Downloaded from ijmsi.ir at 11:40 +0330 on Saturday November 3rd 2018

Iranian Journal of Mathematical Sciences and Informatics
Vol. 13, No. 1 (2018), pp 39-50
DOL: 10.7508/ijmsi.2018.1.004

The e-Theta Hopes

Razieh Mahjoob
Department of Mathematics, Semnan University, Semnan, Iran.

E-mail: mahjoob@profs.semnan.ac.ir

ABSTRACT. The largest class of hyperstructures is the Hy=structures,
introduced in 1990, which proved to have a lot of applications in mathe-
matics and several applied sciences, as well. Hyperstructures are used in
the Lie-Santilli theory focusing to the hypernumbers, called e-numbers.
We present the appropriate e-hyperstuctures which are defined using any

map, in the sense the derivative map, called 0-hyperstructures.
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1. BASIC DEFINITIONS

We deal with hyperstructures called H, —structures introduced in 1990 [16],[17]
which satisfy the weak axioms where the non-empty intersection replaces the
equality.

Some basic definitions are the following:

In a set H equipped with a hyperoperation (abbreviation hyperoperation=hope)
.t Hx H— P(H) — {0}, we abbreviate by

WASS the weak associativity: (xy)z Nz(yz) # O,Vz,y,z € H and by

COW the weak commutativity: xy Nyx % O,Va,y € H.

The hyperstructure (H, .) is called H,-semigroup if it is WASS and is called
H,-group if it is reproductive H,-semigroup, i.e. «H = Hx = H,Vx € H.
The hyperstructure (R, +,.) is called H,-ring if (+) and (.) are WASS, the
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reproduction axiom is valid for (4) and (.) is weak distributive with respect to
(+), ie.

z(y+2)N(zy +22) # 0, (xr +y)zN(zz + yz) # O,Vo,y,2z € R.

Motivation for H,-structures:

The motivation for H,—structures is the following: We know that the quotient
of a group with respect to an invariant subgroup is a group. F. Marty from
1934, states that, the quotient of a group with respect to any subgroup is a
hypergroup. Finally, the quotient of a group with respect to any partition (or
equivalently to any equivalence relation) is an H,—group. This is the motiva-
tion to introduce the H,-structures [16].

Specifying this motivation we remark: Let (G, .) be a group.and R be an equiv-
alence relation (or a partition) in G, then (G/R,.) is an H,—group, therefore
we have the quotient (G/R,.)/B8* which is a group, the fundamental one. Re-
mark that the classes of the fundamental group (G/R, .)/5* are aunion of some
of the R-classes. Otherwise, the (G/R,.)/3* has elements classes of G where
they form a partition which classes are larger than the classes of the original
partition R.

In an H,—semigroup the powers of an element h € H are defined as follows
ht = {h},h* = h.h,s. b = h°h°..°h,

where (o) denotes the n-ary circle hope, i.e. take the union of hyperproducts, n
times, with all possible patterns of parentheses put on them. An H,, —semigroup
(H,.) is called cyclic of period s; if there exists an element g, called generator,
and a natural number n, the minimum one, such that

H=hURhlU..UR®

Analogously the cyclicity for the infinite period is defined [15]. If there is an
element h and a natural number s, the minimum one, such that H = h®, then
(H,.)is called single-power cyclic of period s.

For more definitions and applications on H,—structures, see the books [2],
3] [7), [8], [17] and papers as [1], [4], [6], [11], [12], [15], [18], [19], [20], [22],
23], [24).

The fundamental relations §*,v* and €* are defined, in H,-groups, H,-rings
and H,-vector spaces, respectively, as the smallest equivalences so that the
quotient would be group, ring and vector space, respectively [16], [17], [18],
[19]. The way to find the fundamental classes is given by analogous theorems
to the following one:
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Theorem 1.1. Let (H,.) be an H,-group and denote by U the set of all finite
products of elements of H. We define the relation S in H as follows: xSy
iff x,y C u where u € U. Then the fundamental relation B* is the transitive
closure of the relation (.

Analogous theorems for the relations v* in H,-rings, ¢* in H,-modules and
H,-vector spaces, are also proved. An element is called single if its fundamental
class is singleton [17].

Fundamental relations are used for general definitions. Thus, an H,-ring
(R,+,.) is called H,-field if R/~* is a field.

Let (H,.),(H,®) H,-semigroups defined on the same set H. (.).is called
smaller than (®), and (®) greater than (.), iff there exists automorphism

f € Aut(H,®) such that zy C f(z ®y),Va € H.

Then we write . < ® and we say that (H,®) contains the (H,.). If (H,.) is a
structure then it is called basic structure and (H,®) is called Hy-structure.

The Little Theorem. Greater hopes of hopes which are WASS or COW,
are also WASS and COW, respectively.

Definition 1.2. Let (H,.) be hypergroupoid. We say that we remove h € H,
if we consider the restriction of the hope (.)-on the H — {h}. We say that an
h € H absorbs h € H if we replace h, whenever it appears, by h. We say that
h € H merges with h € H, if'we take as the product of any h € H by h, the
union of the results of & with both A and A, and we consider A and h as one
class, with representative h.

Definition 1.3.[23]. Let A = (a;;) € Myux, be a matrix and s,¢t € N, with
1 <s<m,1 <t <n. Then helix-projection is a map st : M, xn — M; X t:
A — Ast = (g;;), where Ast has entries

a;; = {titnsjtat]l <i<s,1<j<tand K,A€ N,i+ s <m,j+ X <n}

Let A ={(a;j) € Mypxn, B = (bij) € Myx, be matrices and s = min(m,u),

t = min(n,v). We define a hyper-addition, called heliz-addition, by

@ : ManXMuXv — P(Msxt) : (A7 B) — A@B = Ait+Bit = (Q”)'i_(b”) C Msxt
where (a;;) + (b;;) = {(ci) = (aij + bij)lai; € a;; and bi; € by;}.
Let Let A = (a;5) € Myxn, B = (bij) € Myx, be matrices and s = min(n, u),
define the heliz-multiplication, by

®: menXMuxv — P(Mm,xv) : (A,B) — A®B = A@Bﬂ = (QZJ>(bZ]) g mev
where (g;;).(b;;) = {(ci;) = (X2 aie-byj)lai; € a;; and bi; € by}
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The helix-addition is commutative, WASS but not associative. The helix-
multiplication is WASS, not associative and it is not distributive, not even
weak, to the helix-addition. For all matrices of the same type, the inclusion
distributivity, is valid.

Definition 1.4. [17], [22]. Let (F,+,.) be an H,-field, (V,+) be a COW
H,-group and there exists an external hope

S FxV —PV)-0:(a,z) — az
such that, for all a,b in F' and z,y in V we have
alr+y)N(ax+ay) £ 0, (a+bzN (ax+bx) £, (ab)xNalbx) # O,

then V is called an H,-vector space over F. In the case of an H,-ring instead
of an H,-field then the H,-modulo is defined. In these cases the fundamental
relation £* is the smallest equivalence relation such that the quotient V/e* is a
vector space over the fundamental field F'/~*.

The general definition of an H,-Lie algebra was given in [14], [21], [22] as
follows:

Definition 1.5. Let (L, +) be H,-vector:space over the field (F,+,),¢o: F —
F/~*, the canonical map and wr = {& € F :.p(z) = 0}, where 0 is the zero of
the fundamental field F /+*. Similarly, let wy, be the core of the canonical map
¢ : L — L/e* and denote by the same symbol 0 the zero of L/e*. Consider
the bracket (commutator) hope:

[w]:Lx L= P(L): (z,y) — [z,y]

then L is an H,-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.

[Arz1 + Aoz, y] N (a2, y] + Aafw2, y]) # O

[, Aryr+ Aoy ] [z, y1]+ A2 [x, y2]) # D, Vo, 21, %2,y,y1,y2 € L and A1, A2 €
F

(L2) [zl Nwy, #0, Yx e L

L3) ([zy [y, 2] + [y, [z, 2] + [z, [z, y]]) Nwr # O, Vo,y € L

The uniting elements method was introduced by Corsini-Vougiouklis [5] in

1989. With this method one puts in the same class, two or more elements. This
leads, through hyperstructures, to structures satisfying additional properties.

2. SOME CLASSES OF H,-STRUCTURES

The P-hopes
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A general way to define hopes, which are not always of a constant length,
from given operations [15], [17] can be generalized as follows:

Definition 2.1. Let (G,.) be a groupoid, then for every set P C G, P # O,
we define the following hopes called P-hopes:
P:zPy = (zP)yUz(Py),

P, :aPy= (zy)PUx(yP), Py aPy = (Pz)yU P(ay),Vo,y € G
The (G, P), (G, P,) and (G, P;) are called P-hyperstructures. The most usual
case is if (G, .) is semigroup, then
xPy = (xP)y U z(Py) = Py
and (G, P) is a semihypergroup but we do not know for (G, P,), (G, P;)< In
some cases, mainly depending on the choice of P, the (G, P,.), (G, P;) can

be associative or WASS. If in GG, more operations are defined then for each
operation several P-hopes can be defined.

Construction. Let (G,.) be abelian group and P. C G, with more than one
elements. We define a hope (xp) as follows:

Xy — x.Py={xzhylhe P} x#e and y#e
PYy= z.y T=e or y=e

Definition 2.2. Let M = M, «x, be a module of m x n matrices over a ring R
and P ={P;:i e I} C M. We define, a kind of, a P- hope P on M as follows

P:MxM— P(M) #+(A,B) — APB={AP'B:icI} C M

where P! denotes the transpose of the matrix P. The hope P, which is a bilinear
map, is a generalization of Rees’ operation where, instead of one sandwich
matrix, a set of sandwich matrices is used. The hope P is strong associative
and the inclusion distributivity with respect to addition of matrices

AP(B + C) C APB + APC for all A,B,C € M

is valid. Therefore, (M, +, P) defines a multiplicative hyperring on non-square
matrices. Multiplicative hyperring means that only the multiplication is a hope.

Definition 2.3. Let M = M,,«, be a module of m X n matrices over a ring
R and let take sets S = {sy : k€ K} CR,Q={Q;:j€J} CM,P={P;:
i € It C M. Define three hopes as follows

S:RxM—PM):(r,A) —rSA={(rsx)A: ke K} C M
Q. :MxM—P(M):(AB) — AQ B={A+Q;+B:jeJ}CM
P:MxM—sP(M):(A,B) — APB={AP!B:ic I} C M
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Then (M, S, Q+ , P) is a hyperalgebra over R called general matrix P-hyperalgebra.
In a similar way a generalization of this hyperalgebra can be defined if one con-
siders an H,-ring or an H,-field instead of a ring and using H,-matrices.

We present now a large class of hopes defined in any groupoid with a map f
on it, which is denoted by ’theta’ 9, since the motivation is the property which
the derivative has on the product of functions, see [21],[22].

The theta 0-hopes

Definition 2.4. Let (G,.) be groupoid (respectively, hypergroupoid) and f :
G — G be a map. We define a hope 0, called theta-hope, on G as follows

w0y = {f(x).y,z.f(y)},Va,y € G.(resp. x0y = (f(z).y) U(z.f(y)), Y2,y € G)

If () is commutative then (9) is commutative. If (1) is COW, then (0) is
COw.

Let (G,.) be groupoid (resp. hypergroupoid):and f : G — P(G) — {0},
multivalued map. We define the theta-hope (@), on G as follows

20y = (f(x).y) U (z-f(Y));Vr,y € G

Let (G,.) be a groupoid and f; : G/— G,i € I, be set of maps on G. We
consider the map f, : G — P(G) such that fu(z) = {fi(x)|i € I}, called the
union of the f;(x). We define-the union theta-hrope (9), on G if we consider
the fu(x). A special case for given f, is to take the union with the identity:
We consider the map f = f U (id), so f(z) = {z, f(z)}, Vo € G, which we call
b-theta-hope. Then we have

0y ={xy, f(x).y,z.f(y)}, Yo,y € G.

Motivation for the definition of the theta-hope is the map derivative where
only the multiplication of functions can be used. Therefore, in these terms,
for any functions s(x),t(z), we have sot = {s't,st'} where (') denotes the
derivative.

Proposition 2.5. [21]. If (G,.) is a semigroup then:

(a) For every f, the (0) is WASS. If f is homomorphism then (0) remains
WASS.

(b) If f is homomorphism and projection, i.e. f* = f, then (0) is associative.
(c) If (G, .) is a semigroup then, for every f, the b-theta-operation (0) is WASS.
(d) Reproductivity. If (.) is reproductive then (0)is also reproductive, because

20G = U {f(®).g9,2.f(9)} =G and Gox = U {f(g)x,g9.f(2)} =G

geG geG
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(e) Commutativity. If (.) is commutative then (0) is commutative. If f is into
the center of G, then (0) is a commutative. If (.) is a COW then, (0) is a
COWw.

(f) Unit elements. u is a right unit element if x € x0u = {f(x).u,z.f(u)}. So
f(u) = e, where e be a unit in (G,.). The elements of the kernel of f, are the
units of (G,0).

(g9) Inverse elements. Let (G,.) is a monoid with unit e and u be a unit in
(G,0), then f(u) = e. For given z, the element 2’ = (f(z))"'u and 2" =
u(f(x))~t, are the right and left inverses, respectively. We have two-sided

inverses iff f(x)u = uf(z).

Definition 2.6. Let (R,+,.) be aring and f : R — R,g: R — R be two
maps. We define two hopes (9;) and (9.), called both theta-hopes, on R as
follows

204y ={f(z) +y,z + f(y)} and 20y = {g(z)y,vg(y)}sVz,y € G

The hyperstructure (R, 04, 0.), called theta, is an Hy-near-ring, i.e. satisfy all
H,-ring axioms, except the weak distributivity.

Some results and examples:

Let (G,.) be group and f(x) ='a, a‘constant map on G. Then (G, d)/B* is
singleton. If f(x) = e, then xdy = {&, y} which is the smallest incidence hope.

Consider all polynomials of first degree g;(x) = a;x + b;, and as map the
derivative, we have

91092 = {a1a2x + a1ba, a1asx + bras},

so it is a hope inside the set of first degree polynomials. Moreover all polyno-
mials x 4 ¢, where ¢ be a constant, are units.

Several results can be obtained using d-hopes [21]:

Theorem 2.7. (a) Consider the group of integers (Z,+) and n # 0 be a natural
number. Take the map f such that f(0) = n and f(z) = z,Ya € Z—{0}. Then

(2,0)/6" = (Zn, +).

(b) Take the ring of integers (Z,+,.) and fix n # 0 a natural number. Con-
sider f such that f(0) = n and f(x) = z,Yo € Z — {0}. Then (Z,04+,0.),
where 0y and 0. are the 0-hopes refereed to the addition and the multiplication
respectively, is an H,-near-ring, with

(Z,04,0) /7" = (Zn).
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(c) Take the (Z,+,.) and n # 0 a natural. Take f such that f(n) = 0 and
flx) =2a,Va € Z—{n}. Then (Z,0,,0.) is an H,-ring, moreover,

(Z,04,0) /7" = (Zn).

Special case of the above is for n = p, prime, then (Z,01,0.) is an H,-field.

Special case of the above is for n = p, prime, then (Z,04,0.) is an H,-field.

3. THE e-THETA HOPES

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic
Mechanics problems. Santilli proposed a ’lifting’ of the n-dimensional triv-
ial unit matrix of a normal theory into a nowhere singular, symmetric, real-
valued, positive-defined, n-dimensional new matrix. The original theory is re-
constructed such as to admit the new matrix as left and right unit: The isofields
needed in this theory correspond into the hyperstructures were introduced by
Santilli and Vougiouklis in 1996 [13] and they are called e-hyperfields. A hyper-
structure (H,.) which contain a unique scalar‘unit e; is called e-hyperstructure.
In an e-hyperstructure, we normally assume that for every element x, there ex-
ists an inverse element z7!, ie. e € waw~! N2~ .x. The H,-fields can give
e-hyperfields which can be used in the isotopy theory in applications as in
physics [9], [13], [14]. In the following we present the O-hyperstructures that
they can be used in this theory. First we give the general definition of d-hopes.

Definition 3.1. Let H be aset equipped with n operations (or hopes) ®1, ®a, ...
and a map (or multivalued map) f : H — H (or f : H — P(H) — {0},
respectively), then n hopes 0,05, ...,0, on H can be defined, called theta-
operations (we rename here theta-hopes and we write 9-hope) by putting

20y ={f(z) ®;y,z®; f(y)}, VYx,y€ H and i € {1,2,...,n}
or, in case where ®; is hope or f is multivalued map, we have
20y = (f(z) @, y) U (z®; fly)), Yz,y € H andi € {1,2,...,n}.
(i) If ®; is associative then 9; is WASS. Indeed for any map f we have

(20y)0z = {f(2)y, 2 (y)}0z = {f(f(2)y)z, f(2)yf(2), f(xf(y)z, 2 f(y) f(2)}

and

x0(ydz) = x0{f(y)z,uf(2)} = {f(@)f W)z 2 f(f(y)2), f(@)yf(2), = f(yf(2)}

(x0y)0z N20(y0z) = {f(x)yf(2)} # O

O
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(ii) if moreover the map f is an homomorphism then on the above relations
we have

(@0y)0z = {f(z)y, xf(y)}0z = {f(f(2))f W)z, f(x)yf(2), F(@) f(f W)z 2 f(y) ()}

and

x0(y0z) = x0{f(y)z yf(2)} ={f (@) f W)z, xf(fW)f(2), f @)y f(2), xf () f(f(2)}
so again we have
(z0y)0z Nad(ydz) = {f(x)yf(2)} # O

(iii) if moreover the map f is an homomorphism and a projection f? = f,
then we have

(x0y)0z = {f(z)y, 2 f(y)}0z = {f(2)f (y)z, f(2)y [ (@) f(y) f(2)}

and

20(y0z) = 208 f(y)z,yf ()} = {f (@) f W)z f(2)yf (2),2f (W) f (=)}

so we have the associativity
(x0y)0z = x0(y0z) = {f (=) f (y)z, f(2)yf(2); 2 f(y) [ (2)}

Construction. Let (G,.) be a grouprand f any map on G. We define the
e-theta hopes (0) as follows:

_ [ AF@y,2fly)) z#e and y#e
x@ey—{ flzy) r=e¢ and y=e

The hyperstructure (G, d,) is an H,-group if f is an onto map on G.

Proof. . Let x,y;z be non unit elements of (G,.). Then, supposing e #
f(e)y,e# xf(y),e # f(y)z e #yf(z), we have

(20cy)0ez =H{f (2)y, 2 (y)}0ez = {f (f(2)y)z, f(2)y f(2), f(xf(y))z 2 f(y) f(2)}
20 (Y0e2) = @01 (y)z,yf (2)} = {f (@) ()2, 2/ (f(y)2), f(@)yf(2), 2 f(yf(2)}

(20ey)Dez N x0e(ydez) = {f(2)yf(2)} # O
If e = f(x)y, then we have
(20ey)0ez = {e, 2 f(y)}0ez = {f(2), f(af (y))z, 2 f(y) f(2)}

20c(y0ez) = 0 f(y)2,yf (2)} ={f (@) f(W)z, 2 f (f(y)2), (), f(y [ (2))}

therefore we have

(xaey)aez N xae(yaez) = {f(z>} # 0,
so the hope 9, is WASS. O
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Suppose now that f is an homomorphism, then for e = f(z)y, we have
(20ey)0ez = {e,xf(y)}0ez = {f(2), f (@) f (f W)z, 2f (y) f(2)}
20c(y0ez) = w0 f(y)2,yf (2)} = {f (@) f(y)z, 2 f (W) f(2), £ (2), 2 f (9) f(f(2))}

so again J, is WASS:
(20ey)0ez N 20 (yOez) = {f(2)} # O

Suppose now that f is moreover a projection then generally we have the
above case (iii), but if e = f(x)y, then we have

(maey)aez = {emcf(y)}@ez = {f(Z), f(x)f(y)z,xf(y)f(z)}
20 (y0ez) = 20 f(y)z, yf(2)} = f(@) f(y)z, 2 f(y) f(2), f(2), = fy) f(2)
therefore
(20cy)Dez N 20e(ydez) = {f(2), f(2)f(y)z, 2 f(y) [ (2)} # O
if e=2xf(y), then we have
(20cy)0ez = {f(2)y, e}0ez = { f(z) f ()2, f(x)yf(2), f(2)}
20c(y0ez) = x0c{ f(y)z, yf(2)} = {f (@) f(W)z. f(x)yf(2), f(2)}

so 0. is associative,
if we have both e = f(x)y and e = zf(y), then

(xaey)aez =e0.2 = {f(z)}
20c(y0ez) = xO0Af (y)2nyf (2)} = {f(2) f ()2, f(2)yf(2), f(2)}

S0
(20eY)0ez Na0e (y0e2) = {f(2)} # O
and J, again is WASS.
We have analogous cases for e = f(y)z,e = yf(2):
If e = f(y)z, then we have

(@0ey)0ez = {f(2)y, o f(y)}Oez = { [ (f(2)y)z, f(2)yf(2), f(xf(y))z, 2 f(y) f(2)}
.’Iﬁae(yan) = x@e{e,yf(z)} = {f(x)a f(x)yf(z)vxf(yf(z))}
therefore we have
(20ey)0ez N20e(yde2) = {f(x)yf(2)} # O

so the hope 0, is WASS.
Suppose now that f is an homomorphism, then for e = f(y)z, we have

(#0ey)0ez = {f(@)y, f(y)}0ez = {f(f(x)), f(2)yf(2), f (@) f(f ()2, xf(y) f(2)}

20c(y0ez) = x0e{e,yf(2)} = {f(x), f(2)yf(2),2f(y) f(f(2))}
so again 0, is WASS:

(20cy)0ez N 20 (yOez) = {f(x)yf(2)} # O
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Suppose now that f is moreover a projection then generally we have the above
case (iii), but if e = f(y)z, then we have

(#0ey)0ez = {f(2)y, v f(y)}0ez = {f(z), f(2)y [ (2), f (@) f(y)z,xf(y) f(2)}
20 (y0ez) = w0,y f(2)} = {f (), f(@)yf(2), xf(y) f(2)}

therefore

(20ey)0ez N 20 (yOez) = {f(x), f(x)yf (2), 2 f(y) f(2)} # O
If e = yf(2), then we have

(0ey)0ez = {f(2)y, [ (y)}0ez = {f (f(x)y)2, f(2), f(2f(y))z, 2f(y) f(2)}
20e(yBez) = 20{f(y)z, e} = {f(2) f(y)z, 2 f(f(y)2), F(x)}
so 0, is WASS:
(20ey)0ez N 20e(yOez) = {f ()} # O
If we have both e = f(y)z and e = yf(z), then
(20ey)0cz = {f (2)y, v f(y)}0ez = {f (f ()y)z, (@), (2 f(y))z 2 f(y) f(2)}

20 (y0e2) = 20 = {f(x)}
(xaey)aez N 1‘8e(y862) - {f({L‘)} 7& 0}
0. again is WASS.
Now let x # e, then
20.G = {f(2)} U[z0.(G — {e})] = {f(2)} U{f(x)y/y

(G —{eN u{zf(y)/y € (G —A{e})} = f(2)G

Because wexemark that

{f(@)y/y € (G —{eh} = f(2)(G —{e})

in whichthe set f(z)(G—{e}) contains all the elements of G except the element
f(x) and this element is in 0.G, therefore we have 0.G = G. The same proof
for GO.x = G. Finally, the reproductivity for the unit e is obvious since f is
onto map. Thus (9.) is reproductive.

Remark that e is scalar unit in (G, 9.). Any element 2 of G has one or two
inverses: the element (f(z))~! and the element y if 2 f(y) = e.
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