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Abstract. Since the turn of the century there have been several notions

of convergence for subsets of metric spaces appear in the literature. Ap-

pearing in as a subset of these notions is the concepts of epi-convergence.

In this paper we peresent definitions of epi-Cesaro convergence for se-

quences of lower semicontinuous functions from X to [−∞,∞] and Ku-

ratowski Cesaro convergence of sequences of sets. Also we characterize

the connection between epi-Cesaro convergence of sequences of functions

and Kuratowski Cesaro convergence of their epigarphs.
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1. Introduction and Background

During the past five decades new concepts of convergence for sequences of

functions have been appearing in mathematical analysis. These concepts are

especially designed to approach the limit of sequences of variational problems

and are called variational convergence. With each type of variational problem
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is associated a particular concept of convergence. In [3], Attouch developed

a convergence theory for sequences of functions, called epi-convergence. This

concepts of convergence has natural applications in all branches of optimization

theory. In this paper, we will introduce a new convergence kind for sequences

of function sequences and call it epi-Cesaro convergence.

To facilitate this process we recall the basic definitions and concepts (see

[1]-[16]). The Cesaro limit superior and Cesaro limit inferior a real sequence

(xn) are defined as follow:

(C, 1)− lim sup
n

xn = inf
n≥1

sup
m≥n

1

m

m∑
k=1

xk

and

(C, 1)− lim inf
n

xn = sup
n≥1

inf
m≥n

1

m

m∑
k=1

xk.

The sequence x = (xn) is Cesaro convergent if and only if

(C, 1)− lim sup
n

xn = (C, 1)− lim inf
n

xn.

The following characterization may be found in [9].

A sequence (xn) is Cesaro convergent to `, provided

lim
m→∞

1

m

m∑
k=1

xk = `.

In this case we shall write (C, 1)− limxn = `.

The notion of Cesaro convergence extend the usual concept of convergence

in a non-trivial fashion. We know that a convergent sequence is a Cesaro

convergent sequence. But the converse does not holds in general. For example,

the sequence x = (xn) = (1, 0, 1, 0, ...) is Cesaro convergent 1
2 , however this

sequence is not convergent.

Let (X, d) be a metric space. An extended real-valued function f : X →
[−∞,∞] on a metric space X is called lower semicontinuous provided its epi-

graph

epif ≡ {(x, α) : x ∈ X, α ∈ R and α ≥ f (x)}

is closed subset of X × R. Given a sequence (fn) of lower semicontinuous

functions from X into [−∞,∞], we say that (fn) is epi-convergent to f , and

we write f = limefn, provided at each x ∈ X, the following two conditions

both hold:

(i) whenever (xn) is convergent to x, we have f (x) ≤ lim inf fn (xn);

(ii) there exists a sequence (xn) convergent to x such that f (x) = lim fn (xn) .
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Although closely connected to the notion of pointwise convergence it is neither

stronger nor weaker. In fact, certain of functions have different pointwise and

epi-limits. Consider the sequence

fn (x) =


0, if x = 1

n

1, if x 6= 1
n

that pointwise convergent to the function h(x) = 1 for all x and epi-convergent

to

f (x) =

{
0, if x = 0

1, if x 6= 0.

The epi-limit takes into account the behaviour of the f in the neighborhood of

0, whereas the pointwise limit restricts attention to what happens with the fn
at the point 0.

2. Main Results

Definition 2.1. Let (X, d) be a metric space, for every x ∈ X, let us denote

the system of the neighbourhood of x by U(x). With any sequence (fn) of lower

semicontinuous functions from X into [−∞,∞] are associated two Cesaro limit

functions:

(iii) The epi-Cesaro limit inferior of the sequence (fn), denoted by (C, 1)−
liefn is defined by

(C, 1)− liefn(x) = sup
V ∈U(x)

(C, 1)− lim inf
n

inf
u∈V

fn(u).

(iv) The epi-almost limit superior of the sequence (fn), denoted by (C, 1)−
lsefn is defined

(C, 1)− lsefn(x) = sup
V ∈U(x)

(C, 1)− lim sup
n

inf
u∈V

fn(u).

Definition 2.2. Let (X, d) be a metric space and (fn) be a sequence of lower

semicontinuous functions from X into [−∞,∞]. This sequence (fn) is said to

be epi-Cesaro convergent at x, if the following equality holds:

(C, 1)− liefn(x) = (C, 1)− lsefn(x).

This common value is then denoted (C, 1)− limefn(x):

(C, 1)− limefn(x) = (C, 1)− liefn(x) = (C, 1)− lsefn(x).

For lower semicontinuous functions, equivalent definition can be given as

following.

Definition 2.3. Given a sequence (fn) of lower semicontinuous function on a

metric space (X, d), we say that (fn) is epi-Cesaro convergent to f provided at

each x ∈ X, the following two conditions both hold:
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(v) whenever (xn) is Cesaro convergent to x,we have f (x) ≤ (C, 1) −
lim inf fn (xn);

(vi) there exists a sequence (xn) Cesaro convergent to x such that f (x) =

(C, 1)− lim fn (xn) .

In this case we write (C, 1)− limefn = f .

The notion of pointwise Cesaro convergence it is neither stronger nor weaker

than epi-Cesaro convergence. In fact, there exist some functions that have

different pointwise Cesaro and epi-Cesaro limits.

Example 2.4. Let

ak =

{
(−1)n, if k = n2 k = 1, 2, 3, ...

0, otherwise.

Define the following function sequence:

fn (x) =

n∑
k=1

ak.

Since

1

k2

k2∑
i=1

i∑
l=1

al =
k2 − (k − 1)2 + (k − 2)2 − (k − 3)2 + ...+ 22 − 1

k2

=
(12 + 32 + 52 + ...+ k2)− (22 + 42 + 62 + ...+ (k − 1)2)

k2
=

1

2

k + 1

k

if k is odd and

1

k2

k2∑
i=1

i∑
l=1

al =
(k − 1)2 − (k − 2)2 + (k − 3)2 − (k − 4)2 + ...+ 22 − 1

k2

=
(12 + 32 + 52 + ...+ (k − 1)2)− (22 + 42 + 62 + ...+ (k − 2)2)

k2
=

1

2

k − 1

k

if k is even, the sequence (fn(x)) is Cesaro convergent to the function f(x) = 1
2 .

However this sequence is epi-Cesaro convergent to the function f(x) = −1.

Example 2.5. If

fn (x) =

{
x2, if n is odd

0, if n is even,

then the sequence (fn(x)) is Cesaro convergent to the function f(x) = x2

2 but

epi-Cesaro convergent to the function f(x) = 0 that is (C, 1)− limefn(x) = 0.

Example 2.6. Let

ak =

{
(−1)n, if k = 2n k = 1, 2, 3, ...

0, otherwise.
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Define the following function sequence:

fn (x) =

n∑
k=1

ak.

Since

1

2k

2k∑
i=1

i∑
l=1

al =
2k − 2k−1 + 2k−2 − ...+ 2− 1

2k

= 1− 1

2
+

1

22
− 1

23
+ ...+

1

2k−1
− 1

2k
=

1

3
(2− 1

2k
)

if k is odd and

1

2k

2k∑
i=1

i∑
l=1

al =
2k−1 − 2k−2 + 2k−3 − ...+ 2− 1

2k

=
1

2
− 1

22
+

1

23
− 1

23
+ ...+

1

2k−1
− 1

2k
=

1

3
(1− 1

2k
)

if k is even, we have (C, 1)− lim inf fn(x) = 1
3 and (C, 1)− lim sup fn(x) = 2

3 ,

that is the sequence (fn(x)) is not Cesaro convergent. However this sequence

is epi-Cesaro convergent to the function f(x) = −1.

Definition 2.7. Let (An) be a sequence of closed subsets of metric space

(X, d). We say that (An) is Kuratowski Cesaro convergent to a closed subset

A of X provided A = (C, 1)− LiAn = (C, 1)− LsAn where

(C, 1)− LiAn = {x ∈ X : there exist a sequence (an) Cesaro

convergent to x with an ∈ An for all but finitely integers n}
(C, 1)− LsAn = {x ∈ X : there exists positive integers

n1 < n2 < n3 < ..., and ak ∈ Ank
such that (C, 1)− lim

k→∞
ak = x}

in this case we write A = (C, 1)− LimAn.

Theorem 2.8. Let (X, d) be a metric space and (fn) be a sequence of lower

semicontinuous functions from X into [−∞,∞]. The Cesaro limit sets (C, 1)−
Li(epifn) and (C, 1)−Ls(epifn) are still epigraphs. They are equal respectively

to the epigraphs of (C, 1)− lifn and (C, 1)− lifn that is,

(C, 1)− Li(epifn) = epi((C, 1)− lsefn) (2.1)

and

(C, 1)− Ls(epifn) = epi((C, 1)− liefn) (2.2)

Proof. Let us first prove (2.1). By definition (C, 1) − Li, (x, α) ∈ (C, 1) −
Li(epifn) if and only if for all V ∈ U(x) and for every ε > 0 there exist n ∈ N
such that there exists xk ∈ V satisfying

α+ ε >
1

m

m∑
k=1

fk(xk).
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for m ≥ n.

This can be reformulated in the following way:

α > sup
V ∈U(x)

inf
n

sup
m≥n

inf
u∈V

1

m

m∑
k=1

fk(u)

that is

α > sup
V ∈U(x)

lim sup
n

inf
u∈V

1

m

m∑
k=1

fk(u) = ((C, 1)− lsefn)(x)

which means (x, α) ∈ epi((C, 1)− lsefn).

In view of the definition of (C, 1)−Li(epifn), the proof of (2.2) follows from

exactly the same argument as above. �

We are now able to state the main result of this paper and establish the

equivalence between epi-Cesaro convergence of a sequence of functions and the

Kuratowski Cesaro convergence of their epigraphs. It is direct consequence of

Definition 2.3 and Theorem 2.8.

Theorem 2.9. Let (X, d) be a metric space and (fn) a sequence of lower semi-

continuous functions from X into [−∞,∞]. The sequence (fn) is epi-Cesaro

convergent if and only if the sequence of sets (epifn) is Cesaro convergent in

the Kuratowski sense. In that case following equality holds:

epi((C, 1)− limefn) = (C, 1)− Lim(epifn).

Theorem 2.9 allows us to view epigraphs, as epi-Cesaro convergence of a

sequence of functions in terms of set Cesaro convergence.
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