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ABSTRACT. A T'-so-ring is a structure possessing a natural partial order-
ing, an infinitary partial addition and a ternary multiplication, subject
to a set of axioms. The partial functions under disjoint-domain sums
and functional composition is a I'-so-ring. In this paper we introduce the
notions of subdirect product and (¢, p)-product of I'-so-rings and study

(¢, p)-representation-of I'-so-rings.
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1. INTRODUCTION

Partially defined infinitary operations occur in the contexts ranging from
integration theory to programming language semantics. The general cardi-
nal algebras studied by Tarski in 1949, Housdorff topological commutative
groups studied by Bourbaki in 1966, X-structures studied by Higgs in 1980,
sum ordered partial monoids & sum ordered partial semirings studied by Arbib,
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Manes, Benson|[2],[3] and Streenstrup[6] are some of the algebraic structures of
the above type.

M. Murali Krishna Rao[4] in 1995 introduced the notion of a I'-semiring
as a generalization of semirings and I'-rings, and extended many fundamental
results of semirings and I'-rings to I'-semirings. In [5] we introduced the notion
of I'-so-ring R and obtained a necessary and sufficient condition for the quotient
R/6 to be a I'/o-so-ring, where (#,0) is a congruence relation on (R,T"). As
a continuation, in this paper we prove that a I'-so-ring is a subdirect product
of subdirectly irreducible T';-so-rings and obtain (¢, p)-representation of I'-so-
rings.

2. PRELIMINARIES

In this section we collect important definitions from the literature.

Definition 2.1[3]. A partial monoid is a pair (M,Y) where M is a nonempty
set and ¥ is a partial addition defined on some, but not necessarily all families
(x; 11 €I)in M subject to the following axioms:

(1) Unary Sum Axiom. If (x; : ¢ € I) is a one/element family in M and I = {j},
then 3(x; : ¢ € I) is defined and equals z;.

(2) Partition-Associativity Axiom. If (z; : ¢ € I) is a family in M and
(I; - j € J) is a partition of I, then (z; 4 € I) is summable if and only
if (z; : 4 € I;) is summable for every jinJ, (X(z; : i € I;) : j € J) is summa-
ble, and X(xz; : i € I) = X(X(x,; i€ L) : j € J).

Example 2.2[3]. Let D and E be two sets and let the set of all partial functions
from D to E be denoted by Pfn(D,E). A family (z; : ¢ € I) is summable if
and only if for 4,7 in I, and i # j, dom(x;) Ndom(z;) = 0. If (x; : ¢ € I) is
summable then for any d in D

da;, if d € dom(z;) for some (necessarily unique) i € I;
d(%; 7). =

unde fined, otherwise.

Then (Pfn(D, E),X) is a partial monoid.

Definition 2.3[6]. Let (M, X) and (M’,%’) be partial monoids. Then (M’, )
is said to be a partial submonoid of (M, ) if it satisfies the following:

(1) M’ is a subset of M,

(2) (x; : ¢ € I)is a summable family in M’ implies that (z; : ¢ € I) is summable
family in M and Xa; = X;a;.

Definition 2.4[5]. Let (R,X) and (T',¥’) be two partial monoids. Then R
is said to be a partial I'-semiring if there exists a mapping R xI'x R — R
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(images to be denoted by xyy for x,y € R and v € T') satisfying the following
axioms:

(1) av(ypz) = (@yy)pz,

(2) a family (x; : ¢ € I) is summable in R implies (zyx; : ¢ € I) is summable in
R and xy[X(z; 13 € I)] = X(xyz; =i € 1),

(3) a family (z; : ¢ € I) is summable in R implies (z;yx : i € I) is summable in
Rand [E(z; i € I)]yr = X(xyyx s i € 1),

(4) a family (v, : 4 € I) is summable in T" implies (zv;y : ¢ € I) is summable in
Rand z[¥(v; : i € I)ly = S(ayy =i € 1) for all 2,y,2,(z; : ¢ € I) in R and
.y, (yi:i€l)inT.

Definition 2.5[5]. Let R be a partial I'-semiring. Let A be a nonempty subset
of R and IT” be a nonempty subset of I'. Then the pair (4;T") is said to be a
partial sub T'-semiring if

(i) A is a partial submonoid of R,

(ii) TV is a partial submonoid of T,

(iii) AT"A C A.

Definition 2.6[6]. The sum ordering < on a partial monoid (M,X) is the
binary relation such that x < y if and only if there exists an h in M such that
y=x+hforx,y € M.

Definition 2.7[6]. A sum-ordered partial monoid or so-monoid, in short, is a
partial monoid in which the sum ordering is a partial ordering.

Definition 2.8[5]. A partial I'=semiring R is said be a sum-ordered partial
I-semiring (in short I'-so-ring) if the partial monoids R and I' are so-monoids.

The support of a family (x; : ¢ € I) in M is defined to be the subfamily
(x; 13 € J) where J={iel|z; #0}.

Example 2.9[5] Let R =T := Z~ |J{0} , the set of all nonpositive integers.
Then R and I' are partial monoids with finite support addition. Now R is a
partial I'-semiring with usual multiplication of integers. Also R is a I'-so-ring
with the partial order “usual less than or equal to”. However R is not a so-ring
in the sense of [9]. Since —2, -3 € R and (—2)(—3) =6 ¢ R.

Example 2.10[5]. Let D, E be any two sets. Then Pfn(D, E) and Pfn(FE, D)
are partial monoids with the summations defined as in the Example 2.2. Con-
sider the mapping (f,v,9) — fvg of Pfn(D,E) x Pfn(E,D) x Pfn(D, E)
into Pfn(D, E) where d(fvg) = (((df)v)g), for any d € D. Then Pfn(D, E)
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is a partial Pfn(E, D)-semiring.

In general Pfn(D, E) is not Pfn(E, D)-semiring, since a family in the par-
tial Pfn(E, D)-semiring Pfn(D, E) need not be summable.

Example 2.11[5]. Let R be the partial monoid of all m x n matrices over
the set of all non negative rational numbers and I" be the partial monoid of all
n X m matrices over the set of all non negative integers. For any A, B € R and
a € T, consider the mapping (A4, o, B) — AaB, usual matrix multiplication, of
R xT' x R into R. Then R is a partial I'-semiring.

Definition 2.12[3]. Let (M,X), (M',¥') be two partial monoids.  Then a
function ¢ : M — M’ is said to be an additive map of (M;%) into (M’ %) if
(x; + i € I) is a summable family in M implies (z;¢ @ € I).is a summable
family in M’ and (X;z;)¢ = X (x;9).

Definition 2.13[5]. Let R be a partial I'-semiring and R’ be a partial I"-
semiring. Then a pair of mappings f : R — R'and g : I' — I is said to be
a homomorphism from (R,T) into (R’,T") if it satisfies the following;:

(i) f is an additive map from R into R/,

(ii) g is an additive map from I into I/, and

(iii) f(ayb) = f(a)g(y)f(b) for any-a,b € R and v € I

Definition 2.14[5]. Let R be a partial I'-semiring, 6 be a binary relation on
R and o be a binary relation on I'." Then the pair (0,0) is called a partial
I-semiring congruénce/relation on (R, T) if it satisfies the following:

(i) 6 and o are equivalence relations on R and I' respectively,

(ii) @ (o) is closed under the additive operation of the product partial monoid
Rx R (' xT). ie, if (a; :i € I) and (b; : i € I) are summable families in R
(T") such that (a;,b;) € 0(0) for all i € T then 3;(a;,b;) € 0 (Xi(a;,b;) € 0),
(iii) (a,b).€ 6, (o, B) € o and (c,d) € 0 then (acc,bBd) € 6.

Definition 2.15[1]. A partial monoid congruence relation 6 on a partial
monoid R is said to have the diagonal property if it satisfies the condition
that for any a,b € R, af(b+ k) and (a + h)60b for some h,k € R < afb.

Definition 2.16[5]. Let R be a partial I'-semiring. Then a partial I-semiring
congruence relation (0, 0) on (R,T) is said to have the diagonal property if and
only if 8 and o have the diagonal property.

Definition 2.17[5]. A partial I'-semiring congruence relation (6, o) on a I'-so-
ring R is said to be a congruence relation on (R,T') if and only if (6, o) has the
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diagonal property.

Definition 2.18[5]. Let R be a partial I'-semiring, 6 be a partial I-semiring
I'-congruence relation on R. Then 6 is said to be a I'-congruence relation on R
if and only if 8 has the diagonal property.

Example 2.19. Consider the I'-so-ring R := Z~ | J{0} as in the Example 2.9.
Define § = o on R as afb if and only if a = b. Then (6, o) is a partial I-semiring
congruence relation on (R,T") such that (6, 0) satisfies the diagonal property.
Therefore (0, 0) is a congruence relation on (R,T'). However 6 is not a partial
semiring congruence relation on R as given in [7] and (0, o) is not‘a congruence
relation on (R,T") in the sense of [4]. Since R is not a so-ring as in [7] and
I-semiring as in [4].

We denote the set of all congruence relations of a I'-so-ring R by Con(R,T)
and the set of all I'-congruence relations of R by ConR.

3. STRUCTURE THEOREM

Definition 3.1. Let {R; | i € I} be a family of I';-so-rings. Take R = HRi
iel
and I' = HFi' Let R’ and T” beisubsets of R and T respectively. Then the
icl

pair (R’,T”) is said to be‘a subdirect product of (R;,T;), ¢ € I if it satisfies the
following:

(i) (R,T) is a subT'-so-ring of R,

(ii) all the projection mappings of (R, T') restricted to (R’,I") are epimorphisms.

Definition 3:2. Let {R; | i € I} be a family of I'-so-rings. Then a subset R of
H R; is said to be a I'-subdirect product of R;, i € I if it satisfies the following:
il
(i) Ris a I-sub.so-ring of H R;,

icl
(ii) all the projection mappings of H R; restricted to R are epimorphisms.

i€l

Definition 3.3. A I'-so-ring R is said to be subdirectly irreducible if and only if
ﬂ(@h 0;) = (Og,0r) where {(0;,0;) | i € I} is a family of congruence relations
iel
on (R,T) implies (0;,0;) = (Og,Or) for some i € I.

Definition 3.4. A T'-so-ring R is said to be I'-subdirectly irreducible if and
only if ﬂ 0; = Og where {0; | i € I'} is a family of I'-congruence relations on R
iel
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implies 0; = O for some i € I.

Lemma 3.5. Let R be a I'-so-ring and (0,0) be a congruence relation on
(R,T'). Then there is a one to one correspondence between congruence rela-
tions on (R,T") containing (0,0) and congruence relations on (R/0,T/0).

Proof. Let (¢, p) be a congruence relation on (R,T") containing (6, c). Define
a relation ¢/6 on R/6 by [a]?(#/0)[b]? if and only if agb, where [a]? ([b]?) de-
notes the equivalence class containing a (b) relative to 6 and define a relation
p/o onT/o by [a]”(p/o)[F]” if and only if apfB, where [a]” ([8]?) denotes the
equivalence class containing « () relative to o. Since (¢, p) is an equivalence
relation on (R,T), it follows that (¢/6,p/0) is also an equivalence relation
on (R/6,T/a). To prove (¢/0,p/c) is congruence, let ([a;]? : i € I) and
([6:)° : i € I) be summable families in R/6 such that [a;]’(¢/0)[b;]%, i € I.
Then (a; : i € I) and (b; : ¢ € I) are summable families in R such that a;¢b;,
1el. = (Elaz)qﬁ(ZZb,) = [Zlal]o(qﬁ/ﬁ)[&bz]a and hence il[al]e((jﬁ/@)i,[bz]e
Let ([o;]? =@ € I) and ([$;]7 : @ € I) be summable families in I'/o such that
[i]7(p/o)[Bi]?, i € I. Then (o : i € I) and (B;+i € I) are summable families
in T such that a;pB;, i € I. = (Z;04)p(ZiB:). = [Biau]?(p/o)[X:6:]7 and
hence X;(as]%(p/0)Xi[B:]7. Let [a]’(6/0)[b]"; [l (p/o)[8]7 and [c]’(¢/0)[d]’
where a,b,¢,d € R and «,8 € T. Then a¢b, apf and cdd. = (aac)p(bpd)
and hence ([a]?[a][c]?)(¢/0)([b]°[8]7[d]?). Hence (¢/0,p/o) is a partial T'/o-
semiring congruence relation on R/f. Note that [a]?(¢/0)([b]° + [h]?) and
([a]? + [K]%)(¢/0)[b]? for some hyk € R < ag(b+ h) and (a + k)b < apb
< [a]?(¢/0)[b)°. Therefore @/ has the diagonal property. Also note that
[0l (p/0) (81 + [11%)aiid ([a]” B[K]") (p/) ()7 for some b, k € T & ap(3-+h)
and (a+ k)pB & app < [a|%(p/o)[B]°. Therefore p/o has the diagonal prop-
erty. Hence (¢/6,p/o) is a congruence relation on (R/6,T/c).

Let (¢, p') be a congruence relation on (R/6,T'/c). Define a relation ¢y
on R by agpb if and only if [a]?#'[b]° and a relation p, on T by ap,f if and
only (if [a]?p'[5]7. Since (¢',p’) is an equivalence relation on (R/6,T'/o), it
follows that (¢g; p,) is also an equivalence relation on (R,I"). To prove (¢, p')
is congruence, let (a; : ¢ € I) and (b; : ¢ € I) be summable families in R
such that a;¢eb;, i € I. Then ([a;]° : i € I) and ([b;]° : i € I) are sum-
mable families in R/ such that [a;]%¢'[;)%, i € 1. = X;[a;]?¢'S;[b;] and
hence (3;a;)p9(X;b;). Let (a; : ¢ € I) and (5; : ¢ € I) be summable families
in I" such that a;ps0;, ¢ € I. Then ([o,]? : ¢ € I) and ([8;]° : i € I) are
summable families in T'/o such that [0;]7p'[3:]7, i € 1. = 3]0, p'S4[Bi]°
and hence (X;0;)ps(2:8:). Let apob, ap,f and cpgd where a,b,c,d € R and
a,B €T. Then [a]?¢'[b]?, [a]p'[8]° and [c]?¢'[d]?. = [aac]’¢'[bBd]? and hence
(aac)dg(bpd). Hence (¢g, po) is a partial I'-semiring congruence relation on R.
Note that agg(b+ h) and (a+k)geb for some h,k € R < [a]?#'([b]? +[h]?) and
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([a)? + [K])#'[b]? < [a]?@'[b]° < aggb. Therefore ¢y has the diagonal property.
Also note that ap, (5+h) and (a+k)p, S for some h, k € T' < [a]?p'([5]7 +[h]7)
and ([a]” + [k]7)0'[8]7 < [a]?p'[B]° < apsB. Therefore p, has the diagonal
property. Let afb. Then [a]? = [b]?. = [a]?¢'[b]’. = agyb. Therefore 6 C ¢y.
Let aof. Then [a]” = [8]7. = [a]70'[]°. = ap,pB. Therefore o C p,. Hence
(s, po) is a congruence relation of (R,T") containing (6, ). The above defini-
tions readily gives the correspondence. Hence the lemma. O

Corollary 3.6. Let R be a I'-so-ring and 6 be a I'-congruence relation on R.
Then there is a one to one correspondence between I'-congruence relations on
R containing 0 and T'-congruence relations on R/6.

Lemma 3.7. Let R be a I'-so-ring and {(6;,0;) | i € I}-be a family of con-

gruence relations on (R,T') such that m(@i,m) = (Og,Or). -Then (R,T) is
iel

isomorphic to a subdirect product of (R/0;,T/c;), 1 € I.

Proof. Define f : R — HR/9¢ by f(a) = ([a]® i € I)Va € R and g :
iel
r — HF/ai by g(a) = ([a]? : i € I) Yo € T. First we prove that (f,g)
iel
is a monomorphism. Let (z; : j € J) be a summable family in R. Then
F(Bj5) = ([Bja)% i € 1) = (Sjlag)? : i e I) = 5 f(x;). Let (a; : j € J)
be a summable family in I'. Then g(X;0;) = ([X;a;]% 1 i € I) = (3;[ey]7 :
i€l)=3%g(a;). For any z,y € Rand o € T, f(zay) = ([rayl® :i € I) =
([2]% )7 [y)% i € T) =f(x)g(a) f(y). Let z,y € R such that f(z) = f(y).
Then ([z]% :i e I)=(jy] 2i €1). = [z]% =y Viel. = x(n(‘)l)y =
iel
x =vy. Let a, 8 /€ T such that g(a) = g(8). Then ([o]?" : i € I) = ([f]°" :
iel) =a) =07 Viel = a(mai)ﬁ. = a = . Hence (f,g) is
iel
a monomorphism from (R,T") into H(R/@i,F/Ji). Consequently (f,g) is an
iel

isomorphism from (R,T) onto (f(R), g(I")).

Now we prove that (f(R), g(I")) is a subdirect product of (R/6;,T'/0;), i € I.
It can be noted that (f(R),g(T")) is a sub H I'/o;-so-ring of H R/6;. For any

i€l iel

i € L pi(f(R) = {pi(f(x)) | v € R} = {pi([a]" - i € I) | @ € R} = {[a]" |
z € R} = R/0; and pi(9(T)) = {pi(9(0)) | a € T} = {pi([a)” :i € I) | a €
I'} = {[a]? | @« € T} = T'/o;. Hence (f(R),g(I")) is a subdirect product of
(R/6;,T/0;), i € I. Hence the lemma. O
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Corollary 3.8. Let {0; | i € I} be a family of T-congruence relations on a I'-

so-ring R such that ﬂ@i = 0gr. Then R is isomorphic to a I'-subdirect product
iel
Of R/Ql, iel.
Lemma 3.9. Let R be a I'-so-ring and {(0;,0;) | i € I} be a simply ordered
family of congruence relations on (R,T'). Then \/(Gi,ai) = U(Gi,ai).
iel iel

Proof. Since the family {(6;,0;) | i € I} is simply ordered, it is obvious. O

Corollary 3.10. Let {6; | i € I} be a simply ordered family of I'-congruence
relations on a I'-so-ring R. Then \/ 0; = U 0;.

Lemma 3.11. Let R be a F—so—r%;;. If al,eble R with a # b and o, B € I with
a # B, then there is a congruence relation (0(qp),0(a,py) on (R,I) such that
(a,b) € O(apy, (a, B) & 0(a,p) and (O(ap); O(a,p)) is mazimal with respect to this
property.

Proof. For any a,b € R such that a # b and*a; € T such that o # f,
let ¢ = {(¢,p) € Con(R,T) | (a,b) & ¢,(c,5) & p}. It is obvious that
(Ogr,0r) € C. So, C is nonempty. By Zorn’s lemma, C has a maximal ele-
ment, say (0(q,5),0(a,8)) - Hence the lemma. O

Corollary 3.12. Let R be a I'-so-ring. If a,b € R with a # b, then there is a
['-congruence relation 6,y on R such that (a,b) & 04 and (4 ) is mavimal
with respect to this property.

Lemma 3.13. Let R be a I'-so-ring. Then R is subdirectly irreducible if
and only if Con(R;T") has one and only one atom which is contained in every
congruence relation other than (Og,Or), the zero congruence relation on (R,T").

Proof. It can be proved easily. O
Corollary 3.14. Let R be a I'-so-ring. Then R is I'-subdirectly irreducible
if and only if ConR has one and only one atom which is contained in every

I'-congruence relation other than Ogr, the zero I'-congruence relation on R.

Theorem 3.15. A I'-so-ring R, where both R and " are nonzero, is a subdirect
product of subdirectly irreducible I';-so-rings R;, i € 1.
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Proof. Let R be a I'-so-ring. Consider the family of congruences
C = {0, o@p) | @b € Ry, € T' with @ # b and o # (} as con-
structed in the Lemma 3.11. Suppose (z,y) € m0(a’b) and (v, u) € ﬂ O(a,f)-

aztb arB
Then (2,y) € Oap) Ya # b and (y,u) € o@p) Ya # 3. If o # y and

¥ # w, then (z,y) € 0, and (v,u) € 0(y,,), a contradiction. Hence
(mg(mb)’ ﬂ 0(a,8)) = (Or,0r). By the Lemma 3.7, (R,T) is isomorphic to a

a#b a#fB
subdirect product of I' /o, g)-so-rings R/0(4 ), a # b, # B.

Now we prove that R/f(qp),a # b is a subdirectly irreducible I'/o(4, 5)-
so-ring, a # B. Let ([0(ap)), [0(a,p))) denote the set of all congruence rela-
tions on (R,I") containing (0(4,),0(a,8))- Let (1,p) be the smallest congru-
ence relation such that (a,b) € ¥ and (a,8) € p. Then (O(a ), o(aig)) <
(¥, ) V (O(ap)s T(a,8))- I (B(ab), O(a,)) = (¥, 0) V (0(a,6)50(a,p)), then (¥, p) C
(O(ap), (a,p)); and so (a,b) € O(qp) for a # b and (o, B) €04,z for a # f,
a contradiction. Hence (0(45),0(a,8)) C (¥,0) NV (B(ap), 0a,p)): = (¥, p) V
(O(a,p),(,8)) € ([Dap))s [0(a,p))) and (1, p) V (Opaisy, 0(a,8)) # (O(ab)> T(a,8))-
Let (¢,7) be another congruence relation in ([0(44));[0(a,5))) other than
(O(a,p)s0(a,5)). Then (a,b) € ¢ and (o, 3) € 7. = (¢,p) € (¢,7). Hence
(¥, p) V (B(ap), 7(a,p)) € (&,7). Therefore (4, p) V (0(a,), 0(a,p)) is the only
atom which is contained in every congruence relation in ([0(4,4)), [0(a,3))) Other
than (0(4,5);0(a,8))- By the Lemma 3.5, there is a one to one correspondence
between the congruence relations on (R/0(44),1'/0(0,p)), @ # b,a # 3 and
([0ap)); [0(a,p))). = Con(R/Owm), /0 (a,5)) has one and only one atom which
is contained in every congruence relation other than (6(4,),0(a,3)) (the zero
congruence on (R/6, ), I'/a(a ). By the Lemma 3.13, R/0 ), a # b is a
subdirectly irreducible I'/o (4, g)-so-ring, o # 3. Hence the theorem. (I

Corollary 3.16. A T'-so-ring R, where R is nonzero, is a I'-subdirect product
of I'-subdirectly irreducible I'-so-rings R;, i € I.

4. (¢, p)-REPRESENTATION OF I'-SO-RINGS

Walendziak[9] introduced the notion of ¢-representation of algebras and
studied the necessary and sufficient condition for < (4; : ¢ € I),f > to be
a ¢-representation. We extend these to I'-so-rings.

Definition 4.1. Let {R; | i € I} be a family of I';-so-rings, (R,T") be a subdi-
rect product of (R;,T;), ¢ € I, and let (¢, p) € Con(R,T'). Then the pair (R,T)
is said to be a (¢, p)-product of (R;,T;), ¢ € I if it satisfies the following;:

(i) for every T = (z; : i € I) € R, if (w;,2;) € ¢ Vi,j € I then < z;(i) : i €
I >e R,
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(i) for every @ = (a; : i € I) € 'L, if (i, ) € p Vi, j € I then < (i) 1 i €
I>eT.

Definition 4.2. Let {R; | i € I} be a family of I'-so-rings, R be a I'-subdirect
product of R;,i € I, and let ¢ € ConR. Then R is said to be a ¢-product of
R;, i € I if it satisfies the condition that for every T = (z; : i € I) € R, if
(i, ;) € 9 Vi,j €I then < z;(i) : i€ I > R.

Example 4.3. Take Ry = {0,1}. Define ¥ on R; as

1, if x; =0Vi#j for some j
Yiwi =1, if x, =1, 2, =1 for some h,k, x; =0¥i # h, k

unde fined, otherwise.

Take I'; = {0,1'}. Define ¥’ on I'; as

P .
oy = 1, if aj =0Vi+#j for some j
unde fined, otherwise.

Then R; and T'; are partial monoids. Consider the mapping (z, «, y) — zay
of Ry xI'y x Ry into R; as follows:

001 1701
0100 0400
110]0 1101

Then Ry is a I'1-so-ring. Take Ry = {0, a,1}. Define ¥ on Ry as

xj, if x; =0VYi# 35 for some j
a, if zp =ar=a for some h,k, ©; =0Vi# h, k
1, if ep=1, xxy, =a or 1, for some h,k, ©; =0Vi+# h, k

unde fined, otherwise.

Zil‘i =

Then Ry is a partial monoid. Take I'y :=T'y. Consider the mapping (z, a, y) —
zay of Ry x 'y X Ry into Ry as follows:

0|0|a|l 17|0lall
010|0|0 010|0|0
a 0|00 a|0|ala
1 /0]0]0 1 [0]jall

Then Ry is a I'g-so-ring. Also Ry X Rs is a I'; x I's-so-ring. Take R = {<
0,0 >,<1,0><1la><1,1>}T={<0,0 ><1,1'>},0={K
0,0 >,< 0,0 >),(< 1,0 >,<1,0>),(< L,a ><1l,a>),(<1,1><11>
),(<0,0>,<1,0>),(<1,0><0,0>)}and p={(< 0,0 > <0,0 >),(<
17,17 >, < 1,1 >)}. Then (R,T") is a subdirect product of (R;,I;), i = 1,2
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and (0, p) is a congruence relation on (R,T). Now for every T = (z1, 22) € R?,
if (x1,21), (21, 22), (22, 21), (x2,22) € 6 then < x1(1),22(2) > R and @ =
(a1,a2) € T2 if (a1, aq), (a1, a), (a2, a1), (a2, ) € p then < ay (1), aa(2) >€
I. Also p1(R) = Ry,p2(R) = Ry and p{(T") = T'1, p4(T') = I's. Hence (R,T) is
a (0, p)-product of (R;,T;),i=1,2.

Now take ¢ = {(< 0,0 >,< 0,0 >),(< 1,0 >,< 1,0 >),(< L,a >, < 1,a >
), (< 1,1 > < 1,1 >),(< 0,0 >< 1,0 >),(< 1,0 ><0,0>),(<0,0 ><
1,a >),(< 1,a >,< 0,0 >),(< 1,0 >, < 1,a >),(< 1,a >,< 1,0 >)}. Then
(¢, p) is a congruence relation on (R,T). Take T = (< 0,0 >, < 1,a >) € R?.
Then (< 0,0 >,< 0,0 >),(< 0,0 >, < 1,a >),(< 1,a >,< 0,0 >);(< 1,a >
,<1l,a>)€¢. But << 0,0> (1),<1,a> (2) > = <0,a >¢ R Thus (R,T)
is not a (¢, p)-product of (R;,T;), i =1,2.

Lemma 4.4. Let R be a I'-so-ring and R;(i € I) be a family of T';-so-rings.

Then

(i) (R,T) is a subdirect product of (R;,T;),i €I if and only’if (R,T) is a

(Og, Op)-product of (R;,T;), i€ I.

(i) (R,T) is a (1gr,1r)-product of (R;, 1), i~€ I .if and only if (R,T) =

[[(r:.19).

iel

Proof. (i) Suppose (R,T) is a (Og, Op)-product of (R;,I';), ¢ € I. Then (R,T)

is a subdirect product of (R;,T';); ¢ €. Conversely, suppose that (R,T) is

a subdirect product of I';-so-rings R;, i€ I. Let T := (z; : i € I) € R!

> (z4,2;) € Op Vi,j € I.. Then< x;(3) : ¢ € I >= x; € R (since z; =

z;, Vi,j € I). Let @ := (a; 2i € I) € I'1 5 (a;,j) € Op Vi,j € I. Then

< (i) :i €I >=qa; €T (since a; = aj, Vi,j € I). Hence (R,T) is a

(Og, Or)-product of (R;,T;), ¢ € I.

(ii) Suppose (R,T) is a (1gy1r)-product of (R;,T;), i € I. Let x € HRi' Then

iel

x:<xi:i€I>6HRiWherea:iERiVieI. Since p; |g: R — R; is a
i€l

surjective homomorphiesm7 Ja; € Rop; g () =x; Viel = ai) =ay

Viel Puta:=(a:4€I) Since 1p = R? (a;,a;) € 1g Vi,j € I. =

<a;(i):i€l >R =>x=<uxz;:1€] > R. Hence R = HRi' Similarly,

i€l
we can prove that I' = H r;.
icl
Conversely suppose that (R,T) = H(Ri’ T;). Then (R,T) is clearly a sub-

il
direct product of (R;,T;), i € I. Let ¥ := (z; :i € I) € RT > (r;,25) € 1g
Vij eI = <ai):icl>c[[Ri=R Leta:=(a:icl)ell>
el
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(ci,a;) € Ip Vi, j € I. = < a;(i) : i € I >€ [[Ty = T. Hence (R,T) is a
el
(1R, 1r)-product of (R;,T;), i € I. |

Corollary 4.5. Let R and R;(i € I) be a family of T'-so-rings. Then
(i) R is a T-subdirect product of R;,i € I if and only if R is a Or-product of
Ri,iel.
(i) R is a 1g-product of R;,i € I if and only if R = HRi'
i€l

Theorem 4.6. Let {R; | i € I} be a family of T';-so-rings, let (R,T) be @ sub
HI’i-so-m'ng ofHRi and let (¢, p) € Con(R,T). Fori € I, let 6; be the ker-
fell of the p?"OjeCtlZ'f);L at i, restricted to R and o; be the kernel of the projection
at i, restricted to T. If (R,T) is a (¢, p)-product of (R;,Iy;), i € I, then
(i) (O, 0r) = (")(6:,04),

i€l
(ii) for every T = (z; :i € I) € R, if (z;,2;) € ¢ Vi,j € Iy then 3z € R >
(.T,,[Ei) S Hi,Vi el,
(iii) for every @ = (o 13 € I) € T'L, if (i, 5) € p Vi, j € I, then I € T 3
(OZ,C!Z') € O'i,Vi € I,
(’L"U) (R/Qz,l“/al) = (Ri,l—‘i) Vi el.

Proof. (i) Let (x,y)eﬂ&i wherex,y€ R. Then p; |g () =p; |r (y) Vi € I.
iel
=pi(z)=pily) Viel =z@)=yli)Viecl = z=y. Let ( ﬂal

el
where o, 8 € I'. Then p} |r () =p} |r (8) Vi € I. = pi(a) = pi(B) Vi € IE =
a(i) = B(i) Vi€ I. = a = . Hence [ )(6;,0:) = (0r,0r).
iel

(ii) Let 7 := (x; 1i € I) € R! 2 (z4,2;) € ¢ Vi, j € I. Put & :=< z;(i) : i €
I> SozeR,z;e¢ Randx(i) =z;(i)) Viel. =p; |gr () =p;i |r (z;) Viel
= (vymw;) € 0; ¥i € I. Hence 3z € R > (x,x;) € 6;,Vi € I.
(iii) Let @ :=(a; : i € I) € I 3 (ay,j) € pVi,j € I. Put a:=< (i) : i €
I> Soael,a el and a(i) =a;(i) Vie I. = p,|r (o) =p} |r (o) Vi€ I.
= (a,a;) €0, Vi€l Hence 3a el > (o, ;) € 0;,Vi € 1.
(iv). Define f : R/6; — R; by [a]g, — a(i) and g : T'/o; = T; by [a]s, — a(i).
Note that for any [alg,, [ble, € R/0;, [ale, = [ble, < (a,b) € 6; < p; |r (a) =
pi In () © a(i) = b(3) & f(als,) = f(blo,) and for any [a],,, [8ls, € T/ai,
ooy = [Bloy & (@.5) € 01 & B Ir (@) = 5 I (8) & ali) = B(i) ©

9([ads;) = g([Bls,)- Therefore (f,g) is well defined and one-one. For any
a; € Riand a; € Ty, 3a € Rand a« € T 3 a(i) = p; |g (@) = a; and

ai) = ¥} Ir (@) = ai. Now [als, € R/8;, [a],, € T/o; and f(las,) = a(i) = as,

=of

9([e]s;) = a(i) = a;. Hence (f,g) is onto.
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To prove (f,g) is a homomorphism, let ([z;lg, : 7 € J) be a summable
family in R/0;. Then f(X;elx;lo,) = f([Zj25le,) = (8;525)(0) = ;£ ([5a,)-
Let ([oj]s, : j € J) be a summable family in I'/o;. Then ¢(Xjcs(els,) =
9([Ej05l0) = (5505)(i) = Zjg([ay]o,). Now for any [a]g,, [bs, € R/6; and
[a]ai € F/Uia f([a']ai [a]Ui [b]ez) = f([aab]gl) = (aab)(l) = a(z)a(z)b(z)
= f([a]e,)9([]s;) f([b]e,) and hence (f, g) is a homomorphism from (R/6;,T'/c;)
onto (R;,T;), ¢ € I. Hence (R/0;,T'/o;) = (R;,T;), i € I. O

Corollary 4.7. Let {R; | i € I} be a family of T'-so-rings, R be a T'-sub so-ring
ofHRi and let ¢ € ConR. Fori € I, let 0; be the kernel of the projection at
iel
i, restricted to R. If R is a ¢-product of R;,i € I, then
(i) Or = (1) 6:,
iel
(ii) for every T = (z; :i € I) € R, if (z;,2;) € ¢ Vi,j € Iy then 3z € R >
(33,331‘) S Qi,Vi el,
(iii) R/0; 2 R; Vi€ .

Definition 4.8. Let R be a I'-so-ring and let (¢,p) € Con(R,T). For
any family {(0;,0;) | ¢« € I} of congruence relations on (R,T"), we write
(Ogr,0r) = g, ((0s,0:) : i € I) if and only.if the conditions (i),(ii) and
(iii) of above theorem are satisfied.

Definition 4.9. Let R be a-I'-so-ring and let ¢ € ConR. For any family
{0; | i € I'} of I-congruencerelations.on R, we write Og = II4(0; : ¢ € I) if and
only if the conditions (i)-and (ii) of above corollary are satisfied.

Remark 4.10. Let' R be a I-so-ring and let {(0;,0;) | ¢ € I} be a family of
congruence relations on(R,T'). Then
(i) (0r, Or) = (o 00((0i, 0:) : i € I) if and only if (Og,0r) = ﬂ(@am‘),

iel
(ii) (Or,Or) = (1,10 ((05,04) = @ € I) if and only if (Og,0r) = ﬂ(Hi,Ui), for

iel

every (z;:i€I) € RI, 3z € R> (x,2;) € 0; and for every (o : i € I) € T,
Jael's (v,aq) €0, Viel

Remark 4.11. Let R be a I-so-ring and let {; | ¢ € I} be a family of I
congruence relations on R. Then
(i) O =TIy, (0; : i € I) if and only if 0r = [ 6,
iel
(ii) O = 1,(0; : i € I) ifand only if O = ﬂ 6; and for every (z; :i € I) € RI,
iel
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JzxeR> (x,z;) €0, Viel.

Definition 4.12. Let R be a I'-so-ring and R’ be a I''-so-ring. Suppose (f, g) is
an epimorphism from (R, T') onto (R’,T"). For any congruence relation (¢, p) on

(R,T), define (f(¢),9(p)) = {(f(x), f(¥)) | (2,y) € ¢}, {(9(a),9(B)) | (o, B) €
p}).

It can be easily observed that the relation (f(¢),g(p)) is a congruence rela-
tion on (R/,I").

Lemma 4.13. Let R be a I'-so-ring, R’ be a I'-so-ring and (¢,p), {(0;,04) |
i € I} be a family of congruence relations on (R,T). If (f, g) is an isomorphism
from (R,T') onto (R',T"), then (Og,0r) = Il ) ((0i,04) : i€ I).if and only if
(Or/,0r) = (f(4),g(0)) ((f(0:), g(03)) : i € I).

Proof. Suppose (0r,0r) = Il ) ((0i,04) : i € I).<Since (¢, p) and {(6;,0;) | i €
I} are congruence relations on (R,T"), (f(¢),g(p)) and {(f(0;),9(cs)) | i € I}
are also congruence relations on (R',I”). Let(f(x), f(y)) € ﬂf(@i) and

i€l
(9(),g9(B)) € mg(ai). Then (x, ﬂ@ = Or and (o, ) ﬂal =
Op. =z = yzeajnd a =6 = f(x) :ZEIf(y) and g(a) = g(B). ZeTl‘here—
fore ﬂ = (Og,0p). Let 7 := (y; : 1 € I) € R/I > (yi,yj) S

iel

f(¢) Vi,j € I. Since f is onto, 3@ = (z; :i € I) € RI > f(x;) = y; Vi €
I& (zi,zj) €epVi,jelo=>3ax e R (z,2;) €0, Viel = Jy:=f(x) €
R'S (y,y:) € f(0:) Vi€ I Tiet Bi= (Bi:i € I) €17 3 (8:,8;) € glp) Vi, j €
I. Since gisontoy3a = (o :i € ) €T 3 g(ay) = Viel & (a4,05) €
pVi,jel. =>Faecla(q,q) o Viel =38 :=g(a)el’>(8,5) €
g((fi) Vi € 1. Hence (OR/,OF/) H(f(¢) g(p))((f(e ) g(O’l)) NS I)

Suppose (Ogr, Orv) = TL(f(4),9(p)) ((f(0i),9(03)) : i € I). Let (z,y) € ﬂ@i

iel
and (a,3) moz Then (f(x), f ﬂf = Op and (g(a),9(B)) €
i€l icl
ﬂg((ri) =0p. = f(z) = f(y) and g(a) = g(B). Since f and g are one-one,
iel
xz =y and a = §. Hence ﬂ(@i,ai) = (Og,0r). Let 7 := (z; :i€I) e R >
iel

(zi,2;) € ¢ Vi,j € I. Then g := (f(z;) : i € I) € R 5 (f(z), f(x;)) €
f(¢) Vi,j € 1. Since f is onto, 3y € R' > (y, f(x;)) € f(6;) Vi e I. =
JzeR> flz) =y & (z,7) €0; Vi el Leta:=(a; :i€1l)eTll>
(aiya) € pVi,j € I. Then B := (g(a;) : i € I) € s (9(ei), g(aj)) €
g(o;) Vi,7 € I. Since g is onto, 3 3 €IV > (B,9(e;)) € gloy) Vie . = T a €
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I'>g(a) =& (a,;) € pV¥i € I. Hence (Og,0r) = (4 ) ((05,04) :i € 1). O

Corollary 4.14. Let R and R’ be T'-so-rings and ¢,0;(i € I) be a family
I'-congruence relations on R. If f is a I'-isomorphism from R onto R’, then
Or = H¢,((9i 11 € I) ’Lf and only ifORI = Hf(@(f((%) 11 € I)

Theorem 4.15. Let R be a I'-so-ring, (¢,p) € Con(R,T') and {(6;,0:) |

i € I} be a family of congruence relations on (R,T) such that (Og,0p) =

i) ((05,0:) - i € I). If the mappings f : R — HR/&- and g : T — HF/ai
iel iel

are defined by f(x) = ([z]e, : 7 € I) and g(a) = ([&s, : @ € I) respéctively, then

(f(R),9(T)) is a (f(9),9(p))-product of (R/0;,T/0s), i € I.

Proof. By the proof of the Lemma 3.7, (f,g) is a monomorphism from (R,T)
into H(R/9i7l"/oi) and (f(R),g(T")) is a subdirect product of (R/6;,T'/c;),
iel
i€l Let (y;:i€1)e f(R) > (yi,y;) € f(¢)Vi,j € I. Then I x; € RVi €
I> f(z) =y & (z4,2) €edVi,jel. =3z €R> (x,x;) €0, Viel =
[]o, = [w3]o, Vi € I. = f(x)(i) = f(z:)(i) = 9:(1) Vi €I and hence (y;(i) : i €
I)= f(z) € f(R). Let (B; :i € I) € g(T)!'2 (B;,85) € g(p) Vi,j € I. Then
Ja, el Vielsgla) =0 & (ag,05)€pViyjel. =Fael 3 (a,4) €
o Vi€ I. = [aly, = [aio, Vi € I. = g(a)(@) = g(au)() = B:(5) Vi € I
and hence (3;(7) : i € I) = g(a) €g(B). Hence (f(R),g(T) is a (f(), 9(p))-
product of (R/0;,T/0;), i-€ 1. O

Corollary 4.16. Let R-be a T'=so-ring, » € ConR and {0; | i € I} be a family

of I'-congruence relations on R such that Or = I14(0; : ¢ € I). If the mapping

f:R— HR/Hi is defined by f(x) = ([z]e, : i € I) Yz € R, then f(R) is a
iel

f(¢)-product of R/0;,i € I.

Definition 4.17. Let R be a I'-so-ring, {R; | i € I} be a family of I';-so-rings

and (¢,p) € Con(R,T). If (f,g) is a monomorphism of (R,T) into H(Ri,Fi)
iel

and if (f(R),g(I")) is a (f(¢), g(p))-product of (R;,T;), ¢ € I, then the ordered

pair < ((R;,T;):i € I),(f,g) > is called a (¢, p)-representation of (R,T).

Definition 4.18. Let R, R;(i € I) be a family of I'-so-rings and ¢ € ConR.
If f is a I-monomorphism of R into HRi and if f(R) is a f(¢)-product of
iel
R;,i € I, then the ordered pair < (R; : i € I), f > is called a ¢-representation

of R.
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Remark 4.19. Let R be a I'-so-ring and {R; | ¢ € I} be a family of T';-so-rings.
Suppose (f, g) is a monomorphism from (R,T) into H(Ri,l“i). Then
iel
() ((R;,T;):ie€I),(f,g) >isa (0g, Op)—representzftion of (R,T) if and only
if (f(R),g(T")) is a subdirect product of (R;,T;), ¢ € I,
( i) < (Ri,Ty) i € I),(f,g9) > is a (1g, 1p)-representation of (R,T) if and
only if (f(R),g(T")) is the direct product of (R;,T;), i € I.

Remark 4.20. Let R and R;(i € I) be a family of I'-so-rings. Suppose f is a

I'-monomorphism from R into HRi‘ Then
iel
(i) < (R;:i€ 1), f>is a Og-representation of R if and only if f(R) is a

I'-subdirect product of R;,i € I,
(ii) < (R; : 4 € I), f > is a 1g-representation of R if and.only if f(R) is the
I'-direct product of R;,i € I.

Theorem 4.21. Let R be a I'-so-ring, (¢, p) € Con(R,T') and{(0;,0;) | i € I}

be a family of congruence relations on (R,T"). If the mappings f : R — HR/9
el
andg: T — HI‘/UZ‘ are defined by f(x) = ([xle, : i € I) and g(a) = ([a]s, 10 €
i€l
I) respectively, then < (R/0;,T/o;) vi € I),(f,q) > is a (¢, p)-representation
of (R7 F) = (OR,OF) = H(Qp)((ﬁi,ai) s I).

Proof. Suppose < ((R/0;,T/o;) =i € 1I),(f,g) > is a (¢, p)-representation of
(R,T). Then (f(R),g(I)) is a (f(#),g(p))-product of (R/6;,T'/o;), i € I. Note
that (£(2), f(y) EW0) S.(09) € 0  [zlo, = [ylo, = pi Lymy (F@)) =
pi lrcmy (F)) & (£(0 F@WINE ker(pi |smy)- Also note that (g(a), 9(8)) €
9(0) ¢ (@8) € o & Mol = Blo © 2! Loy (960)) = i Loy (9(8))
< (9(a),9(B)) € ker(pi |gry). Therefore (f(6;),g9(0:)),i € I are the ker-
nels of the projections at i restricted to (f(R),g(I')). Then by the Theo-
rem 46, (Of(R),Og(F)) = ﬂ((f(@l),g(al)) NS I) Hence (Of(R)aOg(l")) =
H(f(¢)7g(p))((f(ei)7g(0'¢)) NS I) By the Lemma 4.13, (OR7OF) = H(¢7p)((9i7oi) :
i € I)." The converse part is trivial in view of the Theorem 4.15. Hence the
theorem. d

Corollary 4.22. Let R be a I'-so-ring, ¢, 0;(i € I) € ConR. Define f : R —
[TR/6; by x — ([x]o, :i € I). Then < (R/0; :i € I), f > is a ¢-representation
of R if and only if Or = [[,(0; : i € I).

Remark 4.23. (i) A family {(6;,0;) | i € I} of congruence relations on a I'-
so-ring R gives a subdirect representation if and only if ﬂ(ﬁi, 0;) = (Og,Or).
iel
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(ii) A family {(6;,0;) | i € I} of congruence relations on a I'-so-ring R consti-
tutes a direct representation if and only if (Og,Or) =[]y, 1, ((0i,04) : 7 € I).

Remark 4.24. (i) A family {6, | i € I} of I'-congruence relations on a I'-so-

ring R gives a I'-subdirect representation if and only if ﬂ@i = 0g.

iel
(ii) A family {0; | i € I} of I'-congruence relations on a I'-so-ring R constitutes
a I'-direct representation if and only if Op = [, ,(6; : i € I).
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