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Abstract. Let R be a commutative ring with identity and let M be

an R-module. In this paper we introduce a new graph associated to

modules over commutative rings. We study the relationship between

some algebraic properties of modules and their associated graphs. A

topological characterization for the completeness of the special subgraphs

is presented. Also modules whose associated graph is complete, tree or

complete bipartite are studied and several characterizations are given.
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Diameter.
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1. Introduction

The notion of a graph of zero-divisors of a commutative ring was introduced

in [14], by studying the coloring of a graph constructed by all elements of a

commutative ring R. In [6], the authors have given a counterexample for the

conjecture given by Beck in [14]. After some years D. F. Anderson and P. S.

Livingston investigated the interplay between the ring-theoretic properties of a

commutative ring and the graph theoretic properties of the zero-divisor graph
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of the ring (see [8]). The zero-divisor graph of a commutative ring has been

studied extensively by several authors, for example see [1, 4, 5, 7, 9, 11, 12, 18].

Recently, a lot of graphs related to the rings and modules have been defined

by several authors and have been investigated by many algebraist, for example

see [2, 23, 25, 27].

Throughout this paper, all rings are commutative with identity and all mod-

ules are unitary. We introduce a new graph associated to modules over com-

mutative rings. Let M be an R-module. We associate a graph G(M) to an

R-module M whose vertices are nonzero proper submodules of M in these way

that two distinct vertices N and L are adjacent if and only if N +L = M . We

investigate the relationship between the algebraic properties of an R-module

M and the properties of the associated graph G(M). In this paper, the R-

modules whose associated graphs are complete is completely characterized (see

Theorem 2.3). Moreover, a topological characterization for completeness of

GSpec(M), the subgraph of G(M) generated (induced) by the prime spectrum

of M , is presented (see Theorem 2.4). Modules whose associated graphs is

connected (Proposition 2.12), tree (Theorem 2.13) or complete bipartite (see

Theorem 2.25) are studied.

We will first define some notions which is used throughout the paper. Color-

ing of a graph G is an assignment of colors (elements of some set) to the vertices

of G, one color to each vertex, so that adjacent vertices are assigned distinct

colors. If n colors are used, then the coloring is referred to as an n-coloring.

If there exists an n-coloring of a graph G, then G is called n-colorable. The

minimum n for which a graph G is n-colorable is called the chromatic number

of G, and is denoted by χ(G). For a graph G, the degree of a vertex v in

G is the number of edges of G incident with v. Recall that a graph is said

to be connected if for each pair of distinct vertices v and w, there is a finite

sequence v = v1, . . . , vn = w of distinct vertices where each pair {vi, vi+1} is

an edge. Such a sequence is said to be a path and the distance, d(v, w), be-

tween connected vertices v and w is the length of the shortest path connecting

them. A graph in which each pair of distinct vertices is joined by an edge is

called a complete graph. The diameter of a connected graph is the supremum

of the distances between vertices. The diameter is 0 if the graph consists of a

single vertex and a connected graph with more than one vertex has diameter

1 if and only if it is complete. An r-partite graph is one which the vertex set

can be partitioned into r subsets so that no edge has both ends in one sub-

set. A complete r-partite graph is an r-partite graph in which each vertex in a

subset is joined to all vertices in another subsets. The complete bipartite (i.e.,

2-partite) graph with part sizes m and n is denoted by Km,n. In particular,

K1,n is called a star graph. A tree is a connected graph that contains no cycle.

We use Kn for the complete graph with n vertices. A clique of a graph G is

a maximal complete subgraph of G and the number of vertices in the largest
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clique of graph G, denoted by clique (G), is called the clique number of G.

Obviously χ(G) ≥ clique (G) for a general graph G. A graph G is said to be

totally disconnected if no two vertices of G are adjacent. The girth of a graph

G, denoted by g (G), is the length of a shortest cycle (if any) in G.

2. Main Results

Definition 2.1. We associate a graph G(M) to an R-module M whose vertices

are nonzero proper submodules of M and two distinct vertices N and L are

adjacent if N + L = M . We use the notation G(M) for the set of all vertices

of G(M).

We are going to give some examples of different classes of R-modules M

such that G(M) is an totally disconnected graph. We initially need some

definitions. A submodule S of an R-module M is called superfluous (or small)

in M , in case for every submodule L of M , S + L = M implies that L = M

(see [10, p.72]). A nonzero R-module M is called co-uniform in case that all

of its proper submodules are superfluous in M (see [10, p.294]). Recall that

an R-module N is said to be sum-irreducible precisely when it is nonzero and

cannot be expressed as the sum of two proper submodules of itself (see [15,

Definition and Exercise 7.2.8]). We recall that an R-module M is said to be

a multiplication module (see [13] and [16]) if every submodule N of M is of

the form IM for some ideal I of R. An R-module M is called co-semisimple if

every proper submodule of M is the intersection of maximal submodules (see

[10, p.122]). A module M is called coatomic if every proper submodule of M

is contained in a maximal submodule of M (see [29]). It is well-known that

co-semisimple modules, finitely generated modules and multiplication modules

(see [16, Theorem 2.5]) are coatomic. An R-module M is called a quasi-semi-

local (resp. a quasi-local) module if Max(M), the set of all maximal submodules

of M , is a non-empty finite (resp. a singleton) set.

Remark 2.2. Let M be a nonzero R-module. It is easy to verify the following

facts.

(1) M is sum-irreducible if and only if the graph G(M) is totally discon-

nected.

(2) A nonzero submodule S of M is superfluous if and only if S is an

isolated vertex in G(M). In particular, if M is co-uniform, then the

graph G(M) is totally disconnected.

(3) If M is coatomic, then M is quasi-local if and only if G(M) is a totally

disconnected graph.

(4) The graphG(M) is not a star graph, for anyR-moduleM with |G(M)| ≥
3.
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Let M be a module over the Dedekind domain R and let K denotes the

quotient field of R. Then by Remark 2.2 and [17, Lemma 2.4], the graph G(M)

is totally disconnected if and only if one of the following conditions hold:

(1) M ∼= R/pn, for some nonzero prime ideal p of R and an integer n ≥ 0

(by definition, p0 = R);

(2) M ∼= (K/R)p, for some nonzero prime ideal p of R;

(3) R is local and M is torsion-free of rank one.

As an example, consider the Z-module M = Zp∞ . Then G(Zp∞) is a totally

disconnected graph.

All semisimple R-modules represented as a finite direct product of simple

modules are connected and r-partite for some r.

Theorem 2.3. Let M =
∏n
i=1Mi and let Mi be a simple R-module for all

1 ≤ i ≤ n. Then G(M) is a connected n-partite graph.

Proof. If n = 1, the result is evident. For n > 1, let V = {(a1, · · · , an) ∈
{0, 1}n|ai 6= 0, aj 6= 1 for some i 6= i}. It is sufficient for us to prove the the

theorem for the graph on vertex set V which two vertices (a1, · · · , an) and

(b1, · · · , bn) are adjacent if and only if (a1, · · · , an) + (b1, · · · , bn) = (1, · · · , 1).

It is easy to see that any vertices (a1, · · · , an) and (b1, · · · , bn) are connected.

For the last part of the theorem, let V1 = {(a1, · · · , an) ∈ V |a1 = 0} and for

all i > 1, Vi = {(a1, · · · , an)|ai = 0}\∪i−1j=1 Vj . Now, {V1, · · · , Vn} is a partition

of V . In particular, (1, · · · , 1, 0) ∈ Vn. �

Obviously, for any R-module M with Max(M) 6= ∅, the subgraph GMax(M)

which is generated by Max(M) is complete. We are going to investigate the

completeness problem of other subgraphs of G(M), when M is a certain R-

module. Before that we need some definitions.

A submodule N of an R-module M is said to be prime if N 6= M and

whenever rm ∈ N (where r ∈ R and m ∈ M) then r ∈ (N : M) or m ∈ N . If

N is prime, then ideal p = (N : M) is a prime ideal of R. In this circumstance,

N is said to be p-prime (see [19]). The set of all prime submodules of an R-

module M is called the prime spectrum of M and denoted by Spec(M). We

remark that Spec(0) = ∅ and that Spec(M) may be empty for some nonzero

R-module M . For example, Zp∞ as a Z-module has no prime submodule for

any prime integer p (see [20]). Such a module is said to be primeless. For

any submodule N of M the set of all prime submodules of M containing N is

denoted by V ∗(N) (see [24]). Suppose that M is an R-module. Set Z∗(M) =

{V ∗(N) |N is a submodule of M}. There is a topology, τ∗ say, on Spec(M)

due to Z∗(M) as the collection of all closed sets if and only if Z∗(M) is closed

under finite union. When this is the case, we call the topology τ∗ the quasi-

Zariski topology on Spec(M) and M is called a top module (see [24]). There

are plentiful examples of top modules in [3] and [24].
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For a non-primeless R-module M , let GSpec(M) denote the subgraph of

G(M) which is generated by elements of Spec(M). In the sequel, we introduce

a topological characterization for completeness of GSpec(M). We recall that,

if M is a top R-module, the closure of {P} is V ∗(P ), for every P ∈ Spec(M).

Recall that a topological space is a T1-space if and only if every singleton subset

is closed.

Theorem 2.4. Let M be a non-primeless top R-module. Then GSpec(M) is a

complete graph if and only if Spec(M) is a topological T1-space.

Proof. Suppose that GSpec(M) is a complete graph and let Q and P be two

prime submodules of M such that Q ∈ V ∗(P ). If P 6= Q, then since P +

Q = M we infer that Q = M which is impossible. Therefore, every singleton

subset is closed, and so, Spec(M) is a topological T1-space. Conversely, suppose

that Spec(M) is a topological T1-space. Therefore every prime submodule is a

maximal element in the set of all prime submodules of M . Hence, GSpec(M) is

a complete graph. �

Corollary 2.5. Let M be a non-primeless top R-module. If Spec(R) is a T1-

space, then GSpec(M) is a complete graph. However, the converse is not true

in general.

Proof. Suppose Q is a prime submodule of M . If P is a prime submodule of M

belongs to the closure of {Q}, then (Q : M) = (P : M). Hence, Q = P by [24,

Theorem 3.5]. This implies that Spec(M) is a T1-space and the result follows

from Theorem 2.4.

For the last statement, consider M =
⊕

p Z/pZ as a Z-module, where p runs

through the set of all prime integers. Since Max(M) = Spec(M), GSpec(M) is

a complete graph but Spec(Z) is not a T1-space. �

It is well known that any ring R is a top R-module. So, the next corollaries

are direct consequences of Theorem 2.4.

Corollary 2.6. Let R be a ring. Then the following are equivalent:

(1) GSpec(R) is a complete graph;

(2) Spec(R) is a T1-space;

(3) Spec(R) is a Hausdorff space.

Corollary 2.7. Let R be a Noetherian ring. Then the following are equivalent:

(1) GSpec(R) is a complete graph;

(2) Spec(R) is discrete and finite;

(3) Spec(R) is a discrete space.

Proposition 2.8. Let M be a coatomic R-module. Then the following hold:

(1) The clique number and the chromatic number of G(M) are equal to the

cardinal number of the set of maximal submodules of M .
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(2) The girth of G(M) is always 3 except when M has at most two maximal

submodules.

Proof. (1) Let S be a complete subgraph of G(M). For any vertex N of

S, choose a maximal submodule PN of M with N ⊆ PN . For any

distinct vertices N and L of S, since N + L = M , we have PN +

PL = M , and so PN 6= PL. Thus the subgraph of G(M) induced by

{PN |N is a vertex of S} is a complete graph which its cardinality is

at least the cardinality of S. On the other hand as we mentioned the

subgraph GMax(M) is complete. Therefore, the clique number of G(M)

is the cardinal number of the set of maximal submodules of M .

To find the chromatic number of G(M), let {Pλ|λ ∈ Λ} be the

set of all maximal submodules of M and suppose that < is a well

ordering on Λ. For any λ ∈ Λ, let Gλ(M) = {N ⊆ M |0 6= N ⊆
Pλ and N 6∈

⋃
λ′<λGλ′(M)}. Then for each λ ∈ Λ, Pλ ∈ Gλ(M) and

so Gλ(M) 6= ∅. Also {Gλ(M)|λ ∈ Λ} forms a partition for the set of all

vertices of G(M). Since for every λ ∈ Λ, any two vertices in Gλ(M) are

not adjacent, all vertices in Gλ(M) can have the same color. However,

the Pλ’s must have different colors. Therefore the chromatic number

of G(M) is equal to |Λ|.
(2) If P1, P2, P3 are three distinct maximal submodules of M , then they

are the vertices of a triangle in G(M).

�

In the next example we show that the coatomicness of the R-module M in

the part (2) of Proposition 2.8 is not a necessary condition.

Example 2.9. Let R = Z and consider the R-module M = Z ⊕ Q. Note

that Max(M) = {pM | p is a prime integer}. It is easy to see that M has no

maximal submodule P such that Z⊕ (0) ⊆ P . Hence, M is not coatomic. But

we have the below triangle in G(M);

2Z⊕Q 3Z⊕Q

5Z⊕Q

Therefore, g (G(M)) = 3.

Two vertices N and L are orthogonal in G(M) if we have N + L = M , and

for any vertex K ∈ G(M) either N + K 6= M or L + K 6= M . If M has at

least three maximal submodules, then they cannot be orthogonal to each other.

We will use the notion of orthogonality to find girth of certain modules (see

Example 2.11).
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Theorem 2.10. Let M be a coatomic R-module. Then the following are equiv-

alent:

(1) G(M) has no triangle.

(2) Every two adjacent submodules are orthogonal.

(3) M has at most two maximal submodules.

Proof. (1) ⇒ (2) Let N and L be two adjacent vertices which are not orthog-

onal. Then by the definition of orthogonality, there exists another vertex K

which is adjacent to both N and L. This means that there is a triangle in

G(M), which is a contradiction.

(2)⇒ (3) If there exist at least three maximal submodules, then they cannot

be orthogonal to each other.

(3)⇒ (1) Let P1 and P2 be the only two maximal submodules of M . Then

for any three vertices N1, N2 and N3 of G(M), at least two of them are con-

tained in one of P1 or P2 (since M is coatomic) and hence they are not adjacent.

Therefore there is no triangle in G(M). �

Example 2.11. Consider the finitely generated Z-module M = Z
4Z ⊕

Z
9Z . This

module has exactly two maximal submodules and G(M) has a cycle of length

four; 2M − 9M − 4M − 3M − 2M . By Theorem 2.10, G(M) has no triangle.

Therefore g (G(M)) = 4.

The (Jacobson) radical of an R-module M is the intersection of all maximal

submodules of M and is denoted by Rad(M). If M has no maximal submodule,

then we define Rad(M) = M . The radical of M is the smallest submodule of

M that contains all superfluous submodules of M . However, the radical of M

need not be superfluous. If M is coatomic, then Rad(M) is superfluous in M

(see [28, 21.6]).

In the following we investigate the connectedness of G(M) for an R-module

M .

Proposition 2.12. Let M be an R-module. Then G(M) is connected if and

only if Rad(M) = 0.

Proof. Suppose that Rad(M) = 0. Then Max(M) 6= ∅. Let N and L be two

distinct elements of G(M). There are maximal submodules P1 and P2 of M

such that N 6⊆ P1 and L 6⊆ P2. So, there is a path from N to L in G(M).

Conversely suppose thatG(M) is connected and Rad(M) 6= 0. Let Rad(M) =

M . If L is a vertex of G(M), then for each nonzero element m ∈ L, the proper

submodule Rm of M is superfluous (see [28, p.177]). So, by Remark 2.2, Rm

is an isolated vertex of G(M), which is impossible, since G(M) is connected.

Now, suppose that Rad(M) 6= M . Then for each nonzero element x ∈ Rad(M),

the proper submodule Rx of M is superfluous, i.e., Rx is an isolated vertex of

G(M), that is a contradiction. �
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Theorem 2.13. Let M be an R-module and G(M) be a tree graph. Then

|Max(M)| = 2.

Proof. Since G(M) has no cycle, we must have |Max(M)| < 3. By Proposi-

tion 2.12, Rad(M) = 0. Hence |Max(M)| > 1. Therefore |Max(M)| = 2. �

From the proof of Proposition 2.12, we infer:

Corollary 2.14. Let M be an R-module with Rad(M) = 0. Then diamG(M) ≤
3.

In next example we introduce an R-module M such that diamG(M) = 2.

Example 2.15. Let R be an infinite PID and consider the R-module M := R.

Then for any two distinct vertices Ra and Rb of G(M), there exists a prime

element p such that p does not divide a and b. Therefore Ra+Rp = Rb+Rp =

R. So d(Ra,Rb) ≤ 2. Since Rab and Ra are not adjacent we deduce that

diamG(M) = 2.

Definition 2.16. Let M be an R-module. Put

Θ = {N ∈ G(M) |N = IM for some ideal I of R}.

Then the subgraph of G(M) generated by the set Θ is denoted by G′(M).

Note that for a multiplication R-module M we have G′(M) = G(M).

Proposition 2.17. Let M be an R-module such that mM 6= M for each max-

imal ideal m of R. If Jac(R) = 0, then G′(M) is connected.

Proof. Suppose IM and JM are two vertices of G′(M), where I and J are

two ideals of R. By assumption there are maximal ideals m and m′ of R such

that I 6⊆ m and J 6⊆ m′. Hence I + m = R and J + m′ = R. Therefore

IM + mM = M and JM + m′M = M . By assumption mM and m′M are

two vertices of G′(M). Either mM = m′M or mM 6= m′M . In either case we

have a path from IM to JM in G′(M), which shows that IM and JM are

connected. �

According to the Proposition 2.17, if M is a faithfully flat R-module and

Jac(R) = 0, then G′(M) is connected. In the next corollary we extend this

result. An R-module M is called primeful if either M = (0) or M 6= (0) and the

map ψ : Spec(M) → Spec(R/Ann(M)) defined by ψ(P ) = (P : M)/Ann(M)

for every P ∈ Spec(M), is surjective. The class of primeful modules contains

all modules which are Finitely generated or faithfully flat (see [21]).

Corollary 2.18. Let M be a nonzero faithful and primeful R-module. If

Jac(R) = 0, then G′(M) is connected.

Proof. Use Proposition 2.17 and [21, Result 2]. �
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Example 2.19. Let Ω be the set of all prime integers p, and let M =
∏
p Z/pZ,

where p runs through Ω. By [21, Example 1], M is a faithful and primeful Z-

module. Hence by Corollary 2.18, G′(M) is connected.

Corollary 2.20. Let M be a nonzero faithful and finitely generated multipli-

cation R-module. If Jac(R) = 0, then G(M) is connected.

Proof. Use Proposition 2.17 and [16, Theorem 3.1]. �

Definition 2.21. Let M be an R-module such that Max(M) 6= ∅. Put

Λ = {N ∈ G(M) |N 6⊆ Rad(M)}.

Then the subgraph generated by the set Λ is denoted by G∗(M). Note that if

Rad(M) = 0, then G∗(M) = G(M).

It was mentioned in Remark 2.2 that each superfluous submodule of M is

an isolated vertex of G(M). As we mentioned, the radical of M is the smallest

submodule of M containing all superfluous submodules of M . As the second

part of our work, we would like to study the subgraph G∗(M) of G(M).

Proposition 2.22. Let M be an R-module. Then the graph G∗(M) is con-

nected and diamG∗(M) ≤ 3.

Proof. Let N and L be two distinct elements of G∗(M). There are maximal

submodules P1 and P2 of M such that N 6⊆ P1 and L 6⊆ P2. Either P1 = P2 or

P1 6= P2. In either case we have a path from N to L, in G∗(M). Also, we infer

that diamG∗(M) ≤ 3. �

For any subsetX of anR-moduleM , we define V(X) := {P ∈ Max(M) |X ⊆
P}.

Proposition 2.23. Let M be an R-module such that Max(M) is an infinite

set. Then there exists an element N ∈ G∗(M) such that Max(M) \ V(N) is

infinite.

Proof. Assume to the contrary that for any element N ∈ G∗(M), Max(M) \
V(N) is a finite set. Let L and K be two distinct elements of G∗(M). Since

Max(M) is an infinite set, there exists a maximal submodule Q of M such that

L ⊆ Q and K ⊆ Q. So, L+K ⊆ Q 6= M and we deduce that G∗(M) is totally

disconnected, which contradicts Proposition 2.22. �

In next example we compute the diam of G∗(Z⊗ Zp∞).

Example 2.24. Consider the Z-module M = Z ⊕ Zp∞ , where p is a prime

integer. We claim that diamG∗(M) = 2. Note that Rad(M) = (0) ⊕ Zp∞ .

Let N and L be two distinct vertices of G∗(M) which are not adjacent. Then

either N ∩Z 6= Z or N ∩Zp∞ 6= Zp∞ . Similarly, L∩Z 6= Z or L∩Zp∞ 6= Zp∞ .

Consider the following four cases:
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Case 1: Suppose that N ∩ Z 6= Z and L ∩ Z 6= Z. There are integers s and

r such that N ∩ Z = rZ and L ∩ Z = sZ. We note that r 6= 0 and s 6= 0, since

N 6⊆ Rad(M) and L 6⊆ Rad(M). There exists a prime integer p such that p

does not divide r and s. Now, pM is a maximal submodule of M such that

N + pM = L+ pM = M . Thus we have N − pM − L, a path from N to L.

Case 2: Suppose that N ∩ Z = Z and N ∩ Zp∞ 6= Zp∞ and L ∩ Z 6= Z
and L ∩ Zp∞ 6= Zp∞ . There exists a nonzero integer r such that L ∩ Z = rZ.

Suppose that H := pZ⊕ Zp∞ , where p is a prime integer such that p does not

divide r. Then H is a nonzero proper submodule of M and H * Rad(M).

Hence, N +H = M and L+H = M . So, in this case we have N − pM − L.

Case 3: Suppose that N ∩ Z = Z and N ∩ Zp∞ 6= Zp∞ and L ∩ Z 6= Z and

L ∩ Zp∞ = Zp∞ . Note that Zp∞ ⊆ L and Z ⊆ N . There exists a prime integer

p such that N + pM = M and L+ pM = M .

Case 4: Suppose that N ∩ Z = Z and N ∩ Zp∞ 6= Zp∞ and L ∩ Z = Z
and L ∩ Zp∞ 6= Zp∞ . However, N and L are not adjacent (since the set of all

submodules of Zp∞ is totally ordered), for any arbitrary prime integer p, we

have N − pM − L.

Consequently, diamG∗(M) = 2.

Theorem 2.25. Let M be a coatomic R-module. Then the following are equiv-

alent:

(1) G∗(M) is a complete bipartite graph.

(2) The cardinal number of the set Max(M) is equal 2.

Proof. (1)⇒ (2). Suppose that G∗(M) is a complete bipartite graph with two

parts V1 and V2. By assumption and by Remark 2.2, |Max(M)| ≥ 2. Suppose

that |Max(M)| > 2. Then by the Pigeon Hole Principal, two of the maximal

submodules should belong to one of Vi’s, that is a contradiction.

(2) ⇒ (1). Suppose that Max(M) = {P1, P2}. Since M is coatomic, every

submodule of M is contained in P1 or P2. Set V1 = {N ∈ G∗(M)|N ⊆ P1} and

V2 = {N ∈ G∗(M) |N ⊆ P2}. Clearly, V1 ∩ V2 = ∅, G∗(M) = V1 ∪ V2 and the

elements of Vi are not adjacent. Now suppose that L ∈ V1 and N ∈ V2. Since

N + L 6⊆ P1 and N + L 6⊆ P2 and M is coatomic, we must have N + L = M .

This implies that G∗(M) is a complete bipartite graph. �

Proposition 2.26. Let M be a coatomic R-module and n > 1. If |Max(M)| =
n <∞, then G∗(M) is n-partite.

Proof. Let Max(M) = {P1, . . . , Pn} and set Ai = {N ∈ G∗(M) |N ⊆ Pi}.
Suppose that V1 is the vertex set of subgraph generated by A1 and Vi is the

vertex set of subgraph generated by Ai \
⋃i−1
j=1Aj for each i ≥ 2. Clearly,

for each i, Pi ∈ Vi and so Vi 6= ∅. Also G∗(M) = V1 ∪ . . . ∪ Vn. Now, let

L,N ∈ Vi for some i. If L and N are adjacent, then M = L+N ⊆ Pi, that is

a contradiction. �
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Theorem 2.27. Let M be an R-module and G∗(M) be a star graph. Then

|Max(M)| = 2 and M is coatomic.

Proof. Since G∗(M) is a star graph, |Max(M)| < 3 and there exists a vertex

P ∈ G∗(M) such that P is adjacent to any other vertices. We claim that P

is a maximal submodule of M . Let N be a proper submodule of M such that

P ⊆ N , then P +N 6= M . So, P ⊆ N ⊆ Rad(M), that is a contradiction. This

implies that P is a maximal submodule of M . It is trivial that |Max(M)| 6= 1,

otherwise Rad(M) = P and P 6∈ G∗(M), that is a contradiction. Therefore

|Max(M)| = 2. Suppose that Q 6= P is the second maximal submodule of M .

Let N be a proper submodule of M . If N ⊆ Rad(M), we are done. Otherwise,

N + P = M . So, N 6⊆ P . If N 6⊆ Q, then N +Q = M . Hence N −Q− P −N
is a cycle in G∗(M). That is a contradiction. Therefore N ⊆ Q and M is

coatomic. �

Example 2.28. Let R = Z/48Z and consider the R-module M = Z/24Z.

Then, the graph G∗(M) is a star graph. Therefore, |Max(M)| = 2. Indeed,

Rad(M) = 6Z/24Z and G∗(M) = {2Z/24Z, 3Z/24Z, 4Z/24Z, 8Z/24Z}.

2Z
24Z

4Z
24Z

3Z
24Z

8Z
24Z

The graph of G∗(M).

Proposition 2.29. Let M be a non-quasi-local coatomic R-module. Then

G∗(M) is a star graph or g (G(M)) ≤ 4.

Proof. Since M is non-quasi-local coatomic, |Max(M)| > 1. If |Max(M)| = 2,

G∗(M) is a complete bipartite graph by Theorem 2.25. Thus G∗(M) is a star

graph or the girth of G(M) is 4. If |Max(M)| ≥ 3, then the girth of G(M) is

3, as desired. �

Corollary 2.30. Let M be a coatomic R-module. Then the following state-

ments are equivalent:

(1) G∗(M) is a tree graph.

(2) G∗(M) is a star graph.

The eccentricity of the vertex x of a graph Γ is the distance between x and

the vertex which is at the greatest distance from x, e(x) = max{d(x, y) | y ∈ Γ}.
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The radius of the graph Γ, r(Γ), is defined by r(Γ) = min{e(x) |x ∈ Γ}, and

the center of the graph is the set of all of its vertices whose eccentricity is

minimal.

Now let us to discuss the radius of the graph G(M).

Proposition 2.31. Let M be a coatomic R-module. If an element N ∈ G∗(M)

belongs to the center of G(M), then

AN := {L ∈ G∗(M) |L ⊆
⋃

P∈V(N)

P \
⋃

P ′∈Max(M)\V(N)

P ′}.

is a subset of the center.

Proof. Suppose that N belongs to the center. It is easy to see that for any

element L ∈ AN , we have V(L) ⊆ V(N). Suppose that N is adjacent to an

element K. Then N+K = M and V(N)∩V(K) = ∅. Since M is coatomic and

V(L) ∩ V(K) = ∅, K + L = M . This implies that L belongs to the center. �

Theorem 2.32. Let M be a multiplication R-module and let S ⊂ Max(M) be

such that ⋂
P∈S

P \
⋃

P ′∈Max(M)\S

P ′ 6= ∅

while, for every T ⊂ S, ⋂
P∈T

P \
⋃

P ′∈Max(M)\T

P ′ = ∅.

Then every vertex N of G∗(M) where V(N) = S has eccentricity 2. Therefore,

if such an S exists then r(G∗(M)) = 2 and any element N such that V(N) = S

belongs to the center.

Proof. Let V(N) = S and let L be a vertex of G∗(M) not adjacent to N .

Since M is multiplication, V(N) ∩ V(L) 6= ∅. If N ∩ L 6⊆ Rad(M), then

there exists a maximal submodule P of M such that N ∩ L 6⊆ P . Therefore

(N ∩ L) + P = M . Hence P is adjacent to N and L. This implies that

d(N,L) = 2. If N ∩ L ⊆ Rad(M), then Max(M) \ V(L) ⊂ V(N), since M is

multiplication. If the set S is a singleton, this cannot happen and we are done.

Otherwise, since L 6⊆ Rad(M), there exists a maximal submodule Q = mM ,

where m ∈ Max(R), such that L 6⊆ Q. Thus L + Q = M . There exists an

element y ∈ m such that L + yM = M . Hence V(yM) ∩ V(L) = ∅. We

conclude that V(yM) ⊂ V(N) = S and

yM ⊆
⋂

P∈V(yM)

P \
⋃

P ′∈Max(M)\V(yM)

P ′.

This is a contradiction. �
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