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Abstract. In this paper, the exact formulae for the generalized degree

distance, degree distance and reciprocal degree distance of strong product

of a connected and the complete multipartite graph with partite sets of

sizes m0, m1, . . . , mr−1 are obtained. Using the results obtained here,

the formulae for the degree distance and reciprocal degree distance of the

closed and open fence graphs are computed.
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1. Introduction

All the graphs considered in this paper are simple and connected. For ver-

tices u, v ∈ V (G), the distance between u and v in G, denoted by dG(u, v),

is the length of a shortest (u, v)-path in G and let dG(v) be the degree of a

vertex v ∈ V (G). The strong product of graphs G and H, denoted by G⊠H, is

the graph with vertex set V (G) × V (H) = {(u, v) : u ∈ V (G), v ∈ V (H)} and

(u, x)(v, y) is an edge whenever (i) u = v and xy ∈ E(H), or (ii) uv ∈ E(G)

and x = y, or (iii) uv ∈ E(G) and xy ∈ E(H), see Fig.1.
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Fig. 1. Strong product of C3 and P3.

A topological index of a graph is a real number related to the graph; it does

not depend on labeling or pictorial representation of a graph. In theoretical

chemistry, molecular structure descriptors (also called topological indices) are

used for modelling physicochemical, pharmacologic, toxicologic, biological and

other properties of chemical compounds [8]. There exist several types of such

indices, especially those based on vertex and edge distances. One of the most

intensively studied topological indices is the Weiner index.

Let G be a connected graph. Then Wiener index of G is defined as

W (G) = 1
2

∑

u, v∈V (G)

dG(u, v) with the summation going over all pairs of dis-

tinct vertices of G. This definition can be further generalized in the following

way:

Wλ(G) = 1
2

∑

u, v∈V (G)

dλG(u, v), where dλG(u, v) = (dG(u, v))
λ and λ is a real

number [9, 10]. If λ = −1, then W−1(G) = H(G), where H(G) is Harary index

of G. In the chemical literature also W 1
2
[27] as well as the general case Wλ

were examined [6, 11]. Wiener index of 2-dimensional square and comb lattices

with open ends is obtained by Graovac et al. in [5]. In [17] the Wiener in-

dex of HAC5C7[p, q] and HAC5C6C7[p, q] nanotubes are computed by using

GAP program. Dobrynin and Kochetova [4] and Gutman [7] independently

proposed a vertex-degree-weighted version of Wiener index called degree dis-

tance or Schultz molecular topological index, which is defined for a connected

graph G as

DD(G) = 1
2

∑

u,v∈V (G)

(dG(u) + dG(v))dG(u, v), where dG(u) is the degree of the

vertex u in G. Note that the degree distance is a degree-weight version of the

Wiener index. In the literature, many results on the degree distance DD(G)

have been put forward in past decades and they mainly deal with extreme

properties of DD(G). Tomescu[24] showed that the star is the unique graph

with minimum degree distance within the class on n-vertex connected graphs.

Tomescu[25] deduced properties od graphs with minimum degree distance in
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Generalized Degree Distance of Strong Product of Graphs 89

the class of n-vertex connected graphs with m ≥ n−1 edges. For other related

results along this line, see [2, 14, 18].

Additively weighted Harary index(HA) or reciprocal degree distance(RDD)

is defined in [1] as HA(G) = RDD(G) = 1
2

∑

u,v∈V (G)

(dG(u)+dG(v))
dG(u,v) . In [12],

Hamzeh et. al recently introduced generalized degree distance of graphs. Hua

and Zhang [15] have obtained lower and upper bounds for the reciprocal de-

gree distance of graph in terms of other graph invariants including the de-

gree distance, Harary index, the first Zagreb index, the first Zagreb coindex,

pendent vertices, independence number, chromatic number and vertex-, and

edge-connectivity. Pattabiraman and Vijayaragavan [21, 22] have obtained the

reciprocal degree distance of join, tensor product, strong product and wreath

product of two connected graphs in terms of other graph invariants. The chem-

ical applications and mathematical properties of the reciprocal degree distance

are well studied in [1, 19, 23].

The generalized degree distance, denoted by Hλ(G), is defined as

Hλ(G) = 1
2

∑

u,v∈V (G)

(dG(u) + dG(v))d
λ
G(u, v), where λ is a any real number.

If λ = 1, then Hλ(G) = DD(G) and if λ = −1, then Hλ(G) = RDD(G).

The generalized degree distance of unicyclic and bicyclic graphs are studied by

Hamzeh et. al [12, 13]. Also they are given the generalized degree distance

of Cartesian product, join, symmetric difference, composition and disjunction

of two graphs. It is well known that many graphs arise from simpler graphs

via various graph operations. Hence it is important to understand how certain

invariants of such product graphs are related to the corresponding invariants of

the original graphs. In this paper, the exact formulae for the generalized degree

distance, degree distance and reciprocal degree distance of strong product G⊠

Km0,m1, ...,mr−1
, whereKm0,m1, ...,mr−1

is the complete multipartite graph with

partite sets of sizes m0, m1, . . . , mr−1 are obtained.

The first Zagreb index is defined as M1(G) =
∑

u∈V (G)

dG(u)
2. In fact, one can

rewrite the first Zagreb index as M1(G) =
∑

uv∈E(G)

(dG(u)+dG(v)). The Zagreb

indices are found to have applications in QSPR and QSAR studies as well, see

[3].

If m0 = m1 = . . . = mr−1 = s in Km0,m1, ...,mr−1
(the complete multipartite

graph with partite sets of sizes m0, m1, . . . , mr−1), then we denote it by Kr(s).

For S ⊆ V (G), 〈S〉 denotes the subgraph of G induced by S. For two subsets

S, T ⊂ V (G), not necessarily disjoint, by dG(S, T ), we mean the sum of the

distances in G from each vertex of S to every vertex of T, that is, dG(S, T ) =
∑

s∈S, t∈T

dG(s, t).
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90 K. Pattabiraman, P. Kandan

2. Generalized Degree Distance of Strong Product of Graphs

In this section, we obtain the generalized degree distance ofG⊠Km0,m1, ...,mr−1
.

Let G be a simple connected graph with V (G) = {v0, v1, . . . , vn−1} and let

Km0,m1, ...,mr−1
, r ≥ 2, be the complete multiparite graph with partite sets

V0, V1, . . . , Vr−1 and let |Vi| = mi, 0 ≤ i ≤ r−1. In the graphG⊠Km0,m1, ...,mr−1
,

let Bij = vi × Vj , vi ∈ V (G) and 0 ≤ j ≤ r − 1. For our convenience, as in

the case of tensor product, the vertex set of G⊠Km0,m1, ...,mr−1
is written as

V (G)× V (Km0,m1, ...,mr−1
) =

r−1
n−1
⋃

i=0
j =0

Bij . As in the tensor product of graphs, let

B = {Bij}i=0,1,..., n−1
j =0,1,..., r−1

. Let Xi =
r−1
⋃

j =0

Bij and Yj =
n−1
⋃

i=0

Bij ; we call Xi and Yj

as layer and column of G⊠Km0,m1, ...,mr−1
, respectively, see Figures 2 and 3.

If we denote V (Bij) = {xi1, xi2, . . . , ximj
} and V (Bkp) = {xk1, xk2, . . . , xkmp

},

then xiℓ and xkℓ, 1 ≤ ℓ ≤ j, are called the corresponding vertices of Bij

and Bkp. Further, if vivk ∈ E(G), then the induced subgraph 〈Bij

⋃

Bkp〉

of G ⊠ Km0,m1, ...,mr−1
is isomorphic to K|Vj ||Vp| or, mp independent edges

joining the corresponding vertices of Bij and Bkj according as j 6= p or j = p,

respectively.

v0

V
er

tic
es

of
G

Vertices of Km0,m1, ...,mr−1

vi

v1

vk+1

vn−1

V0 Vj Vp Vr−1

Bkj

vℓ

vk

V1

b

b

b

b

b

B00 B01 B0(r−1)

Bi0 Bi1
Bi(r−1)

Bij

B(n−1)0 B(n−1)1
B(n−1)(r−1)

Structure of shortest paths in G⊠Km0,m1, ...,mr−1 corresponding to an edge in G.

b

b

bb

b
xiℓ

xkℓ

Fig. 2.

If vivk ∈ E(G), then shortest paths of length 1 and 2 from Bij to Bkj are

shown in solid edges, where the vertical line between Bij and Bkj denotes

the edge joining the corresponding vertices of Bij and Bkj . The broken edges

denote a shortest path of length 2 from a vertex of Bij to a vertex of Bij .

The proof of the following lemma follows easily from the properties and

structure of G⊠Km0,m1, ...,mr−1
, see Figs. 2 and 3.

Arc
hive

 of
 S

ID

www.SID.ir



Generalized Degree Distance of Strong Product of Graphs 91

Lemma 2.1. Let G be a connected graph and let Bij , Bkp ∈ B of the graph

G′ = G⊠Km0,m1, ...,mr−1
, where r ≥ 2.

(i) If vivk ∈ E(G) and xit ∈ Bij , xkℓ ∈ Bkj , then

dG′(xit, xkℓ) =

{

1, if t = ℓ,

2, if t 6= ℓ,

and if xit ∈ Bij , xkℓ ∈ Bkp, j 6= p, then dG′(xit, xkℓ) = 1.

(ii) If vivk /∈ E(G), then for any two vertices xit ∈ Bij , xkℓ ∈ Bkp, dG′(xit, xkℓ) =

dG(vi, vk).

(iii) For any two distinct vertices in Bij , their distance is 2.

The proof of the following lemma follows easily from Lemma 2.1. The lemma

is used in the proof of the main theorems of this section.

Lemma 2.2. Let G be a connected graph and let Bij , Bkp ∈ B of the graph

G′ = G⊠Km0,m1, ...,mr−1
, where r ≥ 2.

(i) If vivk ∈ E(G), then

dλG′(Bij , Bkp) =

{

mjmp, if j 6= p,

(1− 2λ(mj − 1))mj , if j = p,

(ii) If vivk /∈ E(G), then dλG′(Bij , Bkp) =

{

mjmpd
λ
G(vi, vk), if j 6= p,

m2
j d

λ
G(vi, vk), if j = p.

(iii) dλG′(Bij , Bip) =

{

mjmp, if j 6= p,

2λmj(mj − 1), if j = p.

v0

V
er

tic
es

of
G

Vertices of Km0,m1, ...,mr−1

vi+1

v1

vk

vn−1

V0 Vj Vp Vr−1

Bkj

Bijvi

vk−1

V1

vi+2

b

b

b

b

b

b

b

B01B00 B0(r−1)

Bi0 Bi1
Bi(r−1)

B(n−1)0 B(n−1)1 B(n−1)(r−1)

bBkp

Fig. 3.

Corresponding to a shortest path of length k > 1 in G, the shortest path

from any vertex of Bij to any vertex of Bkj (resp. any vertex of Bij to any
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92 K. Pattabiraman, P. Kandan

vertex of

Bkp, p 6= j) of lenght k is shown in solid edges (resp. broken edges).

Lemma 2.3. Let G be a connected graph and let Bij in G′ = G⊠Km0,m1, ...,mr−1
.

Then the degree of a vertex (vi, uj) ∈ Bij in G′ is dG′((vi, uj)) = dG(vi)+(n0−

mj) + dG(vi)(n0 −mj), where n0 =
r−1
∑

j=0

mj .

Remark 2.4. The sums
∑r−1

j, p=0
j 6= p

mjmp = 2q,
r−1
∑

j=0

m2
j = n2

0−2q,
∑r−1

j, p=0
j 6= p

m2
jmp =

n3
0−2n0q−

r−1
∑

j=0

m3
j =

∑r−1
j, p=0
j 6= p

mjm
2
p and

∑r−1
j, p=0
j 6= p

m3
jmp = n0

r−1
∑

j=0

m3
j−

r−1
∑

j=0

m4
j =

∑r−1
j, p=0
j 6= p

mjm
3
p, where n0 =

r−1
∑

j=0

mj and q is the number of edges ofKm0,m1, ...,mr−1
.

Theorem 2.5. Let G be a connected graph with n vertices and m edges. Then

Hλ(G ⊠ Km0,m1, ...,mr−1
) = (n2

0 + 2n0q)Hλ(G) + 4n0qWλ(G) + M1(G)(1 −

2λ)
(

2qn0−n3
0−n2

0+n0+4q+
r−1
∑

j=0

m3
j

)

+m
(

4qn0(3− 2λ+1)− 2n3
0(2− 2λ+1)+

4q(2− 2λ − 2λ+1) + n0(n0 − 1)2λ+1 + 2(2− 2λ+1)
r−1
∑

j=0

m3
j

)

+ n
(

2n0q(2− 2λ) +

n3
0(2

λ − 1)− 2λ+1q + (1− 2λ)
r−1
∑

j=0

m3
j

)

, r ≥ 2.

Proof. Let G′ = G⊠Km0,m1, ...,mr−1
. Clearly,

Hλ(G
′) =

1

2

∑

Bij , Bkp ∈ B

(

dG′(Bij) + dG′(Bkp)
)

d
λ
G′(Bij , Bkp)

=
1

2

(

n−1
∑

i=0

r−1
∑

j, p=0
j 6= p

(

dG′(Bij) + dG′(Bip)
)

d
λ
G′(Bij , Bip)

+

n−1
∑

i, k=0
i 6= k

r−1
∑

j =0

(

dG′(Bij) + dG′(Bkj)
)

d
λ
G′(Bij , Bkj)

+

n−1
∑

i, k=0
i 6= k

r−1
∑

j, p=0
j 6= p

(

dG′(Bij) + dG′(Bkp)
)

d
λ
G′(Bij , Bkp)

+

n−1
∑

i=0

r−1
∑

j =0

(

dG′(Bij) + dG′(Bij)
)

d
λ
G′(Bij , Bij)

)

=
1

2
{A1 +A2 +A3 +A4}, (2.1)

where A1, A2, A3 and A4 are the sums of the terms of the above expression,
in order.
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Generalized Degree Distance of Strong Product of Graphs 93

We shall obtain A1 to A4 of (2.1), separately.

A1 =

n−1
∑

i=0

r−1
∑

j, p=0
j 6= p

(

dG′ (Bij) + dG′ (Bip)
)

d
λ
G′ (Bij , Bip)

=

n−1
∑

i=0

r−1
∑

j, p=0
j 6= p

(

2dG(vi) + dG(vi)(2n0 − mj − mp) + (2n0 − mj − mp)
)

mjmp,

by Lemmas 2.2 and 2.3

= 8mq + 2m
(

4n0q − 2(n
3
0 − 2n0q −

r−1
∑

j=0

m
3
j )
)

+ n
(

4n0q − 2(n
3
0 − 2n0q −

r−1
∑

j=0

m
3
j )
)

,

by Remark 2.4

= 2m
(

4q + 8n0q − 2n
3
0 + 2

r−1
∑

j=0

m
3
j

)

+ n
(

8n0q − 2n
3
0 + 2

r−1
∑

j=0

m
3
j

)

.

A2 =

r−1
∑

j =0

n−1
∑

i, k =0
i 6= k

(

dG′ (Bij) + dG′ (Bkj)
)

d
λ
G′ (Bij , Bkj)

=

r−1
∑

j =0

n−1
∑

i, k =0
i 6= k

vivk∈E(G)

(

(dG(vi) + dG(vk)) + 2(n0 − mj) + (n0 − mj)(dG(vi) + dG(vk))
)

×
(

1 − 2
λ
+ 2

λ
mj

)

mj

+

r−1
∑

j =0

n−1
∑

i, k =0
i 6= k

vivk /∈E(G)

(

(dG(vi) + dG(vk)) + 2(n0 − mj) + (n0 − mj)(dG(vi) + dG(vk))
)

×m
2
j d

λ
G(vi, vk),

=

r−1
∑

j =0

n−1
∑

i, k =0
i 6= k

vivk∈E(G)

(

(dG(vi) + dG(vk)) + 2(n0 − mj) + (n0 − mj)(dG(vi) + dG(vk))
)

×
(

(1 − 2
λ
)mj + (2

λ
− 1)m

2
j

)

+

r−1
∑

j =0

n−1
∑

i, k =0
i 6= k

(

(dG(vi) + dG(vk)) + 2(n0 − mj) + (n0 − mj)(dG(vi) + dG(vk))
)

×m
2
j d

λ
G(vi, vk)

= 2Hλ(G)
(

n
3
0 + n

2
0 − 2q − 2n0q −

r−1
∑

j=0

m
3
j

)

+ 4Wλ(G)
(

n
3
0 − 2n0q −

r−1
∑

j=0

m
3
j

)

+2M1(G)(1 − 2
λ
)
(

2qn0 − n
3
0 − n

2
0 + n0 + 4q +

r−1
∑

j=0

m
3
j

)

+4m(1 − 2
λ
)
(

2qn0 − n
3
0 + 2q +

r−1
∑

j=0

m
3
j

)

,
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94 K. Pattabiraman, P. Kandan

by Remark 2.4.

A3 =

n−1
∑

i, k =0
i 6= k

r−1
∑

j, p=0,
j 6= p

(

dG′ (Bij) + dG′ (Bkp

)

d
λ
G′ (Bij , Bkp)

=

n−1
∑

i, k =0
i 6= k

r−1
∑

j, p=0,
j 6= p

(

dG(vi) + (n0 − mj) + dG(vi)(n0 − mj) + dG(vk) + (n0 − mp)

+dG(vk)(n0 − mp)
)

mjmp d
λ
G(vi, vk),

by Lemmas 2.2 and Lemma 2.3

=

n−1
∑

i, k =0
i 6= k

r−1
∑

j, p=0,
j 6= p

(

(dG(vi) + dG(vk))d
λ
G(vi, vk)mjmp + dG(vi) d

λ
G(vi, vk)(n0 − mj)mjmp

+(2n0 − mj − mp)mjmp d
λ
G(vi, vk) + dG(vk) d

λ
G(vi, vk)(n0 − mp)mjmp

)

= 2Hλ(G)
(

2q + 4n0q − n
3
0 +

r−1
∑

j=0

m
3
j

)

+ 2Wλ(G)
(

8n0q − 2n3
0 + 2

r−1
∑

j=0

m
3
j

)

,

by Remark 2.4.

A4 =

n−1
∑

i=0





r−1
∑

j =0

(

dG′ (Bij) + dG′ (Bij)
)

d
λ
G′ (Bij , Bij)





=

n−1
∑

i=0

r−1
∑

j =0

2
λ+1

(

dG(vi) + (n0 − mj) + dG(vi)(n0 − mj)
)

mj(mj − 1), by Lemmas 2.2 and 2.3

= 2
λ+1

n−1
∑

i=0

r−1
∑

j =0

(

dG(vi)(m
2
j − mj) + (n0 − mj)(m

2
j − mj) + dG(vi)(n0 − mj)(m

2
j − mj)

)

= 2
λ+1

(

2m
(

n
2
0 − 2q − n0

)

+ n
(

n
3
0 − 2qn0 − n

2
0 −

r−1
∑

j=0

m
3
j + n

2
0 − 2q

)

+2m
(

n
3
0 − 2qn0 − n

2
0 −

r−1
∑

j=0

m
3
j + n

2
0 − 2q

)

)

, by Remark 2.4

= 2
λ+2

m
(

n
3
0 + n

2
0 − 4q − n0 − 2qn0 −

r−1
∑

j=0

m
3
j

)

+ 2
λ+1

n
(

n
3
0 − 2qn0 − 2q −

r−1
∑

j=0

m
3
j

)

.

Using (2.2), (2), (2.2) and (2.2) in (2.1), we have

Hλ(G
′
) = (n

2
0 + 2n0q)Hλ(G) + 4n0qWλ(G)

+M1(G)(1 − 2
λ
)
(

2qn0 − n
3
0 − n

2
0 + n0 + 4q +

r−1
∑

j=0

m
3
j

)

+m
(

4qn0(3 − 2
λ+1

) − 2n
3
0(2 − 2

λ+1
) + 4q(2 − 2

λ
− 2

λ+1
) + n0(n0 − 1)2

λ+1

+2(2 − 2
λ+1

)

r−1
∑

j=0

m
3
j

)

+ n
(

2n0q(2 − 2
λ
) + n

3
0(2

λ
− 1) − 2

λ+1
q + (1 − 2

λ
)

r−1
∑

j=0

m
3
j

)

.

�

Using λ = 1 in Theorem 2.5, we have the following corollary, which is the

degree distance of the strong product of graphs.
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Generalized Degree Distance of Strong Product of Graphs 95

Corollary 2.6. Let G be a connected graph with n vertices. Then DD(G ⊠

Km0,m1, ...,mr−1
) = (n2

0+2n0q)DD(G)+4n0qW (G)+M1(G)
(

n3
0+n2

0−2qn0−

n0 − 4q −
r−1
∑

j=0

m3
j

)

+ 4m
(

n3
0 − 4q − n0q + n2

0 − n0 −
r−1
∑

j=0

m3
j

)

+ n
(

n3
0 − 4q −

r−1
∑

j=0

m3
j

)

, r ≥ 2.

If mi = s, 0 ≤ i ≤ r − 1, in Corollary 2.6, we have the following

Corollary 2.7. Let G be a connected graph with n vertices and m edges. Then

DD(G⊠Kr(s)) = r2s2(rs−s+1)DD(G)+2r2s3(r−1)W (G)+M1(G)rs
(

rs2−

rs+2s−s2−1
)

+2mrs
(

r2s2−2rs+rs2+4s−2s2−2
)

+nrs2
(

r2s−2r−s+2
)

, r ≥

2.

As Kr = Kr(1), the above corollary gives the following

Corollary 2.8. Let G be a connected graph with n vertices and m edges. Then

DD(G⊠Kr) = r3DD(G)+2r2(r−1)W (G)+2rm(r−1)2+ rn(r−1)2, r ≥ 2.

Using λ = −1 in Theorem 2.5, we obtain the reciprocal degree distance of

strong product of graphs.

Corollary 2.9. Let G be a connected graph with n vertices. Then RDD(G⊠

Km0,m1, ...,mr−1
)

= (n2
0 +2n0q)RDD(G) + 4n0qH(G) + M1(G)

2

(

n0(n0 +1)− (n0 +2)(n2
0 − 2q) +

r−1
∑

j=0

m3
j

)

+ m
(

8n0q − 2n3
0 + n2

0 − n0 + 2q + 2
r−1
∑

j=0

m3
j

)

+ n
2

(

6n0q − n3
0 − 2q +

r−1
∑

j=0

m3
j

)

, r ≥ 2.

If mi = s, 0 ≤ i ≤ r − 1, in Corollary 2.9, we have the following

Corollary 2.10. Let G be a connected graph with n vertices and m edges. Then

RDD(G⊠Kr(s)) = r2s2(rs−s+1)RDD(G)+2r2s3(r−1)H(G)+M1(G)rs
2 (rs−

rs2−2s+s2+1)+mrs
(

2r2s2−4rs2+2rs+2s2−s−1
)

+nrs2

2 (2r2s−3rs+s−r+1).

As Kr = Kr(1), the above corollary gives the following

Corollary 2.11. Let G be a connected graph with n vertices and m edges. Then

RDD(G⊠Kr) = r
(

r2RDD(G) + 2r(r − 1)H(G) + 2r(r − 1)m+ n(r − 1)2
)

.

As an application we present formulae for degree distance and reciprocal

degree distance of open and closed fences, Pn ⊠K2 and Cn ⊠K2, see Fig.4.
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Fig. 4. Closed and open Fence graphs.

One can easily check thatW (Pn) =
n(n2−1)

6 andW (Cn) =

{

n3

8 n is even
n(n2−1)

8 n is odd.

Similarly, we have DD(Pn) =
1
3n(n− 1)(2n− 1) and DD(Cn) = 4W (Cn).

One can observe that M1(Cn) = 4n, n ≥ 3, M1(P1) = 0, and M1(Pn) =

4n−6, n > 1. By direct calculations we obtain the Harary indices of Pn and Cn

as follows. H(Pn) = n
( n
∑

i=1

1
i

)

−n and H(Cn) =



















n
(

n
2
∑

i=1

1
i

)

− 1, if n is even

n
(

n−1
2
∑

i=1

1
i

)

, if n is odd.

The following are the reciprocal degree distance of path and cycle on n

vertices. RDD(Pn) = H(Pn) + 4
( n−1
∑

i=1

1
i

)

− 3
n−1 and RDD(Cn) = 4H(Cn).

By using Corollaries 2.8 and 2.11, we obtain the exact formulae for degree

distance and reciprocal degree distance of the following graphs.

Example 2.12. (i) DD(Pn ⊠K2) =
4
3

(

5n3 − 6n2 + 31n− 24
)

.

(ii) DD(Cn ⊠K2) =

{

5n(n2 + 2) n is even

5n(n2 + 1) n is odd.

(iii) RDD(Pn ⊠K2) = 16
( n
∑

i=1

1
i

)

+ 32
( n−1
∑

i=1

1
i

)

− 6n− 24
n−1 − 8.

(iv) RDD(Cn ⊠K2) =



















10n
(

1 + 4

n
2
∑

i=1

1
i

)

− 40 n is even

10n
(

1 + 4

n−1
2
∑

i=1

1
i

)

n is odd.
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