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1. Introduction

We consider the following optimization programming problem:

(P )

{
Minimize f(x),

subject to ft(x) ≤ 0, ∀t ∈ T,

where T is an arbitrary set, and all emerging functions f and ft for t ∈ T are

extended real-valued locally Lipschitz from the Banach space X.

If |T | < ∞, necessary conditions of Karusk-Kuhn-Tucker (KKT, shortly)

type for optimality can be established under various constraint qualifications

(CQ, briefly). In order to study and compare these CQs in smooth and non-

smooth cases, see the books [4, 6, 10, 18] and the papers [1, 22, 24, 25].
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12 N. Kanzi

If T is arbitrary index set and X = Rn, the KKT necessary optimality

conditions have been studied by many authors who have used term semi-infinite

programming problem; see for example [7, 14] in linear case, [5, 15] in convex

case, [8] in smooth case, and [11, 12, 13, 27] in locally Lipshitz case.

If T is an infinite index set and X has infinite dimension, The problem (P )

is called infinite problem. Several papers studied infinite problems and gave

the KKT necessary conditions (see e.g., [3, 19, 20, 21] and their references).

In these papers, three kinds of CQs are usually considered including “Farkas-

Minkowski CQ” and “closedness CQ”, using basic/limiting subdifferential or

convex ones.

This paper focuses mainly on some kinds of CQs for infinite problem (P )

which are based on Michel-Penot subdifferential, their interrelations, and their

applications to KKT necessary optimality conditions.

The remainder of the present paper is organized as follows. In Section 2,

basic notations and preliminary results are reviewed. In Section 3, we intro-

duce the Zangwill CQ, first Mangasarian-Fromovitz CQ, second Mangasarian-

Fromovitz CQ, and linear independence CQ for the problem (P ). In Section

4 we present first-order necessary optimality conditions for the problem (P )

under the constraint qualifications introduced in section 3.

2. Notations and Preliminaries

Let X∗ be the (continuous) dual space of X, and let 〈x∗, x〉 denotes the value

of the function x∗ ∈ X∗ at x ∈ X. If A∗ ⊆ X∗, set 〈A∗, x〉 := {〈a∗, x〉 | a∗ ∈ A∗} .
When we write B ≤ 0 for some B ⊆ R, means b ≤ 0 for all b ∈ B. The symbols

B, conv(B), and cone(B) denote the closure, the convex hull, and the convex

cone (containing zero) of B ⊆ X.

Let x̂ ∈ X and let ϕ : X → R be any function. The Michel-Penot (M-P,

briefly) directional derivative of ϕ at x̂ in the direction v ∈ X introduced in

[16] is given by

ϕ�(x̂; v) := sup
w∈X

lim sup
α↓0

ϕ(x̂+ αv + αw)− ϕ(x̂+ αw)

α
,

and the M-P subdifferential of ϕ at x̂ is given by the set

∂�ϕ(x̂) :=
{
ξ ∈ X∗ | 〈ξ, v〉 ≤ ϕ�(x̂; v) for all v ∈ X

}
.

The M-P subdifferential is a natural generalization of the Gâteaux derivative

(see [16, Proposition 1.3]). Moreover when a function ϕ is convex, the M-P

subdifferential coincides with the subdifferential in the sense of convex analysis,

denoted by ∂.

In the following theorem we summarize some important properties of the

M-P directional derivative and the M-P subdifferential from [16, 17] which are

widely used in what follows.
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Mangasarian-Fromovitz and Zangwill Conditions for Non-Smooth · · · 13

Theorem 2.1. Let ϕ and φ be functions from X to R which are Lipschitz near

x̂. Then, the following assertions hold:

(i) One always that

ϕ�(x̂; v) = max
{
〈ξ, v〉 | ξ ∈ ∂�ϕ(x̂)

}
, (2.1)

∂�
(

max{ϕ, φ}
)
(x) ⊆ conv

(
∂�ϕ(x) ∪ ∂�φ(x)

)
, (2.2)

∂�(ϕ+ φ)(x̂) ⊆ ∂�ϕ(x̂) + ∂�φ(x̂). (2.3)

(ii) The function v → ϕ�(x̂; v) is finite, positively homogeneous, and sub-

additive on X, and

∂
(
ϕ�(x̂; .)

)
(0) = ∂�ϕ(x̂). (2.4)

(iii) ∂�ϕ(x̂) is nonempty, convex, and weak∗-compact subset of X∗.

3. Qualification Conditions

In this section, we present several constraint qualifications for problem (P ),

and investigate the relationships with them. As a starting, we denote the

feasible set of problem (P ) with

Ω :=
{
x ∈ X | ft(x) ≤ 0 ∀t ∈ T

}
.

The feasible directions cone of Ω at x̂ ∈ Ω is defined as

DΩ(x̂) :=
{
z ∈ X | ∃ε > 0, such that x̂+ αz ∈ Ω ∀α ∈ (0, ε)

}
.

For a given x̂ ∈ Ω, let T (x̂) denotes the index set of all active constraints at x̂,

i.e.,

T (x̂) := {t ∈ T | ft(x̂) = 0} .
Based on the above notations and the Michel-Penot subdifferential, we extend

the Zangwill CQ to nondifferentiable infinite problem (P ).

Definition 3.1. Let x̂ ∈ Ω. We say that The Zangwill CQ holds at x̂ if{
v ∈ X |

〈 ⋃
t∈T (x̂)

∂�ft(x̂), v
〉
≤ 0

}
⊆ DΩ(x̂).

Set

F (x) := sup
t∈T

ft(x), ∀x ∈ Ω.

One reason for difficulty of extending the results from a finite problem (i.e.,

|T | <∞) to problem (P ) is that in the finite case F (.) is locally Lipschitz and

we have (using (2.2) and mathematical induction):

∂�F (x) ⊆ conv
( ⋃
t∈T (x)

∂�ft(x)
)
, ∀x ∈ Ω, (3.1)

but in general, (3.1) does not hold for infinite problem (P ).
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14 N. Kanzi

At this point, we recall from differentiable finite programming theory (i.e.,

T = {1, 2, . . . ,m}) that the Mangasarian-Fromovitz CQ holds at x̂, if there

exists an û ∈ X such that
〈
∇ft(x̂), û

〉
< 0 for all t ∈ T (x̂). It is easy to see that

the Mangasarian-Fromovitz CQ in differentiable finite problem is equivalent to

the following implication (see, e.g., [2]):∑
t∈T (x̂)

λt∇ft(x̂) = 0, λt ≥ 0 ∀t ∈ T (x̂) =⇒ λt = 0 ∀t ∈ T (x̂).

We now extend the Mangasarian-Fromovitz CQ for problem (P) in two different

forms.

Definition 3.2. We say that the first Mangasarian-Fromovitz CQ holds at x̂

if the following assertions satisfy:

(A): F (.) is Lipschitz continuous around x̂.

(Á): ∂�F (x̂) ⊆ conv
(⋃

t∈T (x̂) ∂
�ft(x̂)

)
.

(À):

{
v ∈ X |

〈⋃
t∈T (x̂) ∂

�ft(x̂), v
〉
< 0

}
6= ∅.

Remark 3.3. An interesting sufficient condition ensuring the Lipschitzian prop-

erty of F around x̂ in finite dimensional space can be found in [23, Theorem

9.2]. The condition Á was called the Pshenichnyi-Levin-Valadire property for

convex infinite problems in [26].

We observe that there is no relation of implication between the Á and the À

in Definition 3.2. Indeed, for any finite T the À is true, but it may not satisfy

the Á; while in the following example the problem actually satisfies the À at

x̂ := 0, but the Á does not hold at this point.

Example 3.4. Consider the following problem:

inf f(x) := |x|
s.t. ft(x) ≤ 0, t ∈ T := N

x ∈ R,

where

ft(x) :=


5x− 2

t+1 if t is odd

6x if t = 2

7x− 2
t if t ≥ 4 and t is even.

If we consider the point x̂ := 0, then T (x̂) = {2}. This implies{
v ∈ X |

〈 ⋃
t∈T (x̂)

∂�ft(x̂), v
〉
< 0

}
=
{
v ∈ R |

〈
∂�f2(x̂), v

〉
< 0
}

=

{
v ∈ R |

〈
6, v
〉
< 0
}

= (−∞, 0) 6= ∅.

Arc
hive

 of
 S

ID

www.SID.ir



Mangasarian-Fromovitz and Zangwill Conditions for Non-Smooth · · · 15

Thus À satisfies. On the other hand, a short calculation shows that

F (x) =

{
7x if x ≥ 0

5x if x < 0
, =⇒

∂�F (x̂) = [5, 7] * {6} = conv
( ⋃
t∈T (x̂)

∂�ft(x̂)
)
.

Hence, Á is not satisfy.

Theorem 3.5. The first Mangasarian-Fromovitz CQ at x̂ ∈ Ω implies the

Zangwill CQ at this point.

Proof. By À, let v̂ be an element of

{
v ∈ X |

〈⋃
t∈T (x̂) ∂

�ft(x̂), v
〉
< 0

}
. It is

easy to show that

v̂ ∈
{
v ∈ X |

〈
conv

( ⋃
t∈T (x̂)

∂�ft(x̂)
)
, v
〉
< 0

}
.

On the other hand, Á leads to{
v ∈ X |

〈
conv

( ⋃
t∈T (x̂)

∂�ft(x̂)
)
, v
〉
< 0

}
⊆
{
v ∈ X |

〈
∂�F (x̂), v

〉
< 0
}
.

Above two relations imply
〈
∂�F (x̂), v̂

〉
< 0. From this inequality and (2.1), we

obtain F �(x̂; v̂) < 0. Now, from the definition of M-P subdifferential we get

lim sup
α↓0

F (x̂+ αv̂)− F (x̂)

α
≤ F �(x̂; v̂) < 0,

and consequently, there exists a scalar ε > 0 such that

F (x̂+ αv̂) < F (x̂) ≤ 0, ∀ α ∈ (0, ε).

Thus, for all t ∈ T and for all α ∈ (0, ε), we conclude ft(x̂ + αv̂) < 0, which

implies

x̂+ αv̂ ∈ Ω, ∀ α ∈ (0, ε).

Therefore, we have proved{
v ∈ X |

〈 ⋃
t∈T (x̂)

∂�ft(x̂), v
〉
< 0

}
⊆ DΩ(x̂).

Hence, we can obtain that{
v ∈ X |

〈 ⋃
t∈T (x̂)

∂�ft(x̂), v
〉
≤ 0

}
=

{
v ∈ X |

〈 ⋃
t∈T (x̂)

∂�ft(x̂), v
〉
< 0

}
⊆ DΩ(x̂),

and the proof is complete. �

Definition 3.6. We say that the problem (P ) satisfies in the second Mangasarian-

Fromovitz CQ at x̂ ∈ Ω, if the following assertions hold:

(A): F (.) is Lipschitz continuous around x̂.
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16 N. Kanzi

(Á): ∂�F (x̂) ⊆ conv
(⋃

t∈T (x̂) ∂
�ft(x̂)

)
.

(À1): for each finite index set T̂ ⊆ T (x̂), the next implication is true:

0 ∈
∑
t∈T̂

λt∂
�ft(x̂), λt ≥ 0 ∀t ∈ T̂ =⇒ λt = 0 ∀t ∈ T̂ .

Theorem 3.7. The first Mangasarian-Fromovitz CQ at x̂ ∈ Ω implies the

second Mangasarian-Fromovitz CQ at this point.

Proof. It is enough to establish (À) =⇒ (À1). Suppose that (À) holds. Then

there exists an v̂ ∈ X such that〈 ⋃
t∈T (x̂)

∂�ft(x̂), v̂
〉
< 0. (3.2)

If T̂ ⊆ T is a finite index set and λt, t ∈ T̂ are non-negative scalars satisfying

0 ∈
∑
t∈T̂

λt∂
�ft(x̂),

then, we conclude

0 =
〈
0, v̂
〉
∈
∑
t∈T̂

λt
〈
∂�ft(x̂), v̂

〉
.

Owning to (3.2) and sign of λts, the last inclusion is fulfill only if λt = 0 for all

t ∈ T̂ , as request. �

To establish the converse of Theorem 3.7, we require the following definition

from [13].

Definition 3.8. Let Γ is an arbitrary index set, and the function ϕω for each

ω ∈ Γ is defined from X to R. We say that the system{
ϕω(x) < 0 | ω ∈ Γ

}
,

is compactable, when the following proposition holds:

“ If
{
ϕω(x) < 0 | ω ∈ Γ0

}
has solution for each finite index set Γ0 ⊆ Γ,

then
{
ϕω(x) < 0 | ω ∈ Γ

}
has solution in X.”

Theorem 3.9. The second Mangasarian-Fromovitz CQ at x̂ ∈ Ω implies the

first Mangasarian-Fromovitz CQ at this point, if
{
f�t (x̂; .) < 0 | t ∈ T (x̂)

}
is a

compactable system.

Proof. It is enough to establish (À1) =⇒ (À). We first prove that for any given

t1 ∈ T (x̂), there exists v̂ ∈ X such that

f�t1(x̂, v̂) < 0. (3.3)

If, on contrary, the above inequality has no solution with respect to v̂, then

v0 := 0 is an solution to the following optimization problem

min f�t1(x̂, v)

s.t. v ∈ X.
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Mangasarian-Fromovitz and Zangwill Conditions for Non-Smooth · · · 17

Since the objective function is convex, by the Lagrange multiplier rule and

virtue of (2.4), we obtain that

0 ∈ ∂
(
f�t1(x̂, .)

)
(0) = ∂ft1(x̂),

which contracts (À1). Now, establish that for any two given t1, t2 ∈ T (x̂), there

exists v̂ ∈ X such that

f�t1(x̂, v̂) < 0,

f�t2(x̂, v̂) < 0.

On the contrary, suppose that the above system does not have a solution.

Then f�t2(x̂, v̂) ≥ 0 for all v̂ satisfying the (3.3), which implies that v0 := 0

is a solution to the following optimization problem with convex objective and

constraints:

min f�t2(x̂, v)

s.t. f�t1(x̂, v) ≤ 0.

Indeed, let v∗ be any feasible solution of the above problem and let u∗ be a

solution of (3.3); then owning to Theorem 2.1(ii), v∗+αu∗ ia a solution of (3.3)

for any α > 0, and hence f�t2(x̂, v∗+αu∗) ≥ 0 by the assumption, which implies

that f�t2(x̂, v∗) ≥ 0 after taking limits as α → 0. By the Lagrange multiplier

rule, there must exist λt1 , λt2 ≥ 0 such that

0 ∈ λt2∂�ft2(x̂) + λt1∂
�ft1(x̂), and (λt1 , λt2) 6= (0, 0),

which contradicts (À1). It is follows from mathematical induction that for each

finite set T̂ ⊆ T (x̂), we can fine a v̂ ∈ X such that

f�
t̂

(x̂, v̂) < 0, for all t̂ ∈ T̂ .

Now, the compactable assumption implies that there is a v̂ ∈ X, such that

f�t (x̂, v̂) < 0, for all t ∈ T̂ (x̂).

Hence, owning to (2.1), the proof is complete. �

Definition 3.10. We say that the linear independence CQ is satisfied at x̂ ∈ Ω,

if the following assertions hold:

(A): F (.) is Lipschitz continuous around x̂.

(Á): ∂�F (x̂) ⊆ conv
(⋃

t∈T (x̂) ∂
�ft(x̂)

)
.

(À2):
{
ξt | t ∈ T̂

}
is linear independent for each finite index set T̂ ⊆ T

and for each ξt ∈ ∂�ft(x̂).

Theorem 3.11. The linear independence CQ at x̂ ∈ Ω implies the second

Mangasarian-Fromovitz CQ at this point.

Proof. It is follows that (À2) =⇒ (À1), and the result is immediate. �
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18 N. Kanzi

Owning to Theorems 3.5 & 3.7, and 3.11, the relationships between the

various constraint qualifications are given in the following diagram:

L.I. CQ

⇓
M.F. CQ1 ⇒ M.F. CQ2

⇓
Z. CQ

(3.4)

4. Necessary Conditions

The first theorem in this section gives a KKT type necessary condition for

optimal solution of problem (P ) under the second Mangasarian-Fromovitz CQ.

Theorem 4.1. Suppose that x̂ is an optimal solution for problem (P ), and the

second Mangasarian-Fromovitz CQ holds at x̂. Then, there exist λt ≥ 0, t ∈
T (x̂), where λt 6= 0 for finitely many t ∈ T (x̂), such that

0 ∈ ∂�f(x̂) +
∑
t∈T (x̂)

λt∂
�ft(x̂).

Proof. Observe that

Ω =
{
x ∈ X | F (x) ≤ 0

}
,

and hence, x̂ is a solution of the following optimization problem:

min f(x)

s.t. F (x) ≤ 0.

Since the objective and the constraint functions of above problem are Lipschitz

near x̂, by the Fritz-John multiplier rule and (Á), we find non-negative scalars

β0, β1 such that β0 + β1 = 1 and

0 ∈ β0∂
�f(x̂) + β1∂

�F (x̂) ⊆ β0∂
�f(x̂) + β1conv

( ⋃
t∈T (x̂)

∂�ft(x̂)
)
.

Therefore, there are a finite index set T̂ ⊆ T (x̂) and γt ≥ 0 for t ∈ T̂ such that∑
t∈T̂ γt = 1 and

0 ∈ β0∂
�f(x̂) + β1

∑
t∈T̂

γt∂
�ft(x̂).

If β0 = 0, then β1 = 1 by β0 + β1 = 1. Thus the above inclusion and (À1)

imply γt = 0 for all t ∈ T̂ which is contradiction. Hence, β0 6= 0, and the result

is verified with taking λt := β1γt
β0

for each t ∈ T̂ . �

Before proving the next theorems, we give a lemma, which will be useful.

Lemma 4.2. Let x̂ is an optimal solution of problem (P ), and v∗ ∈
(
DΩ(x̂)

)
.

Then one has f�(x̂; v∗) ≥ 0
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Mangasarian-Fromovitz and Zangwill Conditions for Non-Smooth · · · 19

Proof. We first claim that each v̂ ∈ DΩ(x̂) satisfying f�(x̂; v̂) ≥ 0. On the

contrary, suppose there exists v̂ ∈ DΩ(x̂) such that f�(x̂; v̂) < 0. Then

lim sup
α↓0

f(x̂+ αv̂)− f(x̂)

α
≤ f�(x̂; v̂) < 0,

which implies that there exists ε1 > 0 such that

f(x̂+ αv̂)− f(x̂) < 0 ∀α ∈ (0, ε1).

By the definition of DΩ(x̂), there exists ε2 > 0 such that

x̂+ αv̂ ∈ Ω ∀α ∈ (0, ε2).

Owning to the above two relations, for each α ∈ (0, ε) with ε := min{ε1, ε2},
we have

hx+ αv̂ ∈ Ω and f(x̂+ αv̂) < f(x̂).

But this contradicts the fact that x̂ is an optimal solution of (P ), and hence

our claim holds.

Now, let v∗ ∈
(
DΩ(x̂)

)
. Then, there exists sequence {v̂l}∞l=1 in DΩ(x̂) converg-

ing to v∗. Taking into consideration the continuity of f�(x̂; .), and f�(x̂; v̂l) ≥ 0

for all l ∈ N, it follows that f�(x̂; v∗) ≥ 0, as required. �

Theorem 4.3. Suppose that x̂ is an optimal solution of problem (P ), and the

Zangwill CQ is satisfied at x̂. Then the following inclusion holds:

0 ∈ ∂�f(x̂) + cone
( ⋃
t∈T (x̂)

∂�ft(x̂)
)
.

Proof. Let v̂ is an element of X satisfying
〈⋃

t∈T (x̂) ∂
�ft(x̂), v̂

〉
≤ 0. Owning to

Guignard CQ and Lemma 4.2 we conclude f�(x̂; v̂) ≥ 0. Thus, we can obtain

f�(x̂; v̂) ≥ 0, for all v̂ ∈
{
v ∈ X |

〈
cone

( ⋃
t∈T (x̂)

∂�ft(x̂)
)
, v
〉
≤ 0

}
,

in view of{
v ∈ X |

〈
cone

( ⋃
t∈T (x̂)

∂�ft(x̂)
)
, v
〉
≤ 0

}
=

{
v ∈ X |

〈 ⋃
t∈T (x̂)

∂�ft(x̂), v
〉
≤ 0

}
.

The above result implies that v∗ := 0 is a global minimizer of the convex

function v → H(v) := f�(x̂; v) + Θ(v), where Θ(.) denotes the indicator func-

tion of set

{
v ∈ X |

〈
cone

(⋃
t∈T (x̂) ∂

�ft(x̂)
)
, v
〉
≤ 0

}
; i.e., Θ(v) = 0 if〈

cone
(⋃

t∈T (x̂) ∂
�ft(x̂)

)
, v
〉
≤ 0, and Θ(v) = +∞ otherwise.

Now, by necessary condition for convex optimization problems (see e.g.,

[9]), and by the sum rule formula (2.3) (which equality holds there for convex

functions), one has

0 ∈ ∂
(
f�(x̂; .)

)
(0) + ∂Θ(0),
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20 N. Kanzi

where ∂ϕ denotes the subdifferential of convex function ϕ in the sense of

convex analysis. Finally, the virtue of (2.4), and the fact that ∂Θ(0) =

cone
(⋃

t∈T (x̂) ∂
�ft(x̂)

)
, conclude that

0 ∈ ∂�f(x̂) + cone
( ⋃
t∈T (x̂)

∂�ft(x̂)
)
,

as required. �

Now, we can formulate our main result of this section.

Theorem 4.4. Suppose that x̂ is an optimal solution of problem (P ), and one

of the following conditions holds:

(1) Zangwill CQ at x̂, and closedness of cone
(⋃

t∈T (x̂) ∂
�ft(x̂)

)
.

(2) First Mangasarian-Fromovitz CQ at x̂.

(3) Second Mangasarian-Fromovitz CQ at x̂.

(4) Linear independence CQ at x̂.

Then, there exist λt ≥ 0, t ∈ T (x̂), where λt 6= 0 for finitely many t ∈ T (x̂),

such that

0 ∈ ∂�f(x̂) +
∑
t∈T (x̂)

λt∂
�ft(x̂).

Proof. Owning to the Theorems 4.1 & 4.3, diagram (3.4), and the following

fact for convex sets Aγ , γ ∈ Γ (see e.g., [9]):

cone(
⋃
γ∈Γ

Aγ) =

{ ∑
γ∈Γ0

τγaγ | Γ0 is finite subset of Γ, aγ ∈ Aγ , τγ ≥ 0

}
,

the result is immediate. �

Note that cone
(⋃

t∈T (x̂) ∂
�ft(x̂)

)
is assumed to be closed in part 1 of Theo-

rem 4.4. The following example shows that this assumption can not be waived,

even when X has finite dimension and fts are convex.

Example 4.5. For all t ∈ T := N, take At :=
{

(a1, a2) ∈ R2 | a2
1 + a2

2− 2ta2 ≤
0
}

. Set f(x1, x2) := −x1 and

ft(x1, x2) := sup
(a1,a2)∈At

(a1x1 + a2x2).

It is easy to see that Ω := (−∞, 0] × (−∞, 0] and x̂ := (0, 0) are respectively

the feasible solution set and the optimal solution of the following problem:

inf
{
f(x1, x2) | ft(x1, x2) ≤ 0, t ∈ T

}
.
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We observe that T (x̂) = T . Since ft is support function of At, we obtain

∂�ft(x̂) = At, and hence

cone
( ⋃
t∈T (x̂)

∂�ft(x̂)
)

=
(

[0,+∞)× [0,+∞)
)
∪ {(0, 0)},

{
v ∈ X |

〈 ⋃
t∈T (x̂)

∂�ft(x̂), v
〉
≤ 0

}
= Ω.

Owning to KΩ(x̂) = Ω and convexity of Ω we conclude that the Zangwill CQ

holds at x̂. Note that cone
(⋃

t∈T (x̂) ∂
�ft(x̂)

)
is not closed. It is easy to see

that there is no sequence of scalars satisfying Theorem 4.4. Moreover, it can

show that

0 ∈ ∂�f(x̂) + cone
( ⋃
t∈T (x̂)

∂�ft(x̂)
)
.
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