ≥ s ≥ 2, let G′

(respectively, G′′) be a graph in T −s such that ⟨S⟩ is a star graph with the

central vertex belongs to a partite set of size p (respectively, size p+1) and the

end-vertices belong to different partite sets of size p + 1 (respectively, size p).

It is clear that G′ ̸∼= G′′. By Lemmas 2.2, 2.3 and mathematical induction on

s, it is easy to show that h(G′, x) = h(G′′, x) for all p ≥ 2.
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Conjecture 1. The family {G′, G′′} is a χ-equivalence class.

For integers m1,m2,m3 ≥ 0, let G and H be graphs in T −s such that the

graph induced by all the non-complete components of G (respectively, H) is

G′
2,16 +m1(Kp ·Kp)+m2(Kp ·Kp+1)+m3(Kp+1 ·Kp+1) (respectively, G

′
2,17 +

m1(Kp ·Kp) +m2(Kp ·Kp+1) +m3(Kp+1 ·Kp+1)) where m1 +m2 +m3 ≥ 1.
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Figure 3: “Structures” of graphs in Chromatic Equivalence

Classes listed in Theorem 2.
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Clearly, G ∼ H but G ̸∼= H. Observe that {G,H} is a χ-equivalence class if

m1 = mj = 0 for j = 2 or 3. Hence, we end this paper with the following

problem.

Problem 1. Find all the values of mi, i = 1, 2, 3 such that {G,H} is a χ-

equivalence class for G and H defined above.
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