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1. Introduction

The notion of approximate amenable Banach algebras was introduced and

extensively studied by Ghahramani and Loy in [5]. They showed in [6] that if

A and B are approximately amenable Banach algebras and one of A or B has a

bounded approximate identity, then A⊕B is approximately amenable, but in

general the direct sum of two approximately amenable Banach algebras need

not be approximately amenable (see [7]).

The concept of module amenable Banach algebras was introduced by Amini

in [1], and the notion of module approximate amenable Banach algebras was

studied by Pourmahmood and Bodaghi in [15]. Recently, some authors have
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studied ϕ-derivations, and ϕ-amenability of Banach algebra A, whenever ϕ is

a continuous homomorphism on A (see [8, 9, 10, 11, 12]).

The aim of the present paper is to investigate generalized approximate

amenability of A⊕B.

The organization of this paper is as follows:

Section 2 is devoted to the notations and definitions which are needed through-

out the paper.

In section 3 for A-module Banach algebras A and B where each has a

bounded approximate identity we show that A is ϕ-A#-module approximately

amenable and B is ψ-A#-module approximately amenable if and only if A⊕B
is ϕ⊕ ψ-A#-module approximately amenable.

In section 4 we show that if A has a bounded approximately identity and
A

JA,A
and B

JB,A
are unital, then A is ϕ-A-module approximately amenable and B

is ψ-A-module approximately amenable if and only if A⊕B is ϕ⊕ψ-A-module

approximately amenable.

2. Preliminaries

Let A and A be Banach algebras such that A is a Banach A-bimodule with

compatible actions given by

α.(ab) = (α.a)b, (ab).α = a(b.α) (a, b ∈ A,α ∈ A).

Let X be a Banach A-bimodule and a Banach A-bimodule with compatible left

actions defined by

α.(a.x) = (α.a).x, a.(α.x) = (a.α).x, (α.x).a = α.(x.a)

(a ∈ A,α ∈ A, x ∈ X), (2.1)

and similar for the right or two-sided actions. Then we say that X is a Banach

A-A-module. A Banach A-A-module X is called commutative A-A-module,

if α.x = x.α (α ∈ A, x ∈ X). Note that in general, A dose not satisfy the

compatibility condition a.(α.b) = (a.α).b (a, b ∈ A,α ∈ A).

If X is a commutative Banach A-A-module , then so is X∗, where the actions

of A and A on X∗ are defined as follows

〈α.f, x〉 = 〈f, x.α〉, 〈a.f, x〉 = 〈f, x.a〉 (a ∈ A,α ∈ A, x ∈ X, f ∈ X∗),

and similar for the right actions.

Let A and B be Banach A-bimodules. Then a A-module morphism from A

to B is a norm continuous map h : A −→ B with h(a± b) = h(a)± h(b) which

is multiplicative, that is

h(α.a) = α.h(a), h(a.α) = h(a).α, h(ab) = h(a)h(b) (a ∈ A, b ∈ B,α ∈ A).
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Generalized approximate amenability of direct sum of Banach algebras 77

We denote by HomA(A,B), the space of all such morphism and denote HomA(A,A)

by HomA(A). In the case that A = C, we denote HomC(A,B) by Hom(A,B) and

denote HomC(A,A) by Hom(A).

Let X be a Banach A-bimodule and let ϕ ∈ HomA(A). A bounded map

D : A −→ X is called a ϕ-A-module derivation if

D(a± b) = D(a)±D(b), D(ab) = D(a).ϕ(b) + ϕ(a).D(b) (a, b ∈ A), (2.2)

and

D(α.a) = α.D(a), D(a.α) = D(a).α (a ∈ A,α ∈ A). (2.3)

Although D in general is not linear, but still its boundedness implies its

norm continuity.

Let X be a commutative Banach A-A-module. For every x ∈ X define adϕx
by adϕx (a) = ϕ(a).x−x.ϕ(a) (a ∈ A). It is easily seen that adϕx is a ϕ-A-module

derivation. A ϕ-A-module derivation D is called ϕ-inner if there is x ∈ X such

that D(a) = adϕx (a) (a ∈ A) and is called approximately ϕ-inner if there exists

a net (xα)α ⊆ X such that D(a) = limα ad
ϕ
xα(a) (a ∈ A). A Banach algebra

A is called ϕ-A-module amenable if for any commutative Banach A-A-module

X, each ϕ-A-module derivation D : A −→ X∗ is ϕ-inner, and A is called ϕ-A-

module approximately amenable if each ϕ-A-module derivation D : A −→ X∗

is approximately ϕ-inner (see [1, 15]).

In the case that A = C, ϕ-A-module derivations (resp. ϕ-A-module amenable

Banach algebras, ϕ-A-module approximately amenable Banach algebras) are

called ϕ-derivation (resp. ϕ-amenable, ϕ-approximately amenable) (see [9, 10]).

3. ϕ⊕ ψ-Module Approximate Amenability of the Direct Sum of

Banach Algebras

We commence this section with the following remark from [1]:

Remark 3.1. Assume that A has a bounded approximate identity (eα)α, and let

MA(A) denotes the algebra of A-multipliers of A, that is MA(A) = {(T1, T2) :

T1, T2 ∈ LA(A) : T1(ab) = T1(a)b, T2(ab) = aT2(b)(a, b ∈ A)}, where LA(A) is

the space of all A-module morphisms on A. Then MA(A) is an A-A-module and

A embeds in MA(A) via a 7−→ (La, Ra), where La(b) = ab,Ra(b) = ba (a, b ∈
A). For any element T = (T1, T2) of MA(A) it is easy to see that ‖ T1 ‖=‖ T2 ‖
and if we put ‖ T ‖ equal to this common value, then MA(A) becomes a Banach

A-A-module, and A is dense in MA(A) in the strict topology.

Before proving our next proposition we note that if ϕ ∈ HomA(A), then by

continuity of ϕ in the strict topology, it can be extended to an A-homomorphism

ϕ̃ : MA(A) −→MA(A) defined by ϕ̃(La, Ra) = (Lϕ(a), Rϕ(a)).
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Proposition 3.2. Let A be an A-module Banach algebra with a bounded ap-

proximate identity (eα)α, and let ϕ ∈ HomA(A). Then A is ϕ-A-module approx-

imately amenable if and only if MA(A) is ϕ̃-A-module approximately amenable.

Proof. Let MA(A) be ϕ̃-A-module approximately amenable and let D : A −→
X∗ be a ϕ-A-module derivation for some commutative Banach A-A-module X.

Then by the following actions

T.x = lim
α
T1(eα).x, x.T = lim

α
x.T2(eα) (x ∈ X,T = (T1, T2) ∈MA(A)),

X is a commutative Banach MA(A)-A-module and by continuity of D in the

strict topology, it can be extended to a bounded ϕ̃-A-derivation D̃ : MA(A) −→
X∗, defined by D̃(La, Ra) = D(a). From the ϕ̃-A-module approximate amenabil-

ity of MA(A), it follows that there exists a net (x∗β)β ⊂ X∗ such that

D̃(T ) = lim
β

(
ϕ̃(T ).x∗β − x∗β .ϕ̃(T )

)
.

Hence for every a ∈ A we have

D(a) = D̃(La, Ra) = lim
β

(
ϕ̃(La, Ra).x∗β − x∗β .ϕ̃(La, Ra)

)
= lim

β

(
(Lϕ(a), Rϕ(a)).x

∗
β − x∗β .(Lϕ(a), Rϕ(a))

)
= lim

β

(
lim
α
Lϕ(a)(eα).x∗β − lim

α
x∗β .Rϕ(a)(eα)

)
= lim

β

(
ϕ(a).x∗β − x∗β .ϕ(a)

)
.

This means that D is approximately ϕ-inner and so A is ϕ-A-module approxi-

mately amenable.

Conversely, Suppose that A is ϕ-A-module approximately amenable. Let X

be a commutative Banach MA(A)-A-module and let D : MA(A) −→ X∗ be a

ϕ̃-A-module derivation. We consider the module actions of A on X by

a.x = (La, Ra).x, x.a = x.(La, Ra) (a ∈ A, x ∈ X). (3.1)

Thus X is a commutative Banach A-A-module. Define D̃ : A −→ X∗ by

D̃(a) = D(La, Ra) (a ∈ A). It is easy to see that D̃ is a ϕ-A-module derivation

and from the ϕ-A-module approximate amenability of A, it follows that there

exists a net (x∗β)β ⊂ X∗ such that

D̃(a) = lim
β

(
ϕ(a).x∗β − x∗β .ϕ(a)

)
(a ∈ A).

Then D(La, Ra) = limβ

(
ϕ̃(La, Ra).x∗β −x∗β .ϕ̃(La, Ra)

)
. Now by the continuity

of D and ϕ̃, and density of A in MA(A) in the strict topology, we conclude that

D(T ) = lim
β

(
ϕ̃(T ).x∗β − x∗β .ϕ̃(T )

)
(T ∈MA(A)).

So D is a approximately ϕ̃-inner. Therefore MA(A) is ϕ̃-A-module approxi-

mately amenable. �
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Let I be a closed ideal of a Banach algebra A with a bounded approximate

identity (eα)α, and let X be a commutative Banach I-A-module. Let ϕ ∈
HomA(A) be such that ϕ |I⊂ I, then X is a commutative Banach A-A-module

with the following actions

a.x = lim
α
ϕ(eα)a.x, x.a = lim

α
x.ϕ(eα)a (a ∈ A, x ∈ X). (3.2)

Proposition 3.3. Let I be a closed ideal of an A-module Banach algebra A

which has a bounded approximate identity {eα}, and let I be A-invariant, i.e.

A.I ⊆ I. Let ϕ ∈ HomA(A) be such that ϕ |I⊂ I. If A is ϕ-A-module approxi-

mately amenable, then I is ϕ |I-A-module approximately amenable.

Proof. Let X be a commutative Banach MA(I)-A-module, and D : MA(I) −→
X∗ be a ϕ̃-A-module derivation. By the same actions as (3.1), we can consider

X as a commutative Banach I-A-module. So, by (3.2), X is a commutative

Banach A-A-module. By definition of MA(I), there is an A-module morphism

h : A −→MA(I) andD◦h is a module derivation on A, so it is approximately ϕ-

inner. Hence D is approximately ϕ̃-inner. Since I has a bounded approximate

identity, by Proposition 3.2, I is ϕ |I -A-module approximately amenable. �

Let A and B be A-module Banach algebras. It is well known that A ⊕ B,

the l1-direct sum of A and B, is a Banach algebra with respect to the canonical

multiplication defined by (a, b)(c, d) := (ac, bd), and is a Banach A-bimodule

by the following actions

α.(a, b) := (α.a, α.b), (a, b).α := (a.α, b.α) (α ∈ A, a ∈ A, b ∈ B).

We note that if ϕ ∈ HomA(A) and ψ ∈ HomA(B), then ϕ⊕ψ : A⊕B −→ A⊕B
defined by ϕ⊕ ψ(a, b) =

(
ϕ(a), ψ(b)

)
is an A-morphism on A⊕B.

Lemma 3.4. Let A be a unital A-module Banach algebra, ϕ ∈ HomA(A), and

let D : A −→ X∗ be a ϕ-A-module derivation for some commutative Banach

A-A-module X. If the left (resp. right, two-sided) action of ϕ(A) on X∗ is

zero, then D is ϕ-inner.

Proof. Let eA be the identity of A and let the left (resp. right, two-sided)

action of ϕ(A) on X∗ is zero. We can easily show that D = adϕ−D(e) (resp.

D = adϕD(e), D = 0). So D is ϕ-inner. �

The proof of the following proposition is adopted from that of Proposition

2.7 of [5].

Proposition 3.5. Let A and B be unital A-module Banach algebras with iden-

tities eA and eB, respectively, and let ϕ ∈ HomA(A) and ψ ∈ HomA(B) such that

ϕ(eA).α = α.ϕ(eA), and ψ(eB).α = α.ψ(eB) (α ∈ A). If A is ϕ-A-module

approximately amenable and B is ψ-A-module approximately amenable, then

A⊕B is ϕ⊕ ψ-A-module approximately amenable.
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Proof. Let X be a commutative Banach A ⊕ B-A-module and let D : A ⊕
B −→ X∗ be a ϕ⊕ψ-A-module derivation. Write Y1 = ϕ(eA).X∗.ϕ(eA), Y2 =

ψ(eB).X∗.ψ(eB), Y3 = ϕ(eA).X∗.ψ(eB), Y4 = ψ(eB).X∗.ϕ(eA), Y5 =
(
1 −

ϕ(eA)
)(

1 − ψ(eB)
)
.X∗.ϕ(eA), Y6 =

(
1 − ϕ(eA)

)(
1 − ψ(eB)

)
.X∗.ψ(eB) , Y7 =

ϕ(eA).X∗.
(
1−ϕ(eA)

)(
1−ψ(eB)

)
, Y8 = ψ(eB).X∗.

(
1−ϕ(eA)

)(
1−ψ(eB)

)
, Y9 =(

1− ϕ(eA)
)(

1− ψ(eB)
)
.X∗.

(
1− ϕ(eA)

)(
1− ψ(eB)

)
and let πj : X∗ −→ Yj be

the associated projections. Thus X∗ = Y1⊕Y2⊕Y3⊕Y4⊕Y5⊕Y6⊕Y7⊕Y8⊕Y9.

Consider the derivations Dj = πj ◦ D, so D = D1 + D2 + D3 + D4 + D5 +

D6 + D7 + D8 + D9. From the fact that ϕ(eA).α = α.ϕ(eA) (α ∈ A), and

ψ(eB).α = α.ψ(eB) (α ∈ A), one can easily check that Yj for j = 1, ..., 9 is a

commutative Banach A⊕B-A-module. Since the action of ϕ(A)⊕ψ(B) on (at

least) one side on Y5 (resp. Y6, Y7, Y8, Y9) is zero, by Lemma 3.4, we conclude

that D5 (resp. D6, D7, D8, D9 ) is approximately ϕ⊕ ψ-inner.

From the ϕ-A-module approximate amenability of A, it follows that the

ϕ⊕ψ-A-module derivation A⊕ 0 −→ ϕ(eA).X∗.ϕ(eA) is approximately ϕ⊕ψ-

inner and since the action of 0⊕ψ(B) on ϕ(eA).X∗.ϕ(eA) is zero, we conclude

that D1 is approximately ϕ⊕ψ-inner. Similarly, the ϕ⊕ψ-A-module derivation

D2 : A⊕B −→ ψ(eB).X∗.ψ(eB) is approximately ϕ⊕ ψ-inner.

The right action of ϕ(A)⊕ 0 on ϕ(eA).X∗.ψ(eB) is zero. Hence, by Lemma

3.4, D3 |A⊕0 is ϕ⊕ ψ-inner. So there exists ξ ∈ ϕ(eA).X∗.ψ(eB) such that

D3 |A⊕0 (a, 0) = ϕ(a).ξ − ξ.ϕ(a) =
(
ϕ(a), ψ(b)

)
ϕ(eA).ξ.ψ(eB),

for every a ∈ A and b ∈ B. Similarly, there exists η ∈ ϕ(eA).X∗.ψ(eB) such

that

D3 |0⊕B (0, b) = ψ(b).η − η.ψ(b) = −ϕ(eA).η.ψ(eB)
(
ϕ(a), ψ(b)

)
,

for every a ∈ A and b ∈ B. Hence

D3(a, b) =
(
ϕ(a), ψ(b)

)
ϕ(eA).ξ.ψ(eB)− ϕ(eA).η.ψ(eB)

(
ϕ(a), ψ(b)

)
.

Since D3(eA, eB) = 0, it follows that

0 = D3(eA, eB) = ϕ(eA).ξ.ψ(eB)− ϕ(eA).η.ψ(eB).

Then for every a ∈ A and b ∈ B, we have

D3(a, b) =
(
ϕ(a), ψ(b)

)
ϕ(eA).ξ.ψ(eB)− ϕ(eA).ξ.ψ(eB)

(
ϕ(a), ψ(b)

)
.

Thus D3 is ϕ ⊕ ψ-inner. The same argument holds for the ϕ ⊕ ψ-A-module

derivation D4 : A ⊕ B −→ ψ(eB).X∗.ϕ(eA). Therefore D is approximately

ϕ⊕ ψ-inner, and so A⊕B is ϕ⊕ ψ-A-module approximately amenable. �

Lemma 3.6. Let A and B be A-module Banach algebras, ϕ ∈ HomA(A) and

ψ ∈ HomA(B). If there is a h in HomA(A,B) such that h ◦ ϕ = ψ ◦ h and the

range of h is a dense subset of B, then ϕ-A-module approximate amenability

of A implies ψ-A-module approximate amenability of B.
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Proof. Let D : B −→ X∗ be a ψ-A-module derivation for some commutative

Banach B-A-module X. Then by the following actions

a • x = h(a).x, x • a = x.h(a) (a ∈ A, x ∈ X),

X is a commutative Banach A-A-module. Let D̃ = D ◦ h : A −→ X∗. One

can easily prove that D is a ϕ-A-module derivation. From the ϕ-A-module

approximate amenability of A, it follows that there exists a net (x∗α)α in X∗

such that D̃(a) = limα

(
ϕ(a) • x∗α − x∗α • ϕ(a)

)
(a ∈ A). Now continuity and

density of h(A) in B, imply that D is approximately ψ-inner. Therefore B is

ψ-A-module approximately amenable. �

Proposition 3.7. Let A and B be A-module Banach algebras, ϕ ∈ HomA(A)

and ψ ∈ HomA(B). If A is not ϕ-A-module approximately amenable or B is

not ψ-A-module approximately amenable, then A ⊕ B is not ϕ ⊕ ψ-A-module

approximately amenable.

Proof. Suppose that A is not ϕ-A-module approximately amenable. The pro-

jection map π : A ⊕ B −→ A determines an A-module epimorphism of A ⊕ B
onto A such that π ◦ (ϕ ⊕ ψ) = ϕ ◦ π. So, if A ⊕ B is ϕ ⊕ ψ-A-module ap-

proximately amenable, then by Lemma 3.6, A is ϕ-A-module approximately

amenable. This contradicts the fact that A is not ϕ-A-module approximately

amenable. Therefore A⊕B is not ϕ⊕ ψ-A-module approximately amenable.

Similarly, we can prove the result for B. �

Let A be a non-unital Banach algebra. Then A# = A ⊕ C, the unitization

of A is a unital Banach algebra which contains A as a closed ideal. Let A

be a Banach A-bimodule. Then A is a Banach A#-module with the following

module actions:

(α, λ).a = α.a+ λa, a.(α, λ) = a.α+ λa (λ ∈ C, α ∈ A, a ∈ A).

Let A] = (A⊕ A#, •), where the multiplication • is defined through

(a, u) • (b, v) = (ab+ a.v + u.b, uv) (a, b ∈ A, u, v ∈ A#).

Then with the actions defined by

u.(a, v) = (u.a, uv), (a, v).u = (a.u, vu) (a ∈ A, u, v ∈ A#),

A] is a unital A#-module Banach algebra with the identity 1A] = (0, 1A#) (see

[4] ).

Before we turn to our next result we note that if for every ϕ ∈ HomA#(A),

one defines ϕ] : A] −→ A] by ϕ](a, u) =
(
ϕ(a), u

) (
(a, u) ∈ A]

)
, then ϕ] ∈

HomA#(A]).

The following proposition generalizes Proposition 2.7 of [5].

Theorem 3.8. Let A and B be A-module Banach algebras and each has a

bounded approximate identity. Let ϕ ∈ HomA#(A) and ψ ∈ HomA#(B). Then A
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is ϕ-A#-module approximately amenable and B is ψ-A#-module approximately

amenable if and only if A⊕B is ϕ⊕ ψ-A#-module approximately amenable.

Proof. Suppose that A is ϕ-A#-module approximately amenable and B is ψ-

A#-module approximately amenable. By Proposition 12 of [13], A] is ϕ]-

A#-module approximately amenable and B] is ψ]-A#-module approximately

amenable, so by Proposition 3.5, A]⊕B] is ϕ]⊕ψ]-A#-module approximately

amenable. Since A ⊕ B is a closed A#-invariant ideal in A] ⊕ B], the result

follows from Proposition 3.3.

For the converse, suppose that A ⊕ B is ϕ ⊕ ψ-A#-module approximately

amenable. Then by Proposition 3.7, A is ϕ-A#-module approximately amenable

and B is ψ-A#-module approximately amenable. �

4. ϕ⊕ ψ-Module Approximate Amenability and ϕ⊕ ψ-Amenability

of Direct Sum of Banach Algebras

We start this section with the following definition:

Definition 4.1. We say the Banach algebra A acts trivially on A from the left

(right) if for every α ∈ A and a ∈ A, α.a = f(α)a (resp. a.α = f(α)a), where

f is a multiplicative linear functional on A.

We assume that JA,A is the closed linear span of

{(a.α)b− a(α.b) | α ∈ A, a, b ∈ A},

in A. It follows immediately that JA,A is both A-submodule and A-submodule

of A. So A
JA,A

is both Banach A-module and A-module (see page 346 of [14]).

To prove our next result we need to quote the following lemma from [2].

Lemma 4.2. Let A be a Banach algebra and Banach A-module with compatible

actions, and J0 be a closed ideal of A such that JA,A ⊆ J0. If A
J0

has a left or

right identity e + J0, then for each α ∈ A and a ∈ A we have a.α − α.a ∈ J0,
i.e, A

J0
is commutative Banach A-module.

Before we turn to our next result we note that if for every ϕ ∈ HomA(A), one

defines ϕ : A
JA,A

−→ A
JA,A

by ϕ(a+ JA,A) = ϕ(a) + JA,A, then ϕ ∈ HomA( A
JA,A

).

Theorem 4.3. Let A and B be A-module Banach algebras and let ϕ ∈ HomA(A)

and ψ ∈ HomA(B). Then the following statements are valid:

(i) A⊕B is ϕ⊕ψ-A-module amenable (resp. ϕ⊕ψ-A-module approximately

amenable) if and only if A
JA,A
⊕ B
JB,A

is ϕ⊕ψ-A-module amenable (resp.

ϕ⊕ ψ-A-module approximately amenable).

(ii) Let A acts on A and B trivially from the left by f ∈ HomC(A). Suppose

that A
JA,A

and B
JB,A

are unital, and A⊕B is ϕ⊕ψ-A-module amenable

(resp. ϕ ⊕ ψ-A-module approximately amenable), then A
JA,A

⊕ B
JB,A

is

ϕ⊕ ψ-amenable (resp. ϕ⊕ ψ-approximately amenable).
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(iii) Let A have a bounded approximately identity and A
JA,A

⊕ B
JB,A

is ϕ⊕ψ-
amenable (resp. ϕ⊕ψ-approximately amenable). Then A⊕B is ϕ⊕ψ-
A-module amenable (resp. ϕ⊕ ψ-A-module approximately amenable).

Proof. (i) Let A⊕B be ϕ⊕ψ-A-module amenable, and let D : A
JA,A

⊕ B
JB,A

−→
X∗ be ϕ⊕ψ-A-module derivation for some commutative Banach A

JA,A
⊕ B

JB,A
-

A-module X. Then X becomes a A⊕B-bimodule through the following actions

(a, b).x := (a+ JA,A, b+ JB,A).x (a ∈ A, b ∈ B, x ∈ X), (4.1)

and

x.(a, b) := x.(a+ JA,A, b+ JB,A) (a ∈ A, b ∈ B, x ∈ X). (4.2)

Hence X is a commutative Banach A⊕B-A-module. Define D̃ : A⊕B −→ X∗

by

D̃(a, b) = D(a+ JA,A, b+ JB,A) (a ∈ A, b ∈ B).

It is easy to check that, D̃ is a ϕ ⊕ ψ-A-module derivation. From the ϕ ⊕ ψ-

A-module amenability of A ⊕ B, it follows that there exists x∗ ∈ X∗ such

that

D̃(a, b) = ϕ⊕ ψ(a, b).x∗ − x∗.ϕ⊕ ψ(a, b) (a ∈ A, b ∈ B).

Thus

D(a+ JA,A, b+ JB,A) = ϕ⊕ ψ(a+ JA,A, b+ JB,A).x∗

− x∗.ϕ⊕ ψ(a+ JA,A, b+ JB,A).

This means that D is ϕ ⊕ ψ-inner. Therefore A
JA,A

⊕ B
JB,A

is ϕ ⊕ ψ-A-module

amenable.

Conversely, suppose that A
JA,A

⊕ B
JB,A

is ϕ ⊕ ψ-A-module amenable. Let

D : A ⊕ B −→ X∗ be a ϕ ⊕ ψ-A-module derivation for some commutative

Banach A ⊕ B-A-module X. We consider the following module actions of
A

JA,A
⊕ B

JB,A
on X,

(a+ JA,A, b+ JB,A).x := (a, b).x, x.(a+ JA,A, b+ JB,A) := x.(a, b),

for all a ∈ A, b ∈ B and x ∈ X. Using (2.1) and the commutativity of X,

we have JA,AX = JB,AX = XJA,A = XJB,A = 0. Thus (JA,A ⊕ JB,A)X =

X(JA,A ⊕ JB,A) = 0. So X is a commutative Banach A
JA,A

⊕ B
JB,A

-A-module.

Define D̃ : A
JA,A

⊕ B
JB,A

−→ X∗ by

D̃(a+ JA,A, b+ JB,A) = D(a, b) (a ∈ A, b ∈ B).

Also using (2.2) and (2.3) we see that D vanishes on JA,A ⊕ JB,A. Hence D̃

is well defined. One can easily check that D̃ is a ϕ ⊕ ψ-A-module derivation.
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Now from the ϕ⊕ψ-A-module amenability of A
JA,A

⊕ B
JB,A

, it follows that there

exists x∗ ∈ X∗ such that

D̃(a+ JA,A, b+ JB,A) = ϕ⊕ ψ(a+ JA,A, b+ JB,A).x∗

− x∗.ϕ⊕ ψ(a+ JA,A, b+ JB,A) (a ∈ A, b ∈ B).

It follows that

D(a, b) = ϕ⊕ ψ(a, b).x∗ − x∗.ϕ⊕ ψ(a, b) (a ∈ A, b ∈ B).

Thus D is ϕ⊕ ψ-inner. So A⊕B is ϕ⊕ ψ-A-module amenable.

Similarly, we can show that A⊕B is ϕ⊕ψ-A-module approximately amenable

if and only if A
JA,A

⊕ B
JB,A

is ϕ⊕ ψ-A-module approximately amenable.

(ii) Let A⊕B be ϕ⊕ψ-A-module amenable and let D : A
JA,A

⊕ B
JB,A

−→ X∗

be a derivation for some Banach A
JA,A

⊕ B
JB,A

-bimodule X. Then X becomes a

A⊕B-bimodule through the actions as (4.1) and (4.2). Also X is an A-bimodule

with f -trivial actions, that is

α.x = x.α = f(α)x (α ∈ A, x ∈ X
)
.

Then X is a commutative Banach A⊕B-A-module. Define

Γ :
A⊕B
I

−→ A

JA,A
⊕ B

JB,A
, (a, b) + I 7−→ (a+ JA,A, b+ JB,A),

where I = JA,A ⊕ JB,A. It is routinely checked that Γ defines an A-bimodule

morphism. Let Π : A⊕B −→ A⊕B
I be the quotient map, and let D̃ := D◦Γ◦Π :

A⊕B −→ X∗. For every (a, b), (a′, b′) ∈ A⊕B, we may easily prove that

D̃
(
(a, b)(a′, b′)

)
= D̃(a, b).ϕ⊕ ψ(a′, b′) + ϕ⊕ ψ(a, b).D̃(a′, b′),

and for every (a, b) ∈ A⊕B, and α ∈ A , we have

D̃
(
α.(a, b)

)
= D̃

(
(α.a, α.b)

)
= D̃

(
(f(α)a, f(α)b)

)
= D

(
(f(α)a+ JA,A, f(α)b+ JB,A)

)
= D

(
f(α)(a+ JA,A, b+ JB,A)

)
= f(α)D

(
(a+ JA,A, b+ JB,A)

)
= α.D

(
(a+ JA,A, b+ JB,A)

)
= α.D̃(a, b),
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and using Lemma 4.2, we have

D̃
(

(a, b).α
)

= D̃
(

(a.α, b.α)
)

= D
(

(a.α+ JA,A, b.α+ JB,A)
)

= D
(

(α.a+ JA,A, α.b+ JB,A)
)

= D
(
f(α)(a+ JA,A, b+ JB,A)

)
= f(α)D

(
(a+ JA,A, b+ JB,A)

)
= D

(
(a+ JA,A, b+ JB,A)

)
.α

= D̃(a, b).α.

Thus D̃ is a ϕ⊕ψ-A-module derivation and from the ϕ⊕ψ-A-module amenabil-

ity of A⊕B, it follows that there exists x∗ ∈ X∗ such that

D̃(a, b) = ϕ⊕ ψ(a, b).x∗ − x∗.ϕ⊕ ψ(a, b) (a ∈ A, b ∈ B).

It follows that

D(a+ JA,A, b+ JB,A) = ϕ⊕ ψ(a+ JA,A, b+ JB,A).x∗

− x∗.ϕ⊕ ψ(a+ JA,A, b+ JB,A).

So D is ϕ⊕ ψ-inner. Therefore A
JA,A

⊕ B
JB,A

is ϕ⊕ ψ-amenable.

(iii) Suppose that A
JA,A

⊕ B
JB,A

is ϕ ⊕ ψ-amenable. Since A has a bounded

approximate identity, by Proposition 2.1 of [1], we conclude that A
JA,A

⊕ B
JB,A

is ϕ⊕ ψ-A-module amenable. So by (i), A⊕B is ϕ⊕ ψ-A-module amenable.

Similar relations can be obtained between the ϕ⊕ψ-A-module approximate

amenability of A⊕B and ϕ⊕ ψ-approximate amenability of A
JA,A

⊕ B
JB,A

. �

Proposition 4.4. Let A be an A-module Banach algebra, where A acts on A

trivially from the left by f ∈ HomC(A). Let ϕ ∈ HomA(A) and A
JA,A

be uni-

tal. If A is ϕ-A-module approximately amenable, then A
JA,A

is ϕ-approximately

amenable.

Proof. Let X be a Banach A
JA,A

-bimodule and D : A
JA,A

−→ X∗ be a ϕ-

derivation. Then X becomes a A-bimodule through the following actions

a.x = (a+ JA,A).x, x.a = x.(a+ JA,A) (a ∈ A, x ∈ X),

and X is an A-bimodule with f -trivial actions, that is α.x = x.α = f(α)x (α ∈
A, x ∈ X). By Lemma 4.2, f(α)a − a.α ∈ JA,A (α ∈ A, a ∈ A). So, f(α)a +

JA,A = a.α + JA,A (α ∈ A, a ∈ A), and the actions of A and A on X are

compatible. Thus X is a commutative Banach A-A-module. Let D̃ : A −→ X∗

be defined by D̃(a) = D(a + JA,A) (a ∈ A). A similar argument as in the

proof of Theorem 3.2 of [2], shows that D̃ is approximately ϕ-inner. So, D is

approximately ϕ-inner. Therefore A
JA,A

is ϕ-approximately amenable. �
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Theorem 4.5. Let A have a bounded approximate identity, and let A and

B be A-module Banach algebras, where A acts on A and B trivially from the

left. Let ϕ ∈ HomA(A), ψ ∈ HomA(B), and let A
JA,A

and B
JB,A

be unital. Then

A is ϕ-A-module approximately amenable and B is ψ-A-module approximately

amenable if and only if A⊕B is ϕ⊕ ψ-A-module approximately amenable.

Proof. Suppose that A is ϕ-A-module approximately amenable and B is ψ-

A-module approximately amenable. By Proposition 4.4, A
JA,A

and B
JB,A

are

ϕ-approximately amenable and ψ-approximately amenable, respectively. Now

by using Proposition 3.5 for A = C, we conclude that A
JA,A

⊕ B
JB,A

is ϕ ⊕ ψ-

approximately amenable. So, Theorem 4.3, implies that A ⊕ B is ϕ ⊕ ψ-A-

module approximately amenable.

Conversely, suppose that A⊕B is ϕ⊕ψ-A-module approximately amenable.

Then by Proposition 3.7, A is ϕ-A-module approximately amenable and B is

ψ-A-module approximately amenable. �
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