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Abstract. The vector space Cayley graph Cay(V, S) is a graph with the

vertex set the whole vectors of the vector space V and two vectors v1, v2

join by an edge whenever v1 − v2 ∈ S or −S, where S is a basis of V.

The vector space Cayley graph is made of copies of the n-gons, where n is

the cardinal number of the field that V is constructed over it. The vector

space Cayley graph is generalized to the graph Γ(V, S). It is a graph

whose vertices v and w are adjacent whenever c1υ + c2ω =
∑n

i=1 αi,

where v, w ∈ V, S = {α1, · · · , αn} is an ordered basis for V and c1, c2

belong to the field that the vector space V is made of over. It is deduced

that if S′ is another basis for V which is constructed by special invertible

matrix P , then Γ(V, S) ∼= Γ(V, S′).

Keywords: Cayley graph, Vector space, Basis.
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1. Introduction

The Cayley graph is a mathematical term which is named after Arthur Cay-

ley a British mathematician. It is a graph that encodes the abstract structure

of a group. Suppose that G is a group and S is a generating set. The Cayley

graph is a colored directed graph with the vertex set which is identified with

G, for each generator s of S is assigned a color cs. Moreover, the vertices corre-

sponding to the elements g and gs are joined by a directed edge of color cs, for
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any g ∈ G, s ∈ S. Thus the edge set consists of pairs of the form (g, gs), with

s ∈ S providing the color. The set S is usually assumed to be finite, symmetric

S = S−1 and the identity element of the group is excluded S. In this case, the

uncolored Cayley graph is a simple undirected graph. We can consider S as a

subset of non-identity elements G instead of being a generating set. A Cayley

graph is connected if and only if G = 〈S〉. In general the Cayley graph over the

group 〈S〉 is a component of the main Cayley graph over the group G. There

are many research about the Cayley graph have been done by some authors for

instance see [3, 9].

Of course, there are some other ways to construct a graph associated to a

given algebraic structures. We may refer to the works [1, 12].

Suppose V is a vector space over a field F. If the dimension is n, then there

is some basis of n elements for V. After an order is chosen, the basis can be

considered as an ordered basis. The elements of V are finite linear combinations

of elements in the basis, which give rise to unique coordinate representations.

Since a given vector v is a finite linear combination of basis elements, the only

nonzero entries of the coordinate vector for v will be the nonzero coefficients

of the linear combination representing v. Thus the coordinate vector for v is

zero except in finitely many entries.

Mathematicians studied about vector spaces associated with a graph such

as the vector spaces associated with the sets of cutsets, circuits, and subgraphs

of graph. It is well known that the set of all subgraphs of a given graph G

constitutes a linear vector space over the field of integers mod 2, where the

addition of vectors is the ring-sum operation [5, 11].

In [10], the authors considered the following finite Euclidean graphs. Let

V = Fq
n be the n-dimensional vector space over the finite field Fq where q is a

power of a prime number. For x, y ∈ V , the Euclidean distance d(x, y) ∈ Fq is

defined by d(x, y) = (x1 − y1)2 + (x2 − y2)2 + · · · (xn − yn)2. The Euclidean

graph Eq(n, a) was defined as the graph with vertex set V and edge set E =

{(x, y) ∈ V × V |x 6= y, d(x, y) = a}.
The original aim of this paper is to construct a graph associated to a vector

space. In this paper, several type of semi-Cayley graphs are associated to a

vector space. In the next section, by inspiration of the classical definition for

the Cayley graph related to a group we define Cayley graph of a vector space.

The general properties of vector space Cayley graph Cay(V,S) such as its girth,

chromatic, clique and dominating number are discussed. Moreover, Cay(V,S)

is a planar graph if and only if V is (up to isomorphism) a trivial group, a

field F and R2 over the field R. We observe that Cay(V,S) is a graph which

contains an induced subgraph which are cycles with Card(F) vertices. Finally,

the graph Γ(V, S) is presented. We observe that Γ(V, S) ∼= Γ(V, S′), if S′ is

constructed by special invertible matrix P .
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Throughout the paper, all the notations and terminologies about the graphs

are found in [2, 4].

2. The Vector Space Cayley Graph

For a vector space V with an ordered basis S we define a graph which

its behavior is similar to the Cayley graph of a group and its generator set.

Let us call it vector space Cayley graph and denote it by
−−→
Cay(V,S). Clearly

by definition of the ordinary Cayley graph two vectors v1, v2 join by an edge

whenever v1 − v2 ∈ S. It is a digraph with out any loops and multiple arcs, so

it is a simple digraph. If we consider the adjacency of two vertices v1 and v2

as v1 − v2 ∈ S or −S, then we have a simple graph with out orientation, let us

denote it by Cay(V,S), where −S is the set of all additive inverse vectors of S.

In the sequel by vector space Cayley graph we mean this undirected graph.

It is obvious that this graph is regular and if V is a finite dimensional vector

space the degree of each vertex is equal to the 2Card(S).

The reader may think that this graph is exactly the classical Cayley graph,

but there is a thin difference between them. In every vector space every gen-

erating set contains a basis [6]. Hence we deduce the following result.

Proposition 2.1. Cay(V,S) is not connected generally.

For a node, the number of head endpoints adjacent to a node is called the

indegree of the node and the number of tail endpoints adjacent to a node is its

outdegree. The indegree is denoted by deg−(v) and the outdegree as deg+(v).

A vertex with deg−(v)=0 is called a source, as it is the origin of each of its

incident edges. Similarly, a vertex with deg+(v) = 0 is called a sink.

The degree sum formula states that, for a directed graph,
∑

v∈V deg+(v) =∑
v∈V deg−(v) = |A|, where A is the number of arcs. If for every node v ∈ V ,

deg+(v) = deg−(v), the graph is called a balanced digraph.

It is clear that the zero vector is a sink node and is adjacent to all elements of

the basis. Every two elements of the basis does not join. Moreover deg−(v) =

|{v − si : si ∈ S}| = deg+(v) = |{si + v : si ∈ S}|, where S is the basis of the

vector space and v an arbitrary vertex. Thus
−−→
Cay(V,S) is a balanced digraph.

By the argument before Proposition 2.1 if S is not a generating set for the

additive group V, then there is a vertex w and an element s ∈ S or w, z such

that they are not adjacent.

Let k > 0 be an integer. A k-vertex coloring of a graph Γ is an assignment

of k colors to the vertices of Γ such that no two adjacent vertices have the same

color. The vertex chromatic number χ(Γ) of a graph Γ, is the minimum k for

which Γ has a k-vertex coloring.

If we consider the vector space Cayley graph which is constructed over the

field F, then Cay(F, {1}) is a cycle graph. Thus girth(Cay(F, {1})) = Card(F)

and χ(Cay(F, {1})) = 2 or 3 (depends on Card(F) is even or odd number),
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where the notation Card(F) is used to denote the cardinal number of the un-

derlying set F.

Proposition 2.2. If Cay(V,S) is a vector space Cayley graph of the vector

space V of dimension greater or equal than 2, then girth(Cay(V,S)) ≤ 4.

Proof. Since S contains at least two elements s1, s2, we have the cycle which

is made by the vertices 0, s1, s2 and s1 + s2. �

For every vertex v of the graph Cay(V,S), we can observe that v joins to

v − si and v + si, where si ∈ S. Thus, its neighbor can be folded into half

so that the two halves match exactly. By this fact the Figure (1) shows the

adjacency condition for a vertex v, for which it draws in half. Actually, the

vertex v join v+si (1 ≤ i ≤ n = Card(S)) vertices, that has not been displayed

in the Figure (1).

The vector space Cayley graph Cay(V,S) can be decomposed into edge-

disjoint cycles, as every vertices are of even degree 2Card(S) (see Example 2.7

and Proposition 2.6). For a graph Γ and a subset T of the vertex set V (Γ),

v

v − s1 v − s2 · · · v − si v − sj · · ·v − sn−1 v − sn

v − (s1 + s2)

v − (si + sj)

v − (sn + sn−1)

Figure 1

the closed neighbor of T is denote by NΓ[T ]. It is the set of all neighbors of

vertices belong to T , in which included the vertices of T too. If NΓ[T ] = V (Γ),

then T is said to be a dominating set of vertices in Γ. The domination number

of a graph Γ, denoted by γ(Γ), is the minimum size of a dominating set of the

vertices in Γ.

Proposition 2.3. Let Cay(V,S) be a vector space Cayley graph. Then

γ(Cay(V,S)) ≤ dCard(V)/2Card(S)e.
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Proof. As discussed before the proposition, we observe that every vertex v dom-

inate 2Card(S) vertices of the graph Cay(V,S). This means, at least there is a

certain vertex v for every 2Card(S) vertices. Hence, we can form a dominating

set with dCard(V)/2Card(S)e vertices and clearly the smallest dominating set

has at most dCard(V)/2Card(S)e vertices. �

Let T be a dominating set for Cay(V,S). The vertices of the graph divides

to two sets. The vertices which belongs to T and the vertices which does not

belong to T . The components of the coordinate of v ∈ V \ T are the same as

all components of the coordinate of at least one vector in T and the difference

is just in one component.

A subset X of the vertices of the graph Γ is called a clique if the induced

subgraph on X is a complete graph. The maximum size of a clique in a graph

Γ is called the clique number of Γ and denoted by ω(Γ). The graph Γ is called

a perfect graph if ω(Γ) = χ(Γ).

Proposition 2.4. ω(Cay(V,S)) = 2, where V is a n-dimensional vector space

n ≥ 2.

Proof. Assume three vertices v1, v2 and v3 are adjacent and n ≥ 3. Therefore

the following system has a solution{ v1 − v2 = si or − si
v2 − v3 = sj or − sj
v1 − v3 = sk or − sk,

where si, sj and sk are distinct vectors of S. But this is a contradiction with

linear independency of elements of the basis S. Similarly we get a contradiction

whenever three vertices are adjacent in the Cayley vector space Cay(V,S) where

n = 2. �

Theorem 2.5. Cay(V,S) is a planar graph if and only if V is (up to isomor-

phism) a trivial group, a field F and a 2-dimensional vector space.

Proof. Suppose Cay(V,S) is a planar graph. Therefore the size of its complete

subgraph is at most 4. It means vertices are of degree at most 4. Consequently

|S ∪ −S| ≤ 4. Since S is a basis for the graph, S ∩ −S = ∅. Thus |S| ≤ 2 and

the assertion follows. �

If V andW are two isomorphic vector spaces, then their vector space Cayley

graphs are isomorphic. It is enough to consider the transformation f between

two vector spaces such that maps basis to basis. In particular, Cay(V,S) ∼=
Cay(V,S′).

Suppose R is a ring with identity, then an R-module V has a basis if and

only if it is isomorphic to a direct sum of copies of left R-module R (see [8,

Theorem 2.1]). If R is a division ring, then a unitary R-module is called a

vector space.
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Proposition 2.6. Let V be a vector space over the field F with the basis S.

Then Cay(V,S) is a graph which contains copies of induced subgraphs isomor-

phic to n-gons, where n = Card(F).

Proof. By Theorem 2.1 in [8] mentioned above V ∼=
⊕∑

F and copies of F are

indexed by Card(S). It is clear that Cay(F, {1}) is the induced subgraph of

Cay(V,S). �

For instance, if V is a 2-dimensional vector space over the field Z3, then the

vector space Cayley graph associated to V has an induced subgraph made of

triangles.

Example 2.7. Consider the vector space V with basis S = {(1, 0), (0, 1)} over

the field Z3. Therefore V has 9 vector

{(0, 0), (1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 0), (0, 2)}.

The diagram of Cay(V,S) contains the subgraph as follows,

(0, 2) (0, 0) (2, 0) (2, 1) (1, 1)

(0, 1) (1, 0) (2, 2) (1, 2)

Figure 2

Proposition 2.8. If Cay(V,S) is a vector space Cayley graph of the vector

space V of dimension greater or equal than 2, then χ(Cay(V,S)) = 2 or 3.

Proof. By the rule of the adjacency in the vector space Cayley graph, we deduce

χ(Cay(V,S)) ≥ 2. Moreover, as Cay(V,S) can be decomposed into edge-disjoint

cycles, Proposition 2.6 and the argument before Proposition 2.2 implies the

assertion. �

Proposition 2.4 and Proposition 2.8 implies that Cay(V,S) is a perfect graph

whenever V is a vector space over a field of even size.

3. The Convex Vector Space Graph

In graph theory, the interval between a pair u, v of vertices in a graph G is

the collection of all vertices that lie on some shortest path between u, v in G.
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A subset C of vertices of a graph is said to be convex if it contains the interval

between every pair of vertices in C.

Definition 3.1. Let V be a vector space over a field F. The convex vector

space graph is a graph with the vertex set whole vectors of the vector space

V and two vectors υ and ω join by an edge if there exist c1, c2 ∈ F such that

c1υ + c2ω ∈ S, where S is an ordered basis for V and c1, c2 are not zero in the

same time. We denote this graph by Cayg(V, S).

The convex vector space graph is the generalization of vector space Cayley

graph, it is enough to consider suitable c1, c2 ∈ F. The vector space Cayley

graph Cay(V,S) can be considered as induced subgraph of Cayg(V, S). It is

clear that all the vertices which belong to the ordered basis S are adjacent and

S is a convex set.

Lemma 3.2. Let V be a vector space of finite dimension n over the field

F. The neighbors of the vertex υ with the coordinate (x1, · · · , xn) with re-

spect to the ordered basis S, is all vectors with the coordinate (− c1
c2
x1, · · · , 1

c2
−

c1
c2
xk, · · · ,− c1

c2
xn), where xi, c1, 0 6= c2 ∈ F , and 1 ≤ i, k ≤ n.

Proof. Suppose ω is a vertex which is adjacent to the vector υ. It means there

are c1, c2 ∈ F such that c1υ + c2ω = sk ∈ S. A computation implies the

result. �

By Lemma 3.2 the zero vector is adjacent to all vectors with a coordinate of

the form (0, . . . , 1
c2
, . . . , 0) which has just one non-zero component (0 6= c2 ∈ F).

This means the convex vector space graph is not complete. Moreover, if we

omit the zero vector from the vector set of the convex vector space graph, then

it is still not complete. For instance, the vertex (1, 1) of the vector space V
with basis S = {(1, 0), (0, 1)} over the field Z3 does not join to (2, 2).

Theorem 3.3. Let V be a vector space. Then

(i) The diameter and girth of the convex vector space graph is 2 and 3,

respectively.

(ii) γ(Γ) = 1.

Proof. The assertion follows by the fact that all vertices join the elements of

the basis of the vector space. �

One can easily deduce that the convex vector space graph is connected.

Proposition 3.4. If V is n-dimensional vector space, then Cayg(V, S) is Hamil-

tonian, where n ≥ Card(V)/2.

Proof. Since Card(S) ≥ Card(V)/2, the result follows by the fact that every

vertices join to a node belongs to S. �
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4. A Graph Γ(V, S) Associated to a Vector Space

Replace the term of adjacency of two vertices υ, ω ∈ V in Definition 3.1

by c1υ + c2ω =
∑n

i=1 αi, where S = {α1, · · · , αn} is an ordered basis for V.

Therefore by similar computation in Lemma 3.2 we deduce that the neighbors of

the vertex υ with the coordinate (x1, · · · , xn) with respect to the ordered basis

S, is all vectors with the coordinate ( 1
c2
− c1

c2
x1, · · · , 1

c2
− c1

c2
xk, · · · , 1

c2
− c1

c2
xn),

where xi, cj ∈ F j = 1, 2 and 1 ≤ i ≤ n. Let us denote this graph by Γ(V, S).

It is clear that if V is a vector space over a finite field, then Γ(V, S) is a

regular graph.

If dim(V) = 2 with the ordered basis S = {α1, α2}, then clearly α1, α2 are

adjacent. Moreover, υ ∈ V is adjacent to αi whenever the j-th component of its

coordinate is not zero, where i, j = 1, 2 and i 6= j. By these facts we conclude

the first and third part of the following result.

Proposition 4.1. Suppose V is a vector space of dimension 2 over the field

F . Then

(i) Two non-zero vertices υ1 and υ2 are adjacent, whenever∣∣∣∣∣
x1 x2

y1 y2

∣∣∣∣∣ 6= 0,

where (xi, yi) is the coordinate of υi with respect to the ordered basis S.

(ii) diam(Γ(V, S)) = 2 and girth(Γ(V, S)) = 3.

(iii) γ(Γ(V, S)) = 3.

Proof. (i) It is enough to verify the condition under which the system{ c1x1 + c2x2 = 1

c1y1 + c2y2 = 1

has a solution in F.

(ii) Follows by an easy computation. (iii) By the first part (0, 0) is adjacent to

all vertices whose components are non-zero and equal, therefore S ∪ {(0, 0)} is

a dominating set. �

Assume dim(V) = n > 2. The vertices in the ordered basis S does not join.

Furthermore, the vertices υ is adjacent to the i-th vector si of the ordered basis

S if all the component of its coordinate is a non-zero scaler x while its i-th

component is (1− c)x. The adjacency of two arbitrary vertices υ, ω depends to

the exitance of the scales c1, c2 for the system c1xi +c2yi = 1, where 1 ≤ i ≤ n,

xi and yi are the i-th term of the coordinate of υ and ω. It is obvious that the

existence of the solution for this system tends to impossible when n tends to

large numbers.
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Theorem 4.2. If V is a vector space of dimension n > 2, then diam(Γ(V,S)) =

2 and girth(Γ(V,S)) = 3.

Proof. We observe that every vector in the basis of V is adjacent to a non-zero

vector v such that every components of its coordinate is equal. Thus there

exists a path between each vectors of the basis. Moreover, the neighbor of

the zero vector is all vectors like v. It is not hard to deduce that every two

non-adjacent vectors join v. Hence the assertion follows. �

Since, Γ(V, S)) has a cycle of order 3 it is not a bipartite graph. Let P

be an invertible matrix such that the sum of entries in each row is 1. If V
is a vector space of dimension n with ordered basis S, then there is a unique

ordered basis S′ for V such that the coordinate of every vertex with respect

to S′ are obtained by the coordinate of that vertex with respect to S and the

matrix P (see [7, Theorem 8, Sec 2.4]).

Now we are able to present the interesting following Theorem 4.3.

Theorem 4.3. Let V be a vector space of dimension n, with two ordered basis

S and S′, such that S′ is obtained by use of invertible matrix P defined in the

above argument. Then Γ(V, S) ∼= Γ(V, S′).

Proof. It is enough to prove that the identity map I : V (Γ(V, S))→ V (Γ(V, S′))
between the vertex set of two graphs, preserves the edges. Suppose υ, ω are

two adjacent vertices in Γ(V, S). If the coordinate of υ is (x1, · · · , xn) with

respect to the ordered basis S, then the coordinate of ω is ( 1
c2
− c1

c2
x1, · · · , 1

c2
−

c1
c2
xk, · · · , 1

c2
− c1

c2
xn), where xi, cj ∈ F , j = 1, 2 and 1 ≤ i ≤ n, by the

argument before the theorem. Now the question is whether υ and ω are ad-

jacent in Γ(V, S′). In the other words are they adjacent with respect to S′?

Assume pkl are entries of the matrix P , 1 ≤ k, l ≤ n. The coordinate of

υ and ω with respect to S′ is (Σn
r=1p1rx1, · · · ,Σn

r=1pnrxn) and ( 1
c2

Σn
r=1p1r +

(−c1c2
)Σn

r=1p1rx1, · · · , 1
c2

Σn
r=1p1r + (−c1c2

)Σn
r=1pnrxn), respectively. Since P is

an invertible matrix such that the sum of entries in each row is 1, we conclude

υ, ω join by an edge in Γ(V, S′). �

In order to have a sufficient apperception of the above theorem we take a

look at the following example.

Example 4.4. Consider P as an invertible 2× 2 matrix over the field R. The

sum of entries of each row is 1.

P =

[
−1
2

3
2

0 1

]
Suppose S = {(1, 0), (0, 1)} is the basis for the vector space R2 and let S′ =

{(−2, 0), (3, 1)} is a basis made by P as in [7, Theorem 8, Sec 2.4]. Moreover,

ϕ is the graph isomorphism between two graphs Γ(R2, S) and Γ(R2, S′). If
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[v1]S = (x1, y1), [v2]S = (x2, y2) are two adjacent vertices in Γ(R2, S), then

[ϕ(v1)]S′ = (−1
2 x1 + 3

2y1, y1) and [ϕ(v2)]S′ = (−1
2 x2 + 3

2y2, y2) are adjacent.

Since the adjacency of v1, v2 implies that x2 = 1
c1
− c1

c2
x1 and y2 = 1

c1
− c1

c2
y1,

for c1, c2 ∈ R. An easy computation ensure the adjacency of ϕ(v1) and ϕ(v2).

Similar result as Theorem 4.3 can be obtained for Cayg(V, S).
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