
Iranian Journal of Mathematical Sciences and Informatics

Vol. 10, No. 2 (2015), pp 1-10

A Successive Numerical Scheme for Some Classes of

Volterra-Fredholm Integral Equations

Akbar Hashemi Borzabadi∗, Mohammad Heidari

School of Mathematics and Computer Science, Damghan University,

Damghan, Iran.

E-mail: borzabadi@du.ac.ir

E-mail: m.heidari27@gmail.com

Abstract. In this paper, a reliable iterative approach, for solving a wide

range of linear and nonlinear Volterra-Fredholm integral equations is es-

tablished. First the approach considers a discretized form of the integral

terms where considering some conditions on the kernel of the integral

equation it is proved that solution of the discretized form converges to

the exact solution of the problem. Then the solution of the discretized

form is approximated by an iterative scheme. Comparison of the approx-

imate solution with exact solution shows that the used approach is easy

and practical for some classes of linear and nonlinear Volterra-Fredholm

integral equations.
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1. Introduction

Integral equations are an important branch of modern mathematics and arise

frequently in many applied areas including engineering, mechanics, physics,
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chemistry, astronomy, biology, economics, potential theory and electrostatics

[7, 14].

Volterra-Fredholm integral equations are usually difficult to solve analyti-

cally and so the numerical approaches are created to overcome the complex-

ities of analytical methods.. Extracting the numerical solutions of Volterra-

Fredholm integral equation is a well-studied problem and a large variety of

numerical methods have been developed to obtain rapidly and accurately ap-

proximate solutions. Collocation methods [5, 11], Taylor series [15], toeplitz

matrix method [4], orthogonal polynomial method of type Legendre polyno-

mials [1, 2], particular trapezoidal Nystrom [9, 8] and Adomian decomposition

method [6] are several of many approaches that have previously been consid-

ered.

In this study, we tend to present a numerical scheme for extracting approx-

imate solutions for the Volterra-Fredholm integral equations as

x(s) = f(s) +

∫ s

a

g(s, t, x(t))dt+

∫ b

a

h(s, t, x(t))dt, a.e. on [a, b], (1.1)

by an iterative method and it is supposed that the discussed integral equations

have at least one solution. At the beginning, we transform the equation into a

discretized form.

2. Integral Equation Transformation

Let △ = {a = s0, s1, · · · , sn−1, sn = b} be an equidistant partition of [a, b]

where h = si+1 − si, i = 0, 1, · · · , n − 1 is the discretization parameter of the

partition. Now, if x∗(t) be an analytical solution of (1.1), then for the partition

△ on [a, b], we have

x∗(si) = f(si)+

∫ si

a

g(si, t, x
∗(t))dt+

∫ b

a

h(si, t, x
∗(t))dt, i = 0, 1, · · · , n. (2.1)

In (2.1), the integral term can be estimated by a numerical method of integra-

tion, e.g. Newton-Cotes methods. Therefore, by taking equidistant partition

△, as above with h = ti+1 − ti, i = 0, 1, · · · , n− 1 and also the known weights

wij , j = 0, 1, · · · , i, for interval [a, si] and wl, l = 0, 1, · · · , n, for interval [a, b],

equality (2.1) can be written as,

x∗
i = fi +

i∑
j=0

wijg(si, tj , x
∗
j ) +O(hν1) +

n∑
l=0

wlh(si, tl, x
∗
l ) +O(hν2), (2.2)

where i = 0, 1, · · · , n, x∗
i = x∗(si), fi = f(si), i = 0, 1, · · · , n, and ν1, ν2

depend upon the used method of Newton-Cotes for estimating of the integrals

in (2.1). From (2.2) we have

x∗
i = fi+

i∑
j=0

wijg(si, tj , x
∗
j )+

n∑
l=0

wlh(si, tl, x
∗
l )+O(hν), i = 0, 1, · · · , n, (2.3)

Arc
hive

 of
 S

ID

www.SID.ir



A Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations 3

where ν = min(ν1, ν2).

For partition △, we consider a nonlinear equations system obtained by neglect-

ing the truncation error of (2.1), as follows,

ξi = fi +
i∑

j=0

wijg(si, tj , ξj) +
n∑

l=0

wlh(si, tl, ξl), i = 0, 1, · · · , n, (2.4)

and suppose that the exact solution of nonlinear system (2.4) is n-tuple (ξ∗0 , ξ
∗
1 ,

· · · , ξ∗n). In the following proposition, we seek for the conditions of vanishing

‖x∗ − ξ∗‖∞ where x∗ and ξ∗ are the following vectors:

x∗ = (x∗
0, x

∗
1, · · · , x

∗
n)

T , ξ∗ = (ξ∗0 , ξ
∗
1 , · · · , ξ

∗
n)

T .

Proposition 2.1. Suppose,

(i) g(s, t, x(s)), h(s, t, x(s)) ∈ C([a, b]× [a, b]× IR),

(ii) gx(s, t, x(s)), hx(s, t, x(s)) exist on [a, b]× [a, b]× IR and γ1 < 1
b−a

,

γ2 < 1
b−a

, where

γ1 = sup
s,t∈[a,b]

|gx(s, t, x(s))|, γ2 = sup
s,t∈[a,b]

|hx(s, t, x(s))|.

Then

‖x∗ − ξ∗‖∞ ≤
|O(hν)|

1− (γ1 + γ2)(b− a)
. (2.5)

Proof. Let

|x∗
p − ξ∗p | = ‖x∗ − ξ∗‖∞,

in which 0 ≤ p ≤ n. By (2.3) and (2.4), we have

x∗
p − ξ∗p =

p∑
j=0

wpj
(g(sp, tj , x

∗
j )− g(sp, tj , ξ

∗
j ))

+

n∑
l=0

wl(h(sp, tl, x
∗
l )− g(sp, tl, ξ

∗
l )) +O(hν).

According to (ii)

g(sp, tj , x
∗
j )− g(sp, tj , ξ

∗
j ) =

∂g

∂x
(sp, tj , ηj)(x

∗
j − ξ∗j ), j = 0, 1, · · · , n,

h(sp, tl, x
∗
l )− h(sp, tl, ξ

∗
l ) =

∂h

∂x
(sp, tl, ζl)(x

∗
l − ξ∗l ), l = 0, 1, · · · , n,

where for each j = 0, 1, · · · , n, ηj and ζj are real numbers between x∗
j and ξ∗j .

Again by (ii) and the above equalities, we conclude that

|x∗
p − ξ∗p | ≤ γ1

p∑
j=0

wpj
|x∗

j − ξ∗j |+ γ2

n∑
l=0

wl|x
∗
l − ξ∗l |+ |O(hν)|

≤ γ1|x
∗
p − ξ∗p |

p∑
j=0

wpj
+ γ2|x

∗
p − ξ∗p |

n∑
l=0

wl + |O(hν)|.
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Since
∑p

j=0 wpj
≤ b− a and

∑n

l=0 wl = b− a, thus

|x∗
p − ξ∗p | ≤

|O(hν)|

1− (γ1 + γ2)(b− a)
.

�

Equation (2.5) leads to the following corollary.

Corollary 2.2. ‖x∗ − ξ∗‖∞ vanishes when h → 0.

So far, we came to the nonlinear equations system (2.4) with a special form

that let us offer a numerical approach for detecting the approximate solution.

3. The Numerical Approach

Iterative methods are widely used for finding approximate solution of non-

linear equations systems [13]; The nonlinear equations system (2.4) also has

a structure that permits to approximate its solution by an iterative method.

For this purpose, we apply a successive substitution, similar to Gauss-Seidel

method of solving linear equations systems, and thereby define an iterative

process leading to the sequence of vectors {ξ(k)}, where the components of the

vectors satisfy the iteration formula,

ξ
(k+1)
i = fi +

i∑
j=0

wijg(si, tj , ξ
(k)
j ) +

n∑
l=0

wlh(si, tl, ξ
(k)
l ), (3.1)

wherei = 0, 1, · · · , n, k = 0, 1, · · · . However, we should first study the condi-

tions that guarantee the convergence of the sequence {ξ(k)}.

Theorem 3.1. Considering assumptions of Proposition 2.1, the produced se-

quence {ξ(k)} from the iteration process (3.1) tends to the exact solution of

(2.4), say ξ∗, for any arbitrary initial vector ξ(0) .

Proof. By (2.4) and (3.1) we have,

ξ
(k+1)
i − ξ∗i =

i∑
j=0

wij (g(si, tj , ξ
(k)
j )− g(si, tj , ξ

∗
j ))

+
n∑

l=0

wl(h(si, tl, ξ
(k)
l )− h(si, tl, ξ

∗
l )), i = 0, 1, · · · , n,

and according to the condition (ii) of Proposition 2.1,

ξ
(k+1)
i − ξ∗i =

i∑
j=0

wij

∂g

∂x
(si, tj , η

(k)
j )(ξ

(k)
j − ξ∗j )

+

n∑
l=0

wl

∂h

∂x
(si, tl, ζ

(k)
l )(ξ

(k)
l − ξ∗l ), i = 0, 1, · · · , n,
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where η
(k)
j and ζ

(k)
j are real numbers between ξ

(k)
j and ξ∗j for j = 0, 1, · · · , n.

Thus, for each i = 0, 1, · · · , n, one may obtain the following inequalities

|ξ
(k+1)
i − ξ∗i | ≤ ‖ξ(k) − ξ∗‖∞

i∑
j=0

wij |
∂g

∂x
(si, tj , η

(k)
j )|

+ ‖ξ(k) − ξ∗‖∞

n∑
l=0

wl|
∂h

∂x
(si, tl, ζ

(k)
l )|

≤ γ1‖ξ
(k) − ξ∗‖∞

i∑
j=0

wij + γ2‖ξ
(k) − ξ∗‖∞

n∑
l=0

wl,

where i = 0, 1, · · · , n. By setting λ1 = γ1(b−a) and λ2 = γ2(b−a) we conclude

that

‖ξ(k+1) − ξ∗‖∞ ≤ λ1‖ξ
(k) − ξ∗‖∞ + λ2‖ξ

(k) − ξ∗‖∞ ≤ λ‖ξ(k) − ξ∗‖∞,

where λ = max{λ1, λ2}. By induction on k, we get

‖ξ(k+1) − ξ∗‖∞ ≤ λk‖ξ(0) − ξ∗‖∞,

for each k = 0, 1, · · · . Since 0 < λ1 < 1 and 0 < λ2 < 1, thus 0 < λ < 1 and

k → +∞ implies that ‖ξ(k+1) − ξ∗‖∞ vanishes. �

4. Algorithm of the Approach

In this section, we try to propose an algorithm on the basis of the above

discussions and suppose that we face with the Volterran-Fredholm integral

equation (1.1), where its kernels satisfy the conditions of Proposition 2.1. This

algorithm is presented in two stages, initialization step and main steps.

Initialization step:

Choose ǫ > 0, an equidistant partition △ = {a = s0 = t0, s1 = t1, · · · , sn−1 =

tn−1, sn = tn = b} on [a, b] with the step size h = si+1 − si, i = 0, 1, · · · , n− 1

and an initial vector ξ(0) = (ξ
(0)
0 , ξ

(0)
1 , · · · , ξ

(0)
n )T . Set k = 0 and go to the main

steps.

Main steps:

Step 1. Compute ξ(k+1) by (3.1), and go to Step 2.

Step 2. Compute ‖ξ(k+1) − ξ(k)‖∞ and go to Step 3.

Step 3. If ‖ξ(k+1) − ξ(k)‖∞ < ǫ, stop; Otherwise, set k = k + 1 and go to step

1.

In the next section we present some numerical examples to show the efficiency

of this approach.

5. Numerical Examples

We suppose x∗(s) be exact solution of Volterran-Fredholm integral equation

(1.1) and ξ̂i, i = 0, 1, · · · , n be a solution obtained by applying the given
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Figure 1. circle-wise curve shows approximate solution and dash-

dotted curve shows exact solution.
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Figure 2. The error function of Example 5.1.

algorithm with a known ǫ > 0 and partition △. To compare the solutions we

define a discrete error function

e△(si) = x∗(si)− ξ̂(si), i = 0, 1, · · · , n. (5.1)

Example 5.1. In this example, we apply the given scheme to a Volterran-

Fredholm integral equation as follows:

x(s) = es −
s

2
(e2s + 1) +

∫ s

0

se2s

x2(t)
dt+

∫ 1

0

stx(t)dt, s ∈ [0, 1].

This integral equation has analytical solution x(s) = es on [0, 1]. We take

ǫ = 10−6 and a partition with the discretization parameter h = 1
100 . The

initial vector ξ(0) = 1 is considered for starting algorithm. One can compare

the exact and approximate solutions of the integral equation in Fig. 1. The

error function (5.1) also can be seen in Fig. 2.

Example 5.2. In this example, a Volterran-Fredholm integral equation as

follows:

x(s) =
s2

12
(11− 4s2) +

∫ s

0

4(s− t)x(t)dt+

∫ 0.5

0

2s2x(t)dt, s ∈ [0, 0.5],
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Figure 3. circle-wise curve shows approximate solution and dash-

dotted curve shows exact solution.
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Figure 4. The error function of Example 5.2.

has been considered. This integral equation has analytical solution x(s) = s2

on [0, 0.5]. Taking ǫ = 10−6, h = 1
100 and ξ(0) = 1. The exact and approximate

solutions of the integral equation have been compared in Fig. 3. The error

function (5.1) also can be seen in Fig. 4.

Example 5.3. In this example, a Volterra-Fredholm integral equation as

follows:

x(s) = cos(2πs)−
3s

4
sin(4πs) +

∫ s

0

2πs cos(2πs)x(t)dt

+

∫ 0.5

0

s sin(4πs+ 2πt)x(t)dt, s ∈ [0, 0.5].

is considered where x(s) = cos(2πs) is analytical solution of integral equation

on [0, 0.5], ǫ = 10−6, h = 1
100 and ξ(0) = 1. One can compare the exact and

approximate solutions of the integral equation in Fig. 5. The error function

(5.1) also can be seen in Fig. 6.

Example 5.4. Consider the nonlinear Volterran-Fredholm integral equation
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Figure 5. circle-wise curve shows approximate solution and dash-

dotted curve shows exact solution.
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Figure 6. The error function of Example 5.3.

of Hammerstein type as follows [15]:

x(s) = −
1

30
s6+

1

3
s4−s2+

5

3
s−

5

4
+

∫ s

0

(s−t)x2(t)dt+

∫ 1

0

(t+s)x(t)dt, s ∈ [0, 1].

Considering the analytical solution x(s) = s2 − 2 on [0, 1], ǫ = 10−6, h = 1
100

and ξ(0) = 1. One can observe comparison of the exact and approximate

solutions of the integral equation in Fig. 7. The error function (5.1) also can

be seen in Fig. 8.

Example 5.5. In this example, we apply our method to a Volterran-Fredholm

integral equation as follows:

x(s) = es(1−s)+
π

4
s−stan−1(es)+

∫ s

0

sx(t)

1 + x2(t)
dt+

∫ 1

0

stesx(t)dt, s ∈ [0, 1],

where the analytical solution is x(s) = es on [0, 1]. Taking ǫ = 10−6, h = 1
100

and ξ(0) = 1. One can compare the exact and approximate solutions of the

integral equation in Fig. 9. Also the error function (5.1) has been shown in

Fig. 10.
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Figure 7. circle-wise curve shows approximate solution and dash-

dotted curve shows exact solution.
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Figure 8. The error function of Example 5.4.
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Figure 9. circle-wise curve shows approximate solution and dash-

dotted curve shows exact solution.
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Figure 10. The error function of Example 5.5.
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