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Abstract. In this paper we consider a fractional optimization problem

that minimizes the ratio of two quadratic functions subject to a strictly

convex quadratic constraint. First using the extension of Charnes-Cooper

transformation, an equivalent homogenized quadratic reformulation of the

problem is given. Then we show that under certain assumptions, it can

be solved to global optimality using semidefinite optimization relaxation

in polynomial time.
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1. Introduction

We often come across the fractional optimization problems (FOPs), which

arise in various disciplines such as certain portfolio selection problems [5, 6,

7], stochastic decision making problems [12] and problems in economics [11].

For example, Total Least Squares (TLS), which is an extension of the usual

Least Squares method, used in a variety of disciplines such as signal processing,
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statistics, physics, economic, biology and medicine, requires that the following

fractional problem to be solved [1, 9]:

min
x∈Rn

‖Ax− b‖2

1 + ‖x‖2

In order to have a meaningful solution, often a constrained or regularized ver-

sion of it has been solved [10]. In the constrained version, the following problem

is considered to be solved.

min
x∈Rn

‖Ax− b‖2

1 + ‖x‖2

‖Lx‖2 ≤ β,

where L ∈ Rk×n, k 6 n is a full row rank matrix and β is a positive num-

ber. The main difficulty with FOPs is the nonconvexity. Dinkelbach studied

the nonlinear model of fractional problems and showed an interesting and use-

ful relationship between fractional and parametric optimization problems [4].

His idea has been applied by several authors, for example Beck et al. [1] trans-

formed the regularized TLS to a parametric program and proposed an iterative

algorithm to find the global optimal solution of the regularized TLS. Most re-

cently, Beck et al. have applied semidefinite optimization (SDO) relaxation to

solve the following problem:

min
xTA1x+ bT1 x+ c1
xTA2x+ bT2 x+ c2

‖Lx‖2 ≤ ρ, (1.1)

where L is the same as in the TLS and ρ is a positive number. They have

shown that under certain conditions, the global optimal solution is achievable

[2].

In this paper, we consider the following problem

min
xTA1x+ bT1 x+ c1
xTA2x+ bT2 x+ c2

xTA3x+ bT3 x+ c3 ≤ 0, (QCQFO)

where ATi = Ai ∈ Rn×n, bi ∈ Rn, ci ∈ R, i = 1, . . . , n, xTA2x + bT2 x + c2 > 0

in the feasible region, A3 is assumed to be positive definite and c3 < 0. Using

the well-known Charnes - Cooper transformation, we show that (QCQFO) has

an inherent hidden homogeneity and semidefinite relaxation technique can be

applied to find the global optimal solution in polynomial time. The proofs are

constructive and are not appeared in [2] and the conditions under which the

global solution is obtained are different than those in [2]. First in Section 2 we

give the homogenized version of (QCQFO). Then in Section 3, the semidefinite

relaxation scheme is used to derive an optimal solution of the original problem.
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2. Homogenization

Using the generalized Charnes-Cooper transformation

z =
1√

xTA2x+ bT2 x+ c2
,

and

y =
x√

xTA2x+ bT2 x+ c2
,

(QCQFO) transforms to the following equivalent minimization problem:

min yTA1y + bT1 yz + c1z
2

yTA2y + bT2 yz + c2z
2 = 1, (2.1)

yTA3y + bT3 yz + c3z
2 ≤ 0,

z > 0.

Obviously if (y, z) solves (2.1), then (−y,−z) also solves it, thus z > 0 can be

replaced by z 6= 0. The new problem is as follows:

min yTA1y + bT1 yz + c1z
2

yTA2y + bT2 yz + c2z
2 = 1, (2.2)

yTA3y + bT3 yz + c3z
2 ≤ 0,

z 6= 0.

Obviously, since in (QCQFO) A3 is positive definite, then in any optimal so-

lution (y∗, z∗) of (2.2), z∗ 6= 0 and thus x∗ = y∗

z∗ is an optimal solution for

(QCQFO). Therefore we can omit z∗ 6= 0 in (2.2).

3. SDO Relaxation

In this section we present a SDO relaxation approach to solve (2.2) globally.

Problem (2.2) in the matrix form is given by

min M0 • X̂
M1 • X̂ = 1, (3.1)

M2 • X̂ ≤ 0,

where

A •B = Tr(ATB), X̂ =

[
z2 yT z

yz yyT

]
,

and

M0 =

[
c1 bT1

/
2

b1/2 A1

]
,M1 =

[
c2 bT2

/
2

b2/2 A2

]
,M2 =

[
c3 bT3

/
2

b3/2 A3

]
.
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The semidefinite relaxation of (3.1) is given by [3]:

min M0 •X
M1 •X = 1, (3.2)

M2 •X ≤ 0,

X � 0(n+1)×(n+1),

where

X =

[
X00 xT0
x0 X

]
,

and its dual is given by

max y1

Z = M0 − y1M1 − y2M2, (3.3)

Z�0(n+1)×(n+1),

y2 ≤ 0.

In the next theorem we show that problems (3.2) and (3.3) satisfy slater regu-

larity.

Theorem 3.1. Both (3.2) and (3.3) satisfy the slater regularity conditions.

Hence both problems attain their optimal values and the duality gap is zero.

Proof. Let

X =

[
k 01×n

0n×1 λIn

]
,

then it is strictly feasible for (3.2) if λ > 0 and k > 0 exist such that:

kc2 + λTr(A2) = 1,

kc3 + λTr(A3) < 0.

Let us consider m >
(
−Tr(A3)

c3

)
. Now by choosing m

′
> m > 0 such that

m
′
c2+Tr(A2) > 0, and letting λ

′
= 1

m′c2+Tr(A2)
and k

′
= m

′
λ
′

the inequalities

hold. For the dual problem (3.3), first note that since c3 < 0 then c2 > 0 and

M2 is not positive definite. Now if M1 is positive definite then we can choose

y1 < 0 and y2 < 0 such that Z is positive definite, which results the strict

feasibility of the dual problem (3.3). Otherwise if M1 is indefinite, then since

xTA2x + bT2 x + c2 > 0 in the feasible region, thus the following system is not

solvable

f(x) = xTA2x+ bT2 x+ c2 ≤ 0,

g(x) = xTA3x+ bT3 x+ c3 ≤ 0. (3.4)
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Let us now introduce the following system:

f̃(x̃) = x̄TA2x̄+ bT2 x̄x1 + c2x
2
1 ≤ 0,

g̃(x̃) = x̄TA3x̄+ bT3 x̄x1 + c3x
2
1 ≤ 0, (3.5)

where x̃ = (x1, x̄)
T
. First we show that the new system has no solution. By

contrary suppose that z = (x1, x̄) ∈ Rn+1 solves (3.5). Thus if x1 6= 0, then we

have

f̃(z/x1) = f(x̄)
/
x2

1
≤ 0,

g̃(z/x1) = g(x̄)
/
x2

1
≤ 0,

which is in contradiction with (3.4). For the case x1 = 0 we have x̄TA3x̄ ≤ 0

and x̄TA2x̄ ≤ 0, which is in contradiction with the positive definiteness ofA3.

Therefore by the S-Lemma [8] there exist nonnegative multipliers λ′1, λ
′
2 such

that

λ′1
(
x̄TA2x̄+ bT2 x̄x1 + c2x

2
1

)
+ λ′2

(
x̄TA3x̄+ bT3 x̄x1 + c3x

2
1

)
> 0

∀ (x1, x̄) ∈ Rn+1\ {0} .

Thus B = λ′1M1 + λ′2M2 � 0. Since neither M1 nor M2 are positive definite,

then λ′1, λ
′
2 6= 0. Now by choosing λ3 > 0 such that M0 + λ3B � 0 and letting

y1 = −λ′1λ3 and y2 = −λ′2λ3, Z will be positive definite, which implies slater

regularity of the dual problem. Thus both (3.2) and (3.3) are solvable and

having equal objective values. �

In the next theorem it is shown that the global optimal solution of (2.1) can

be derived from an optimal solution of (3.2).

Theorem 3.2. SDO relaxation (3.2) gives a global optimal solution of (2.1)

in a polynomial time.

Proof. Suppose X∗ is an optimal solution of rank r for (3.2) and (Z∗, y∗1 , y
∗
2)

is optimal solution for (3.3). If at the optimality M2 •X∗ < 0, then obviously

y∗2 = 0. Now Suppose

X∗ =

r∑
i=1

x∗i (x∗i )
T
,

be a rank one decomposition ofX∗ for which (x∗i )
T
M2x

∗
i ≤ 0 ∀i = 1, ..., r [12].

We also have

M1 •

(
r∑
i=1

x∗i (x∗i )
T

)
=

r∑
i=1

(x∗i )
T
M1x

∗
i = 1.

Thus at least for one k, 1 ≤ k ≤ r, we have (x∗k)
T
M1x

∗
k > 0. Now if

(x∗k)
T
M1x

∗
k = 1, then x∗k (x∗k)

T
is an optimal solution for (3.2), otherwise
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suppose (x∗k)
T
M1x

∗
k = α > 0. By letting x∗∗ =

(
x∗k√
α

)
, and X∗∗ = x∗∗ (x∗∗)

T

one can easily check that

M1 •X∗∗ = 1, M2 •X∗∗ ≤ 0, Z∗ •X∗∗ = 0, y∗2 (M2 •X∗∗) = 0.

Therefore X∗∗ is an optimal solution for (3.2). Moreover since (3.2) is a re-

laxation of (2.1) and A3 is positive definite, then one can easily construct

an optimal solution for (2.1). However, if at the optimality M2 • X∗ = 0,

then it is sufficient to compute a rank one decomposition for X∗ such that

(x∗i )
T
M2x

∗
i = 0 ∀i = 1, . . . , r and follow as before. Since SDO is solvable in

polynomial time using interior point methods, thus the global optimal solution

of (2.1) is found in polynomial time. �

4. Conclusions

In this paper, first using the extended Charnes - Cooper transformation,

(QCQFO) represented as a homogenized quadratic optimization with two qua-

dratic constraints. Then it is proved that under certain assumptions, using

SDO relaxation the global optimal solution of (QCQFO) can be found in poly-

nomial time. The question whether under weaker conditions the proved goal is

achievable is left for future research.
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