Iranian Journal of Mathematical Sciences and Informatics Vol. 13, No. 2 (2018), pp 1-13 DOI: 10.7508/ijmsi.2018.13.001

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

Phaisatcha Inpoonjai*, Thiradet Jiarasuksakun

Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand.

> E-mail: phaisatcha_in@outlook.com E-mail: thiradet.jia@mail.kmutt.ac.th

ABSTRACT. A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to $(1 + |E(G)|) \deg(v)/2$. Degree-magic graphs extend supermagic regular graphs. In this paper we find the necessary and sufficient conditions for the existence of balanced degree-magic labelings of graphs obtained by taking the join, composition, Cartesian product, tensor product and strong product of complete bipartite graphs.

Keywords: Complete bipartite graphs, Supermagic graphs, Degree-magic graphs, Balanced degree-magic graphs.

2000 Mathematics subject classification: 05C78.

^{*}Corresponding Author

Received 26 December 2015; Accepted 1 June 2016 ©2018 Academic Center for Education, Culture and Research TMU

P. Inpoonjai, T. Jiarasuksakun

1. INTRODUCTION

We consider simple graphs without isolated vertices. If G is a graph, then V(G) and E(G) stand for the vertex set and the edge set of G, respectively. Cardinalities of these sets are called the *order* and *size* of G.

Let a graph G and a mapping f from E(G) into positive integers be given. The *index mapping* of f is the mapping f^* from V(G) into positive integers defined by

$$f^*(v) = \sum_{e \in E(G)} \eta(v, e) f(e) \quad \text{for every} \quad v \in V(G),$$

where $\eta(v, e)$ is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise. An injective mapping f from E(G) into positive integers is called a magic labeling of G for an index λ if its index mapping f^* satisfies

$$f^*(v) = \lambda$$
 for all $v \in V(G)$.

A magic labeling f of a graph G is called a *supermagic labeling* if the set $\{f(e) : e \in E(G)\}$ consists of consecutive positive integers. We say that a graph G is *supermagic (magic)* whenever a supermagic (magic) labeling of G exists.

A bijective mapping f from E(G) into $\{1, 2, ..., |E(G)|\}$ is called a *degree-magic labeling* (or only *d-magic labeling*) of a graph G if its index mapping f^* satisfies

$$f^*(v) = \frac{1+|E(G)|}{2} \operatorname{deg}(v) \quad \text{for all} \quad v \in V(G).$$

A d-magic labeling f of a graph G is called *balanced* if for all $v \in V(G)$, the following equation is satisfied

$$|\{e \in E(G) : \eta(v, e) = 1, f(e) \le \lfloor |E(G)|/2 \rfloor \}|$$

= $|\{e \in E(G) : \eta(v, e) = 1, f(e) > ||E(G)|/2|\}|.$

We say that a graph G is *degree-magic* (*balanced degree-magic*) or only *d-magic* when a d-magic (balanced d-magic) labeling of G exists.

The concept of magic graphs was introduced by Sedláček [8]. Later, supermagic graphs were introduced by Stewart [9]. There are now many papers published on magic and supermagic graphs; see [6, 7, 10] for more comprehensive references. The concept of degree-magic graphs was then introduced by Bezegová and Ivančo [2] as an extension of supermagic regular graphs. They established the basic properties of degree-magic graphs and characterized degreemagic and balanced degree-magic complete bipartite graphs in [2]. They also characterized degree-magic complete tripartite graphs in [4]. Some of these concepts are investigated in [1, 3, 5]. We will hereinafter use the auxiliary results from these studies.

 $\mathbf{2}$

Theorem 1.1. [2] Let G be a regular graph. Then G is supermagic if and only if it is d-magic.

Theorem 1.2. [2] Let G be a d-magic graph of even size. Then every vertex of G has an even degree and every component of G has an even size.

Theorem 1.3. [2] Let G be a balanced d-magic graph. Then G has an even number of edges and every vertex has an even degree.

Theorem 1.4. [2] Let G be a d-magic graph having a half-factor. Then 2G is a balanced d-magic graph.

Theorem 1.5. [2] Let H_1 and H_2 be edge-disjoint subgraphs of a graph G which form its decomposition. If H_1 is d-magic and H_2 is balanced d-magic, then G is a d-magic graph. Moreover, if H_1 and H_2 are both balanced d-magic, then G is a balanced d-magic graph.

Proposition 1.6. [2] For p, q > 1, the complete bipartite graph $K_{p,q}$ is d-magic if and only if $p \equiv q \pmod{2}$ and $(p,q) \neq (2,2)$.

Theorem 1.7. [2] The complete bipartite graph $K_{p,q}$ is balanced d-magic if and only if the following statements hold:

(i)
$$p \equiv q \equiv 0 \pmod{2};$$

(ii) if $p \equiv q \equiv 2 \pmod{4}$, then $\min\{p,q\} \ge 6$.

Lemma 1.8. [4] Let m, n and o be even positive integers. Then the complete tripartite graph $K_{m,n,o}$ is balanced d-magic.

2. BALANCED DEGREE-MAGIC LABELINGS IN THE JOIN OF COMPLETE BIPARTITE GRAPHS

For two vertex-disjoint graphs G and H, the *join* of graphs G and H, denoted by G+H, consists of $G \cup H$ and all edges joining a vertex of G and a vertex of H. For any positive integers p and q, we consider the join $K_{p,q} + K_{p,q}$ of complete bipartite graphs. Let $K_{p,q} + K_{p,q}$ be a d-magic graph. Since $\deg(v)$ is p + 2qor 2p + q and $f^*(v) = (2pq + (p+q)^2 + 1) \deg(v)/2$ for any $v \in V(K_{p,q} + K_{p,q})$, we have

Proposition 2.1. Let $K_{p,q} + K_{p,q}$ be a d-magic graph. Then p or q is even.

Proposition 2.2. Let $K_{p,q} + K_{p,q}$ be a balanced d-magic graph. Then both p and q are even.

Proposition 2.3. Let p and q be even positive integers. Then $K_{p+q,p+q}$ is a balanced d-magic graph.

Proof. Applying Theorem 1.7, $K_{p+q,p+q}$ is a balanced d-magic graph.

In the next result we show the sufficient condition for the existence of balanced d-magic labelings of the join of complete bipartite graphs $K_{p,q} + K_{p,q}$. P. Inpoonjai, T. Jiarasuksakun

FIGURE 1. A balanced d-magic graph $K_{2,6} + K_{2,6}$ with 16 vertices and 88 edges.

Theorem 2.4. Let p and q be even positive integers. Then $K_{p,q} + K_{p,q}$ is a balanced d-magic graph.

Proof. Let p and q be even positive integers. We consider the following two cases:

Case I. If (p,q) = (2,2), the graph $K_{2,2} + K_{2,2}$ is decomposable into three balanced d-magic subgraphs isomorphic to $K_{2,4}$. According to Theorem 1.5, $K_{2,2} + K_{2,2}$ is a balanced d-magic graph.

Case II. If $(p,q) \neq (2,2)$, then $K_{p+q,p+q}$ is balanced d-magic by Proposition 2.3, and $2K_{p,q}$ is balanced d-magic by Theorem 1.4. Since $K_{p,q} + K_{p,q}$ is the graph such that $K_{p+q,p+q}$ and $2K_{p,q}$ form its decomposition, by Theorem 1.5, $K_{p,q} + K_{p,q}$ is a balanced d-magic graph.

We know that $K_{2,6}$ is d-magic, but it is not balanced d-magic. Applying Theorem 2.4, we can construct a balanced d-magic graph $K_{2,6} + K_{2,6}$ (see Figure 1) with the labels on edges of $K_{2,6} + K_{2,6}$ in Table 2.

We will now generalize to find the necessary and sufficient conditions for the existence of balanced d-magic labelings of the join of complete bipartite graphs in a general form. For any positive integers p, q, r and s, we consider the join $K_{p,q} + K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} + K_{r,s}$ be a dmagic graph. Since $\deg(v)$ is p + r + s, q + r + s, p + q + r or p + q + s and $f^*(v) = (pq + (p+q)(r+s) + rs + 1) \deg(v)/2$ for any $v \in V(K_{p,q} + K_{r,s})$, we have

Proposition 2.5. Let $K_{p,q} + K_{r,s}$ be a d-magic graph. Then the following conditions hold:

(i) only one of p, q, r and s is even or

(ii) only two of p, q, r and s are even or

(iii) all of p, q, r and s are even.

Vertices	a_1	a_2	a_3	a_4	a_5	a_6	c_1	c_2	d_1	d_2
b_1	15	70	75	26	23	62	18	67	1	88
b_2	74	16	17	63	66	24	71	25	11	78
b_3	69	19	14	68	61	27	76	22	3	86
b_4	36	57	56	37	44	49	29	48	85	4
b_5	31	54	59	42	39	46	34	51	84	5
b_6	58	32	33	47	50	40	55	41	83	6
d_1	20	73	72	21	28	65	13	64	-	-
d_2	53	35	30	52	45	43	60	38	-	-
c_1	77	87	79	9	8	7	-	-	-	-
c_2	12	2	10	80	81	82	-	-	-	-

TABLE 1. The labels on edges of balanced d-magic graph $K_{2,6} + K_{2,6}$.

Proposition 2.6. Let $K_{p,q} + K_{r,s}$ be a balanced d-magic graph. Then p, q, r and s are even.

Now we are able to show the sufficient condition for the existence of balanced d-magic labelings of the join of complete bipartite graphs $K_{p,q} + K_{r,s}$.

Theorem 2.7. Let p, q, r and s be even positive integers. Then $K_{p,q} + K_{r,s}$ is a balanced d-magic graph.

Proof. Let p, q, r and s be even positive integers. We consider the following two cases:

Case I. If at least one of p, q, r and s is not congruent to 2 modulo 4. Suppose that p is not congruent to 2 modulo 4. Thus, $K_{p,q}$ is balanced d-magic by Theorem 1.7. Since r, s and p + q are even, $K_{r,s,p+q}$ is balanced d-magic by Lemma 1.8. The graph $K_{p,q} + K_{r,s}$ is decomposable into two balanced d-magic subgraphs isomorphic to $K_{p,q}$ and $K_{r,s,p+q}$. According to Theorem 1.5, $K_{p,q} + K_{r,s}$ is a balanced d-magic graph.

Case II. If p,q,r and s are congruent to 2 modulo 4. Thus q + r, q + s and p + q are not congruent to 2 modulo 4. By Theorem 1.7, $K_{p,q+r}, K_{r,q+s}$ and $K_{s,p+q}$ are balanced d-magic. The graph $K_{p,q} + K_{r,s}$ is decomposable into three balanced d-magic subgraphs isomorphic to $K_{p,q+r}, K_{r,q+s}$ and $K_{s,p+q}$. According to Theorem 1.5, $K_{p,q} + K_{r,s}$ is a balanced d-magic graph.

Corollary 2.8. Let p, q, r and s be even positive integers. If p = q = r = s, then $K_{p,q} + K_{r,s}$ is a supermagic graph.

Proof. Applying Theorems 1.1 and 2.7.

FIGURE 2. A balanced d-magic graph $K_{2,4} + K_{2,10}$ with 18 vertices and 100 edges.

Vertices	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	c_1	c_2	d_1	d_2
b_1	31	70	79	22	57	61	42	41	58	44	85	16	100	1
b_2	23	78	71	30	45	52	54	53	49	50	84	17	2	99
b_3	77	24	29	72	56	46	48	47	55	51	18	83	3	98
b_4	76	25	28	73	39	43	59	60	40	62	19	82	97	4
d_1	75	26	27	74	38	64	65	36	67	33	81	20	-	-
d_2	21	80	69	32	68	37	35	66	34	63	15	86	-	-
c_1	96	6	7	93	92	10	11	89	88	14	-	-	-	-
c_2	5	95	94	8	9	91	90	12	13	87	-	-	-	-

TABLE 2. The labels on edges of balanced d-magic graph $K_{2,4} + K_{2,10}$.

Since 4 is not congruent to 2 modulo 4, applying Theorem 2.7, a balanced d-magic graph $K_{2,4} + K_{2,10}$ is constructed (see Figure 2), and the labels on edges of $K_{2,4} + K_{2,10}$ are shown in Table 2.

3. BALANCED DEGREE-MAGIC LABELINGS IN THE COMPOSITION OF COMPLETE BIPARTITE GRAPHS

For two vertex-disjoint graphs G and H, the composition of graphs G and H, denoted by $G \cdot H$, is a graph such that the vertex set of $G \cdot H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \cdot H$ if and only if either u is adjacent with x in G or u = x and v is adjacent with y in H. For any positive integers p, q, r and s, we consider the composition $K_{p,q} \cdot K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \cdot K_{r,s}$ be a d-magic graph. Since $\deg(v)$ is (r+s)p+r, (r+s)p+s, (r+s)q+r or (r+s)q+s and

 $f^*(v) = (pq(r+s)^2 + rs(p+q) + 1) \deg(v)/2$ for any $v \in V(K_{p,q} \cdot K_{r,s})$, we have

Proposition 3.1. Let $K_{p,q} \cdot K_{r,s}$ be a d-magic graph. Then the following conditions hold:

- (i) only one of p, q, r and s is even or
- (ii) at least both r and s are even.

Proposition 3.2. Let $K_{p,q} \cdot K_{r,s}$ be a balanced d-magic graph. Then at least both r and s are even.

In the next result we find the sufficient condition for the existence of balanced d-magic labelings of the composition of complete bipartite graphs $K_{p,q}$. $K_{r,s}$.

Theorem 3.3. Let p and q be positive integers, and let r and s be even positive integers. Then $K_{p,q} \cdot K_{r,s}$ is a balanced d-magic graph.

Proof. Let p and q be positive integers, and let $k = \min\{p,q\}$ and $h = \max\{p,q\}$. It is clear that $K_{r+s,r+s}$, $K_{r,s} + K_{r,s}$ and $K_{r,s,r+s}$ are balanced d-magic by Proposition 2.3, Theorem 2.4 and Lemma1.8, respectively. The graph $K_{p,q} \cdot K_{r,s}$ is decomposable into k balanced d-magic subgraphs isomorphic to $K_{r,s}+K_{r,s}$, h(k-1) balanced d-magic subgraphs isomorphic to $K_{r,s,r+s}$. According to Theorem 1.5, $K_{p,q} \cdot K_{r,s}$ is a balanced d-magic graph.

Notice that the graph composition $K_{p,q} \cdot K_{r,s}$ is naturally nonisomorphic to $K_{r,s} \cdot K_{p,q}$ except for the case (p,q) = (r,s).

Corollary 3.4. Let p and q be positive integers, and let r and s be even positive integers. If p = q and r = s, then $K_{p,q} \cdot K_{r,s}$ is a supermagic graph.

Proof. Applying Theorems 1.1 and 3.3.

The following example is a balanced d-magic graph $K_{1,2} \cdot K_{2,2}$ (see Figure 3) with the labels on edges of $K_{1,2} \cdot K_{2,2}$ in Table 3.

4. BALANCED DEGREE-MAGIC LABELINGS IN THE CARTESIAN PRODUCT OF COMPLETE BIPARTITE GRAPHS

For two vertex-disjoint graphs G and H, the *Cartesian product* of graphs G and H, denoted by $G \times H$, is a graph such that the vertex set of $G \times H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \times H$ if and only if either u = x and v is adjacent with y in H or v = y and u is adjacent with x in G. For any positive integers p, q, r and s, we consider the Cartesian product $K_{p,q} \times K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \times K_{r,s}$ be a d-magic graph. Since $\deg(v)$ is p+r, p+s, q+r or q+s and $f^*(v) = (pq(r+s) + rs(p+q) + 1) \deg(v)/2$ for any $v \in V(K_{p,q} \times K_{r,s})$, we have

FIGURE 3. A balanced d-magic graph $K_{1,2} \cdot K_{2,2}$ with 12 vertices and 44 edges.

Vertices	c_1	c_2	d_1	d_2	e_1	e_2	f_1	f_2	b_1	b_2	
a_1	12	34	43	2	27	26	20	17	35	9	
a_2	33	11	1	44	19	18	25	28	10	36	
b_1	8	38	39	5	32	14	15	29	-	-	
b_2	37	7	6	40	13	31	30	16	-	- (
d_1	4	42	-	-	-	-	-	-		-	
d_2	41	3	-	-	-	-	-	-	-	-	
f_1	-	-	-	-	23	22	-	-	-	-	
f_2	-	-	-	-	21	24	-) -	-	-	

TABLE 3. The labels on edges of balanced d-magic graph $K_{1,2} \cdot K_{2,2}$.

Proposition 4.1. Let $K_{p,q} \times K_{r,s}$ be a d-magic graph. Then the following conditions hold:

(i) only one of p,q,r and s is even or
(ii) all of p,q,r and s are either odd or even.

Proposition 4.2. Let $K_{p,q} \times K_{r,s}$ be a balanced d-magic graph. Then p,q,r and s are either odd or even.

In the next result we are able to find the sufficient condition for the existence of balanced d-magic labelings of the Cartesian product of complete bipartite graphs $K_{p,q} \times K_{r,s}$.

Theorem 4.3. Let p, q, r and s be even positive integers with $(p,q) \neq (2,2)$ and $(r,s) \neq (2,2)$. Then $K_{p,q} \times K_{r,s}$ is a balanced d-magic graph.

Proof. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. Since $K_{p,q}$ and $K_{r,s}$ are d-magic by Proposition 1.6, $2K_{p,q}$ and $2K_{r,s}$ are balanced d-magic by Theorem 1.4. The graph $K_{p,q} \times K_{r,s}$ is decomposable into (r + s)/2 balanced d-magic subgraphs isomorphic to $2K_{p,q}$ and (p + q)/2

FIGURE 4. A balanced d-magic graph $K_{2,4} \times K_{2,4}$ with 36 vertices and 96 edges.

balanced d-magic subgraphs isomorphic to $2K_{r,s}$. According to Theorem 1.5, $K_{p,q} \times K_{r,s}$ is a balanced d-magic graph.

Observe that the Cartesian product graph $K_{p,q} \times K_{r,s}$ is naturally isomorphic to $K_{r,s} \times K_{p,q}$.

Corollary 4.4. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. If p = q and r = s, then $K_{p,q} \times K_{r,s}$ is a supermagic graph. *Proof.* Applying Theorems 1.1 and 4.3.

The following example is a balanced d-magic graph $K_{2,4} \times K_{2,4}$ (see Figure 4), and the labels on edges of $K_{2,4} \times K_{2,4}$ are shown in Table 4.

Vertices	b_1	b_2	b_3	b_4	e_1	e_2	e_3	e_4	a_3	a_4	a_9	a_{10}
a_1	96	2	3	93	-	-	-	-	72	-	25	-
a_2	1	95	94	4	-	-	-	-	-	64	-	33
a_7		-	-	-	8	90	91	5	27	-	70	-
a_8	-	-	-	-	89	7	6	92	-	35	-	62
c_1	48	-	-	-	51	-	-	-	88	9	-	-
c_2	-	32	-	-	-	67	-	-	10	87	-	-
c_3	-	-	40	-	-	-	59	-	11	86	-	-
c_4	-	-	-	56	-	-	-	43	85	12	-	-
f_1	49	-	-	-	46	-	-	-	-	-	16	81
f_2	-	65	-	-	-	30	-	-	-	-	82	15
f_3	-	-	57	-	-	-	$\overline{38}$	-	-	-	83	14
f_4	-	-	-	41	-	-	-	54	-	-	13	84

Vertices	d_1	d_2	d_3	d_4	g_1	g_2	g_3	g_4	a_3	a_4	a_9	a_{10}
a_5	24	74	75	21	-	-	-	-	26	-	71	-
a_6	73	23	22	76	-	-	-	-	-	34	-	63
a_{11}	-	-	-	-	80	18	19	77	69	-	28	-
a_{12}	-	-	-	-	17	79	78	20	-	61	-	36
c_1	50	-	-	-	45	-	-	-	-	-	-	-
c_2	-	66	-	-	-	29	-	-	-	-	-	-
c_3	-	-	58	-	-	-	37	-	-	-	-	-
c_4	-	-	-	42	-	-	-	53	-	-	-	-
f_1	47	-	-	-	52	-	-	-	-	-	-	-
f_2	-	31	-	-	-	68	-	-	-	-	-	
f_3	-	-	39	-	-	-	60	-	-	-		-
f_4	-	-	-	55	-	-	-	44	-	-	-	-
TABLE	4 T	'he l	abels	s on	edo	es of	' hal	ance	d d-	maoi	c or	anh

TABLE	4.	The	labels	on	edges	ot	balanced	d-magic	graph
$K_{2,4} \times$	$K_{2,2}$	4·							

5. Balanced Degree-Magic Labelings in the Tensor Product of Complete Bipartite Graphs

For two vertex-disjoint graphs G and H, the *tensor product* of graphs Gand H, denoted by $G \oplus H$, is a graph such that the vertex set of $G \oplus H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \oplus H$ if and only if u is adjacent with x in G and v is adjacent with y in H. For any positive integers p, q, r and s, we consider the tensor product $K_{p,q} \oplus K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \oplus K_{r,s}$ be a d-magic graph. Since deg(v) is pr, ps, qr or qs and $f^*(v) = (2pqrs + 1) \deg(v)/2$ for any $v \in V(K_{p,q} \oplus K_{r,s})$, we have

Proposition 5.1. Let $K_{p,q} \oplus K_{r,s}$ be a balanced d-magic graph. Then at least p and q are even or r and s are even.

Now we can prove the sufficient condition for the existence of balanced dmagic labelings of the tensor product of complete bipartite graphs $K_{p,q} \oplus K_{r,s}$.

Theorem 5.2. Let p and q be positive integers with $(p,q) \neq (1,1)$. Then $K_{p,q} \oplus K_{2,2}$ is a balanced d-magic graph.

Proof. Let p and q be positive integers with $(p,q) \neq (1,1)$. Let $k = \min\{p,q\}$ and $h = \max\{p,q\}$. Since $K_{2,2h}$ is d-magic by Proposition 1.6, $2K_{2,2h}$ is balanced d-magic by Theorem 1.4. The graph $K_{p,q} \oplus K_{2,2}$ is decomposable into k balanced d-magic subgraphs isomorphic to $2K_{2,2h}$. According to Theorem 1.5, $K_{p,q} \oplus K_{2,2}$ is a balanced d-magic graph. \Box

FIGURE 5. A balanced d-magic graph $K_{1,3} \oplus K_{2,2}$ with 16 vertices and 24 edges.

$b_1 \mid$	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_{10}	b_{11}	b_{12}
-	-	1	11	-	-	3	21	-	-	20	19
-	-	24	14	-	-	22	4	-	-	5	6
13	23	-	-	15	9	-	-	8	7	-	
12	2	-	-	10	16	-	-	17	18	-	-
	b_1 - 13 12	$ \begin{array}{cccc} b_1 & b_2 \\ \hline - & - \\ \hline - & - \\ \hline 13 & 23 \\ \hline 12 & 2 \end{array} $	$\begin{array}{cccc} b_1 & b_2 & b_3 \\ \hline - & - & 1 \\ \hline - & - & 24 \\ 13 & 23 & - \\ 12 & 2 & - \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

TABLE 5. The labels on edges of balanced d-magic graph $K_{1,3} \oplus K_{2,2}$.

Theorem 5.3. Let p and q be positive integers, and let r and s be even positive integers with $(r, s) \neq (2, 2)$. Then $K_{p,q} \oplus K_{r,s}$ is a balanced d-magic graph.

Proof. Let p and q be positive integers, and let r and s be even positive integers with $(r, s) \neq (2, 2)$. Since $K_{r,s}$ is d-magic by Proposition 1.6, $2K_{r,s}$ is balanced d-magic by Theorem 1.4. The graph $K_{p,q} \oplus K_{r,s}$ is decomposable into pqbalanced d-magic subgraphs isomorphic to $2K_{r,s}$. According to Theorem 1.5, $K_{p,q} \oplus K_{r,s}$ is a balanced d-magic graph.

It is clear that the tensor product graph $K_{p,q} \oplus K_{r,s}$ is isomorphic to $K_{r,s} \oplus K_{p,q}$.

Corollary 5.4. Let p, q be positive integers with $(p, q) \neq (1, 1)$, and let r, s be even positive integers. If p = q and r = s, then $K_{p,q} \oplus K_{r,s}$ is a supermagic graph.

Proof. Applying Theorems 1.1, 5.2 and 5.3.

Below is an example of balanced d-magic graph $K_{1,3} \oplus K_{2,2}$ (see Figure 5), and the labels on edges of $K_{1,3} \oplus K_{2,2}$ are shown in Table 5.

6. Balanced Degree-Magic Labelings in the Strong Product of Complete Bipartite Graphs

For two vertex-disjoint graphs G and H, the strong product of graphs G and H, denoted by $G \otimes H$, is a graph such that the vertex set of $G \otimes H$ is

the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G \otimes H$ if and only if u = x and v is adjacent with y in H, or v = yand u is adjacent with x in G, or u is adjacent with x in G and v is adjacent with y in H. For any positive integers p, q, r and s, we consider the strong product $K_{p,q} \otimes K_{r,s}$ of complete bipartite graphs. Let $K_{p,q} \otimes K_{r,s}$ be a d-magic graph. Since deg(v) is p + r + pr, p + s + ps, q + r + qr or q + s + qs and $f^*(v) = (pq(r+s) + rs(p+q) + 2pqrs + 1) \deg(v)/2$ for any $v \in V(K_{p,q} \otimes K_{r,s})$, we have

Proposition 6.1. Let $K_{p,q} \otimes K_{r,s}$ be a d-magic graph. Then the following conditions hold:

(i) only one of p, q, r and s is even or

(ii) all of p, q, r and s are even.

Proposition 6.2. Let $K_{p,q} \otimes K_{r,s}$ be a balanced d-magic graph. Then p, q, r and s are even.

We conclude this paper with an identification of the sufficient condition for the existence of balanced d-magic labelings of the strong product of complete bipartite graphs $K_{p,q} \otimes K_{r,s}$.

Theorem 6.3. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. Then $K_{p,q} \otimes K_{r,s}$ is a balanced d-magic graph.

Proof. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. Thus, $K_{p,q} \times K_{r,s}$ is balanced d-magic by Theorem 4.3, and $K_{p,q} \oplus K_{r,s}$ is balanced d-magic by Theorem 5.3. Since $K_{p,q} \otimes K_{r,s}$ is the graph such that $K_{p,q} \times K_{r,s}$ and $K_{p,q} \oplus K_{r,s}$ form its decomposition, by Theorem 1.5, $K_{p,q} \otimes K_{r,s}$ is a balanced d-magic graph.

It is clear that the strong product graph $K_{p,q} \otimes K_{r,s}$ is isomorphic to $K_{r,s} \otimes K_{p,q}$.

Corollary 6.4. Let p, q, r and s be even positive integers with $(p, q) \neq (2, 2)$ and $(r, s) \neq (2, 2)$. If p = q and r = s, then $K_{p,q} \otimes K_{r,s}$ is a supermagic graph.

Proof. Applying Theorems 1.1 and 6.3.

Acknowledgments

The authors would like to thank the anonymous referee for careful reading and the helpful comments improving this paper.

References

- L'. Bezegová, Balanced Degree-Magic Complements of Bipartite Graphs, *Discrete Math.*, 313, (2013), 1918-1923.
- L'. Bezegová, J. Ivančo, An Extension of Regular Supermagic Graphs, *Discrete Math.*, 310, (2010), 3571-3578.

Balanced degree-magic labelings of complete bipartite graphs under binary operations 13

- L'. Bezegová, J. Ivančo, On Conservative and Supermagic Graphs, Discrete Math., 311, (2011), 2428-2436.
- L'. Bezegová, J. Ivančo, A Characterization of Complete Tripartite Degree-Magic Graphs, Discuss. Math. Graph Theory, 32, (2012), 243-253.
- L'. Bezegová, J. Ivančo, Number of Edges in Degree-Magic Graphs, *Discrete Math.*, **313**, (2013), 1349-1357.
- J.A. Gallian, A Dynamic Survey of Graph Labeling, *Electron. J. Combin.*, 16, (2009), #DS6.
- E. Salehi, Integer-Magic Spectra of Cycle Related Graphs, Iranian Journal of Mathematical Sciences and Informatics, 1(2), (2006), 53-63.
- J. Sedláček, Problem 27. Theory of Graphs and Its Applications, Proc. Symp. Smolenice, Praha, (1963), 163-164.
- 9. B.M. Stewart, Magic Graphs, Canad. J. Math., 18, (1966), 1031-1059.
- M.T. Varela, On Barycentric-Magic Graphs, Iranian Journal of Mathematical Sciences and Informatics, 10(1), (2015), 121-129.