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ABSTRACT. This paper is concerned with the relation between local coho-
mology modules defined by a pair of ideals and the Serre subcategories of
the category of modules. We characterize the membership of local coho-
mology modules in a certain Serre subcategory from lower range or upper

range.
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1. INTRODUCTION

Throughout this paper, R is denoted a commutative Noetherian ring, I and
J arerdenoted two ideals of R, and M is an R-module. We refer the reader to
[2] and [4] for any unexplained terminology.

As a generalization of the ordinary local cohomology modules, Takahashi,
Yoshino and Yoshizawa [16] introduced the local cohomology modules with
respect to a pair of ideals (I,J). To be more precise, let W(I,J) = {p €
Spec(R) | I" C p+ J for some positive integer n}. Then for an R-module M,
the (I, J)-torsion submodule I'; y(M) of M, which consists of all elements x
of M with SuppRx C W(I,J), is considered. It is known, I'; ; is a left exact
additive functor from the category of all R-modules and R-homomorphism to
itself. For all integer i, the i-th local cohomology functor H}] with respect
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to (I, J) is defined to be the i-th right derived functor of I'; ;. The i-th local
cohomology module of M with respect to (I, J) is denoted by H} ;(M). When
J =0, then H} ; coincides with the usual local cohomology functor H¢ with
the support in the closed subset V' (I).

The study of this generalized local cohomology modules was continued by many
authors (see for example [5], [6], [9] and [10], [14]).

Recall that a class of R-modules is a Serre subcategory of the category of R-
modules when it is closed under taking submodules, quotients and extensions.
Always, S stands for a Serre subcategory of the category of R-modules.

Using the generalized local cohomology modules, we can define 77 ;(M)
(resp. TL7(M)) of the R-module M relative to a pair (I,.J) of ideals of R by

17 (M) = inf{i e N | H}’J(M) is not in S}
(resp. TH7(M) =Sup{i €N | H}J(M) is not in S})
with the usual convention that the infimum (resp. Supremum) of the empty
set of integers interpreted as 400 (resp. —o0).

Our objective in this paper is to investigate the notions 775 ;(M) and T/ (M).
we prove the following,

Theorem 1.1. Let S be a Melkersson subcategory with respect to (I,J). Sup-
pose M is Weakly Laskerian module. Then Tf;(M) = inf{T3(M) | a €
W(I, J)}, where TS(M) is the least non-negative integer i such that H:(M)
is not in S.

Theorem 1.2. Let S be a Serre subcategory and let M be a Weakly Laskerian
module. Then T17 (M) = Sup{TH7 (R/p) | p € Supp(M)}.

One can see that the subcategories of finitely generated R-modules, mini-
max R-modules, minimax and (I, J)-cofinite R-modules, weakly Laskerian R-
modules, and Matlis reflexive R-modules are examples of Serre subcategory.
So, this paper recovers some results regarding the local cohomology R-modules
that have appeared in different papers (see for instance [3], [5] and [13]).

2. THE RESULTS
This section is started with the following definition.

Definition 2.1. ( see [1, Definition 3.1]) A Serre subcategory of the category
of R-modules is said to be a Melkersson subcategory with respect to the ideal
a, if for any a-torsion R-module X, (0 :x a) is in S implies that X is in S.
Examples are given by the class of Artinian modules, minimax and a-cofinite
modules.

Also, we say that S is a Melkersson subcategory with respect to the pair of
ideals (I, J), if for an (I, J)-torsion R-module X, (0 :x I) is in S implies that
X is in S. Obviously, if S is a Melkersson subcategory with respect to (I, .J),
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then S is a Melkersson subcategory with respect to all ideals of W(I ,J), where

W (I,J) denote the set of ideals a of R such that I"™ C a + J for some integer
n.

Proposition 2.2. Let S be a Melkersson subcategory with respect to the ideal
I and t an integer. Let T be an R-module such that Exto(R/I,T) is in S for
all i < t. Then HX(T) is in S for all i < t. Particularly, for an R-module M,
the module H}(H}J(M)) is in S for alli and j < Ty ;(M).

Proof. We prove the theorem by induction on 4. It is straightforward to see
that the result is true when ¢ = 0. Suppose that 0 < 7 and that the result has
been proved for i — 1. It easily follows from the exact sequence

0—T/(T)—T—T/T(T)—0,

that Exti(R/I,T) is in S if and only if Exth(R/I,T/T(T)).is in S. Also,
by [2, Corollary 2.1.7], H{(M) = H}(M/T(M)) for alli> 0. Therefore we
assume that I';(T) = 0. Now, we apply Melkerson’s technic [12], so let E be
an injective envelope of T. Then I';(E) = Hom(R/I,F) = 0. Put L = E/T
and consider the exact sequence

0—T—F—L—0.

We obtain isomorphisms; H(T) = Hi-*(L) and Extz(R/I,T) = Ext; ' (R/I, L)
for all ¢ > 0. Use the induction hypothesis-applied to L, and conclude that
the Hi(T) is in S for all i < ¢. It therefore follows, in view of the definition of
T3 ;(M), that Hi(H7 ;(M)) isin.S for all j < T§ ,(M). 0

ExXaMPLE 2.3. In Theorem 2.2, the assumption .S is Melkersson subcategory
is necessary. To see this, let (R, m) be a local ring, and let M be a non-zero,
finitely generated R-module of dimension n > 0. Then H[Z (M) is not finitely
generated (see [2, Corollary 7.3.3]).

The next theorem recovers the Theorem 2.5 of [3] and Theorem 2.2 of [17].

Theorem 2.4. Let M be in S and j < Tf7J(M) =t. Then
(i) Bty (R/I,H] ;(M)) is in S for alli=0,1.
(ii) H (H}J(M)) isin S for alli=0,1, if S is a Melkersson subcategory
with respect to 1.

Proof. (i) Consider the functors F(—) = Homg(R/I,— ) and G(—) =T'; j(— ).
Then one has FG(—) = Hom(R/I,— ). So, by [14, Theorem 11.38], there is a
Grothendieck’s spectral sequence

EYT = Exth (R/I, H} ;(M)) == Ext}*(R/I, M).

By using an argument similar to the proof of [8, Theorem 2.2], we obtain that
Exty (R/I, H}J(M)) is in S for all ¢ = 0, 1. This completes the proof.
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(ii) Using [15, Theorem 11.38] there exists a Grothendieck’s spectral sequence
. P
B = HE(HD (M) 25 (M),
Also, there is a bound filtration 0 = OHIHY C p!H! C -+ C p"H! = HY(M)
such that EL!~% = % for all 0 <4 < t. By the hypotheses with proposition
2.2 Hi{(M) is in S for all i and hence E%? is in S for all p,q. Note that
EP:9 = EP4 for large r and each p,q. It follows that there is an integer ¢ > 2
such that EP? is in S for all » > ¢. We now argue by descending induction on

{. Now, assume that 2 < £ < r and that the claim holds for ¢. Since E?'? is
in a subquotient of E5'? for all p,q € Ny, the hypotheses give EPFT:¢=" 1 g in

. kerqr:t . _ _
S for all » > 2. In addition, Ef’t = W and 1md§7f+1’t+é 2 =0 for

p = 0,1, it follows that kerdé”_t1 isin S for all ¢ > 2 and p = 0;1. Let » > 2.and
p = 0,1, we consider the sequence

0 — kerd?t — EPt — pPTTiTTEL

Since both kerdffl and Efjlr’t_TH are in S, it‘follows that Ef’_tl is in S for

p =0, 1. This completes the inductive step. |

Proposition 2.5. Let M be in S such that dim(M/JM) < 1. Then Exty(R/I, H}J(M))

is in S
Proof. Consider the following spectral sequence
ED® = Exth (R/I, H} ;(M)) == Ext}™*(R/I, M) = H"1.
In view of [16, Theorem 4.3] E¥*% = 0 unless ¢ = 0, 1. It follows that the exact
sequence

2 L AR A /S N & L 1 (e S & L

which in turn yields the exact sequence
Ext? N (R/I, M) == Ext? ™ (R/I,T; ;(M)) — Extt, '(R/I, Hf ;(M)) —
Exth (R/L, M) — Exth(R/I,T1 ;(M)) — Exty *(R/I, H} ;(M)).

Since, by our assumption, the R-modules Ext's(R/I, T ;(M)) and Ext’(R/I, M)
are in S for all 7 and hence the result follows. O

Corollary 2.6. Let S be a Melkersson subcategory Qf the category of R-modules.
Let M be in S and dim(M/JM) < 1. Then H}(H}J(M)) is in S for all i and
7.

Proof. The result follows from the part (ii) of Theorem (2.4) and argument
similar to the proof of Proposition 2.5.

Recall that an R-module M is weakly Laskerian if any quotient of M has a
finitely many associated prime ideals. This holds, by employing a method of
proof which is similar to that used in [2, Lemma 2.1.1], M is a a-torsion-free if
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and only if a contains a non-zerodivisor on M. Clearly, any finitely generated
module and any minimax module are weakly Laskerian modules.

In addition, by using an argument similar to the proof of [11, Theorem 6.4],
there exists a chain 0 = My € My--- C M,, = M of submodules of M such
that for each ¢ we have M;/M;_; = p; with p; € Supp(M). O

Theorem 2.7. Leta € W(I, J) and M be a Weakly Laskerian module. Then
Extiy(R/a, M) is in S for all 0 < i < 17 ;(M).

Proof. It follows by using induction on 77 ;(M). O

Theorem 2.8. Leta € W(I7 J) and S be a Melkersson subcategorywith respect
to the ideal a. Suppose M is Weakly Laskerian module. Then H.(M) € S for
all i <17 ;(M).

Proof. By using the induction on t = TIS’J(M), the theorem is proved. It is
straightforward to see that the result is true when ¢t =1. Suppose that t > 1,
and the result holds for the case ¢ — 1. Since H}J(M) = H}‘J(M/FLJ(M))
for all 4 > 0, we may replace M by M/T'; (M) and hence assume that there is
an element x € a, such that z is a non-zero divisor on M. The exact sequence
0 — M s M — M/xM — 0 induces two exact sequences

— H; ' (M/zM) — Hj ;(M) = Hj ;(M) — Hj ;(M/xM)  and

— H7 Y (M/aM) — HL(M) = H{(M) — Hi(M/zM) (%)
of local cohomology modules. The induction hypothesis and the above se-
quences yield that the Remodules H:(M) and H(M/xM) are in S for all
i < t—1. It suffices to show that HL1(M) is in S. Now, the exactness of
(*), in conjunction:with the fact (0 () a) € (0 -1y @) and our
hypotheses, show that H:~1(M) is in S, this proves our claim. O

Theorem 2.9. Let S be a Melkersson subcategory with respect to (I,J). Sup-
pose M is Weakly Laskerian module. Then T} ;(M) = inf{T3(M) | a €
W(I,.J)}, where T:(M) is the least non-negative integer i such that H:(M)
is not an S:

Proof. It is enough, in view Definition 2.1 and Theorem 2.8, to show that,
17 ;(M) > iifi <T3(M) for all a € W (I,J). To do this, let a be an arbitrary
ideal in W(I ,J). We prove this by induction on 7. It is straightforward to see
that the result is true when ¢ = 0. Suppose that 0 < ¢ and that the result has
been proved for ¢ — 1. It follows from [16, Proposition 1.4] that H}J(M) =
H}’J(M/FIyJ(M)) for all 4 > 1. Hence, by replacing M with M/T'; ;(M), we
may assume that there exists an element x € I which is a non-zero divisor on M.
Now, we may consider the exact sequence 0 — M —— M — M/x2M — 0
to obtain the exact sequences

H Y (M/xM) — HY(M) -2 H.{(M)—Hi(M/xM) and
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Now, one can use the above exact sequences in conjunction with the in-
ductive hypothesis to see that (0 ‘Hi (M) x) is in S. Since (0 ‘H (M) I) C
(0 Hi (M) a:), and hence the result follows.

This shows that the study of generalized local cohomology in a Melkersson
subcategory in the upper range depends on the ideals of W(I, J). (]

Theorem 2.10. Let M be Weakly Laskerian module and let r be a non-negative
integer such that Hy ;(R/p) € S for all p € Supp(M). Then Hy ;(M) € S.

Proof. Clearly, there exists a filtration of the submodules of M
0C My &M G- CMg=M

such that for each 1 < j < ¢, then M;/M;_1 = R/p;, where p; € Suppp M.
We use induction on £. When ¢ = 1, Hy ;(R/p) = Hj ;(M).is'in S, where we
put p = p;. Now Suppose that £ > 1 and the result has been proved for £ — 1.
The exact sequence

0—Myp_1—My—>My/My_1—0
induces the long exact sequence
HY j(My—y) — Hf ;(Mg) — HT ;(M/M;_y).
It follows that H7 ;(M,) is in S. This completes the proof. O

Definition 2.11. ( see [17, Definition 2.1]) An R-module T is called (I, J)-
cofinite if SuppT C W (I, J) and Ext%(R/I,T) is a finite R-modules, for every
i > 0. Whence according to [9, Lemma 2], the class of (I, J)-cofinite minimax
(Artinian) modules is closed under taking submodules, quotients and exten-
sions, it is a Serre subcategory of the category of R-modules.

The following resultis an application of the Theorem 2.10.

Corollary 2.12. Let M be a finitely generated R-module with dimM = d.
Then H}{J(M) is Artinian and (I, J)-cofinite.

Proof. Let S be the class of (I,.J)-cofinite Artinian modules. It is enough,
in view Theorem 2.10, to show that R-module HId, ;7(R/p) is Artinian and
(I, J)-cofinite for all p € SuppM. If J C p, then R/p is J-torsion and then
H}{J(R/p) =~ H¢(R/p). Since dimR/p < d, then, in view of [12, Proposition
5.1, H}(R/p) is Artinian and I-cofinite. If J ¢ p, then dim(R/p)/J(R/p) <
dim(R/p) < d and so H}iJ(R/p) = 0 by [16, Theorem 4.3]. The proof is
completed. O

Theorem 2.13. Let M be a Weakly Laskerian module. Then Hj ;(R/p) is in
S for alli > TEH7 (M) and p € Supp(M).
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Proof. We use descending induction on i. Now, assume that i > TL7 (M)
and that the claim holds for i + 1. We want to show that Hj ;(R/p) is
in S for all p € Supp(M). Suppose the contrary. We set: A = {p | p €
SuppM, H}",(R/p) is not in S}. Clearly A # 0); it follows that the set A has a
maximal element, let p be one such. Since p € Supp(M), there is a non-zero
map f : M — R/p. The exact sequence 0 — Kerf — M — Imf — 0,
yields the exact sequence

H}J(M) — H},J(Imf) — Hﬁ}l(Kerf).
Since Supp(Kerf) C Supp(M), it follows from the inductive hypothesis that
the R-module H}ijl (R/p) is in S for all p € Supp(ker f), so, that, in view of

the Theorem 2.10, and the above exact sequence, the R-module H}'J(Imf) is
in §. There is a filtration

OZNtCNtflCNt,QC'“CNO:COkel"f

of submodules of Cokerf, such that for each 0 < i <, N;_1/N; = R/q;
where q; € Supp(Cokerf). Then by maximality of p, H} ;(R/q;) is in S. Next
the exact sequence 0 — Imf — R/p — Cokerf — 0, yields the exact
sequence

H;,J<Imf> — H;,J(R/P) — H}',J(COkerf)-
It follows that Hj ;(R/p) is in S, whichis a contradiction.

N Od

Lemma 2.14. If N and M are Weakly Laskerian modules such that Supp(N)
Supp(M), then TLI(N) < TLI(M). In particular, if Supp(N) = Supp(M)
then THY(N) = THI(M).

Proof. It is enoughto show that H} ;(IN) isin S for all finite R-module N with
SuppN C SuppM and for all i > TX7/(M). In view of the previous theorem,
H} ;(R/p) is in S for all p € Supp(M). Now. since Supp(N) C Supp(M), the
result follows by Theorem 2.10. |

As an immediate result of Theorems (2.13) and (2.10), we have the following
Corollary. This shows that the study of generalized local cohomology of Weakly
Laskerian‘'module M in a Serre subcategory in the lower range depends just on
the support of module M.

Corollary 2.15. Let M be a Weakly Laskerian module. Then

T3 (M) = Sup{T (R/p) | p € Supp(M)}.
Theorem 2.16. Let T} ;(M) > 0 and a € W(I, J). If M has finite krull
dimension, then H}J(M)/aH}J(M) is in S for alli > TH7 (M) =t.

Proof. When i > T17(M), the result is clearly, it is enough to show that
Hj ;(M)/aH; ;(M) is in S. We proceed by induction on dimM = n. If
n = 0, then M is m-torsion and there is nothing to prove. So let n > 0 and
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suppose that the result has been proved for any finitely generated module N
with dim(N) = n — 1. Since H} (M) = ;'J(M/FLJ(M)) for i > 0, we can

assume that M is (I, J)-torsion. Thus, there is an element z € a, such that

x is a non-zero divisor on M. Now, one can complete the proof by using an
argument similar to the proof of [7, Theorem 3.3]. O
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