Iranian Journal of Mathematical Sciences and Informatics Vol. 13, No. 2 (2018), pp 93-99 DOI: 10.7508/ijmsi.2018.13.008

Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

Reza Mirzaie

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran. E-mail: r.mirzaei@sci.ikiu.ac.ir

ABSTRACT. If M is a compact Riemannian manifold and $C(M, R)$ is the set of all real valued continuous functions defined on M , then we show that for typical element $f \in C(M, R)$, $\overline{dim}_B(graph(f))$ is as big as possible and for typical $f \in C(M, R)$, $\dim_B(graph(f))$ is as small as possible.

Keywords: Manifold, Fractal, Box dimension.

2000 Mathematics subject classification: 54E50, 54E52, 54F45, 57N40.

1. INTRODUCTION

Archive Constrainer Constrainer (Archive Constrainer SID)
 Archive Constrainer Constrainer SID
 ABBTRACT. If *M* is a compact Riemannian manifold and $C(M, R)$ is the

set of all real valued continuous functions defin A subset A of a topological space X is called to be *comeagre*, if there is a countable collection $\{W_i\}$ of open and dense subsets of X such that $\bigcap_i W_i \subset A$. Complement of a comeagre subset is called a meagre subset. A meagre subset can be considered as subset of a countable union of nowhere dense subsets and they are negligible in some sense. So, we say that some property holds for typical elements of X , if it holds on a comeagre subset. Study of properties of typical elements in X is a classic and interesting problem. One can find many papers dealing with typical elements when X is supposed to be the space $C(W, R)$ of all continuous functions defined on a compact topological space W , endowed with the metric topology defined by the metric $d(f, g) = \sup_{x \in W} |f(x) - g(x)|$. A well known theorem due to Banach [1], states that typical elements of $C([0, 1], R)$ are nowhere differentiable, so the image or graph of a typical f in $C([0, 1], R)$ is a fractal set. Calculating fractal dimensions (including box dimension, Hausdorff

Received 13 January 2016; Accepted 14 January 2017

c 2018 Academic Center for Education, Culture and Research TMU

94 R. Mirzaie

dimension, packing dimension, etc) of the image of f or $graph(f)$ is a well known problem and one can find many results in the literature. It is proved in [6] that for a typical $g \in C([0,1], R)$, $dim_H(graph(g)) = 1$. It is proved in [3] that if $W \subset R$ is bounded with only finitely many isolated points and $X = \{f \in C(W, R) : f \text{ is uniformly continuous }\},\$ then for a typical $f \in$ X, $\dim_B(\text{graph}(f))$ is as big as possible and $\dim_B(\text{graph}(f))$ is as small as possible. In the previous paper [7] we generalized Banach's theorem to the set $C(M, R)$, where M is a compact Riemannian manifold. Now, we show in the present paper that the main results of [3] about upper and lower box dimensions are also true when W is replaced by a compact Riemannian manifold M .

2. Preliminaries

In what follows, M is a compact Riemannian manifold with the Riemannian metric d, and $C(M, R)$ will denote the collection of all continuous functions defined on M endowed with the metric d defined by $d(f, g) = max_{x \in M} |f(x)$ $g(x)$.

If (X, d_1) and (Y, d_2) are metric spaces then we will consider the usual product metric d on $X \times Y$ defined by $d((x_1, y_1), (x_2, y_2)) = \sqrt{d_1^2(x_1, x_2) + d_2^2(y_1, y_2)}$.

If E is a bounded subset of M then the upper box dimension of E is defined by

$$
\overline{dim}_B(E) = lim \sum_{\delta \to 0} \frac{N_{\delta}(E)}{-log \delta}.
$$

present paper that the main results of [3] about upper and lower box dimensions
rec also true when *W* is replaced by a compact Riemannian manifold *M*,
2. PRELIMINARIES
In what follows, *M* is a compact Riemannian manifo Where, $N_{\delta}(E)$ is the minimum number of balls of radius δ (or minimum number of sets of diameter at most δ) covering E (The lower box dimension $\dim_B(E)$ is defined in similar way). Another definition for dimension, which is widely used in fractal geometry is Hausdorff dimension (see [4]).

Now, we mention some facts which we need in the proofs of theorems.

Remark 2.1. If E is a bounded subset of R^m then $\overline{dim}_B(E\times I^n) = \overline{dim}_B(E)+n$. The similar result is true if we replace \overline{dim}_B by \underline{dim}_B or dim_H .

Proof. We give the proof for $\overline{dim}_B(E \times I) = \overline{dim}_B(E) + 1$. The general case comes by induction. If $\delta > 0$ then the smallest number of intervals of length δ covering I is equal to $[\frac{1}{\delta}]$ or $[\frac{1}{\delta}]+1$. If $U_{\delta}(I_{\delta})$ is a bounded subset of $R^m(I)$ Example 1 is equal to $\left[\frac{1}{\delta}\right]$ or $\left[\frac{1}{\delta}\right]$ + 1. If \mathcal{O}_{δ} (I_{δ}) is a bounded subset with diameter δ , then the diameter of $U_{\delta} \times I_{\delta}$ is equal to $\sqrt{2}\delta$. So,

$$
N_{\sqrt{2}\delta}(E \times I) \le (\left[\frac{1}{\delta}\right] + 1)N_{\delta}(E)
$$

Then we have

$$
\overline{dim}_B(E \times I) = limsup_{\delta \to 0} \frac{log(N_{\sqrt{2}\delta}(E \times I))}{-log(\sqrt{2}\delta)}
$$

$$
\leq limsup_{\delta \to 0} \frac{log([\frac{1}{\delta}] + 1)N_{\delta}(E))}{-log(\sqrt{2}\delta)}
$$

$$
= 1 + limsup_{\delta \to 0} \frac{N_{\delta}(E)}{-log\delta} = 1 + \overline{dim}_B(E)
$$

Also we know that $\overline{dim}_B(E \times I^n) \ge \overline{dim}_B(E) + n$ (see [4]). So we get the equality.

Remark 2.2. If M is a compact metric space and $f : M \to R$ is a locally lipschitz function, then f is globally lipschitz.

Proof. Since f is locally lischitz and M is compact, then there is a finite collection of open cover of balls $B_i, 1 \leq i \leq m$, and constants L_i such that

$$
d(f(x), f(y)) \le L_i d(x, y), \quad x, y \in B_i
$$

Also we know that $\overline{dim}_B(E \times I^n) \geq \overline{dim}_B(E) + n$ (see [4]). So we get the
 Remark 2.2. If *M* is a compact metric space and $f : M \rightarrow R$ is a locally
 Proof. Since f is locally listiniz and *M* is compact, then there is Since M is compact then the function $F : M \times M \to R$, defined by $F(x, y) =$ $d(f(x), f(y))$ has a maximum which we denote it by N. Let δ be the lebesgue's number related to the covering B_i of M, and put $L = max\{\frac{N}{\delta}, L_i : i\}$. Then for given $x, y \in M$, either there is a B_i such that $x, y \in B_i$ or $d(x, y) \ge \delta$. In the first case we have $d(f(x), f(y)) \leq Ld(x, y)$. In the second case we have

$$
d(f(x), f(y)) \le N \le \frac{N}{\delta}d(x, y) \le Ld(x, y)
$$

If M and N are compact differentiable manifolds and $f : M \to N$ is continuously differentiable, then f is a lipschitz function. So, we get the following remark easily.

Remark 2.3. If M and N are compact Riemannian manifolds and $\phi : M \to N$ is a map such that ϕ and its inverse are continuously differentiable, then the map ψ : $\overline{M} \times R \to N \times R$ defined by $\psi(x, y) = (\phi(x), y)$ is bilipschitz.

Remark 2.4. If M is a compact Riemannian manifold, $f : M \to R$ is continuously differentiable, $g : M \to R$ is continuous and $k = f + g$, then $\overline{dim}_B(graph(k)) = \overline{dim}_B(graph(g))$. The same result is true for \underline{dim}_B .

Proof. Consider the map ψ : $graph(g) \rightarrow graph(k)$, defined by $\psi(x, g(x)) =$ $(x, k(x))$. We show that ψ and ψ^{-1} are Lipschitz functions. We have

$$
d(\psi(x,g(x)),\psi(y,g(y))) = d((x,k(x)),(y,k(y))) = \sqrt{d^2(x,y) + (k(x) - k(y))^2}
$$

<www.SID.ir>

96 R. Mirzaie

Since f is continuously differentiable, it is locally Lischitz and by Remark 2.2, it must be Lischitz. Then, there exist a positive number N such that $|f(x) - f(y)| \leq N d(x, y), x, y \in M$. Thus

$$
(k(x) - k(y))^2 = (f(x) - f(y) + g(x) - g(y))^2 \le (Nd(x, y) + |g(x) - g(y)|)^2
$$

= $N^2d^2(x, y) + 2Nd(x, y)|g(x) - g(y)| + |g(x) - g(y)|^2$

$$
\le N^2d^2(x, y) + N^2d^2(x, y) + |g(x) - g(y)|^2 + |g(x) - g(y)|^2
$$

= $2N^2d^2(x, y) + 2|g(x) - g(y)|^2$

Then

Then
\n
$$
d(\psi(x, g(x)), \psi(y, g(y))) \leq \sqrt{d^2(x, y) + 2N^2d^2(x, y) + 2|g(x) - g(y)|^2}
$$
\n≤√2(N² + 1)√d²(x, y) + (g(x) - g(y))² = √2(N² + 1) d((x, g(x)), (y, g(y))).
\nTherefore, ψ is Lipschitz. In a similar way we can show that ψ^{-1} is Lipschitz.
\nRemark 2.5. (generalized StoneWeierstrass Theorem). Suppose X is a com-
\npart Hausdorff space and A is a subalgebra of C(X, R) which contains a non-
\nzero constant function. Then A is dense in C(X, R) if and only if it separates
\npoints.
\n3. RESULTS
\n**Lemma 3.1.** If $f : M \rightarrow R$ is continuously differentiable and $\epsilon > 0$, then
\nthere exists $g \in C(M, R)$ such that $d(f, g) < \epsilon$ and $\overline{dim}_B(graph(g)) = n + 1$,
\n $n = dimM$.
\nProof. Let N be a compact Riemannian manifold. Consider a function $g_1 \in$
\n $g_2 \cdot I^n = I \times I^{n-1} \rightarrow R^+$, $g_2(t_1, t_2) = g_1(t_1)$.
\nThen
\n $graph(g_2) = \{((t_1, t_2), g_1(t_1)), (t_1, t_2) \in I \times I^{n-1}\} \simeq$
\n $\{((t_1, g_1(t_1)), t_2), (t_1, t_2) \in I \times I^{n-1} \} = graph(g_1) \times I^{n-1}$.
\nSo, by Remark 2.1
\n
$$
\overline{dim}_B(graph(g_2)) = 2 + n - 1 = n + 1.
$$

Remark 2.5. (generalized StoneWeierstrass Theorem). Suppose X is a compact Hausdorff space and A is a subalgebra of $C(X, R)$ which contains a nonzero constant function. Then A is dense in $C(X, R)$ if and only if it separates points.

3. RESULTS

Lemma 3.1. If $f : M \to R$ is continuously differentiable and $\epsilon > 0$, then there exists $g \in C(M, R)$ such that $d(f, g) < \epsilon$ and $\overline{dim}_B(graph(g)) = n + 1$, $n = dim M$.

Proof. Let N be a compact Riemannian manifold. Consider a function $g_1 \in$ $C(I, R^+)$ such that $\overline{dim}_B(graph(g_1)) = 2$ and put

$$
q_2: I^n = I \times I^{n-1} \to R^+, \quad q_2(t_1, t_2) = g_1(t_1).
$$

Then

$$
graph(g_2) = \{((t_1, t_2), g_1(t_1)), (t_1, t_2) \in I \times I^{n-1}\} \simeq
$$

$$
\{((t_1, g_1(t_1)), t_2), (t_1, t_2) \in I \times I^{n-1}\} = graph(g_1) \times I^{n-1}
$$

.

So, by Remark 2.1

 \mathcal{L}

$$
\overline{dim}_B(graph(g_2)) = 2 + n - 1 = n + 1.
$$

Consider a chart (U, ϕ) on N such that $I^n \subset \phi(U)$ and put $W = \phi^{-1}(I^n)$. Now, put $g_3 = g_2 o \phi : W \to R$. By Remark 2.3, the function $\psi : W \times R \to I^n \times R$, defined by $\psi(x, y) = (\phi(x), y)$ is bilipschitz. Since $\psi(graph(g_3)) = graph(g_2)$, then $\overline{dim}_B(graph(g_3)) = n+1$. Extend the function g_3 to a continuous function $g_4: N \to R$. Since $graph(g_3) \subset graph(g_4)$ then $\overline{dim}_B(graph(g_4)) = n+1$. Now put $N = graph(f)$. We know that N is a submanifold of $M \times R$, which with the induced metric is a riemannian manifold. Given $\delta > 0$, the function $g_5 = \delta g_4$: $N \to R$ is a positive function such that $\overline{dim}(graph(g_5)) = \overline{dim}(graph(g_4))$

<www.SID.ir>

 $n + 1$. By compactness condition we can choose δ small enough such that for all $y = (x, f(x)) \in N$, $g_5(y) < \epsilon$.

Now, consider the function $g_6: M \to R$, defined by $g_6(x) = g_5(x, f(x))$ and put $\psi : M \times R \to N \times R$, $\psi(x, y) = ((x, f(x)), y)$. We have

$$
\psi : graph(g_6) = graph(g_5)
$$

By Remark 2.3, ψ is bilipshitze, so

 $\overline{dim}_B(graph(q_6)) = \overline{dim}_B(graph(q_5)) = n+1$

Put $g: M \to R$, $g(x) = f(x) + g_6(x)$. Since f is differentiable, then by Remark 2.4, $\overline{dim}_B(graph(g)) = \overline{dim}_B(graph(g_6) = n + 1$. Also, we have $d(f, g)$ $max_{x \in M} |g(x) - f(x)| = max_{x \in M} |g_6(x)| = max_{x \in M} g_5(x, f(x)) < \epsilon.$

Theorem 3.2. Let M be a compact Riemannian manifold, $dim(M) = n$, and $C(M, R)$ be the set of all continuous functions defined on M. Then for typical members f in $C(M, R)$, $\underline{dim}_B(graph(f)) = n$.

Proof. Put

$$
A=\{f\in C(M,R): \underline{dim}_B(graph(f))=n\}.
$$

Let $f \in A$ and consider a positive number $\epsilon > 0$ and $g \in C(M, R)$ such that $d(f,g) < \epsilon$. If a collection of balls of radius δ in $M \times R$ covers graph(f) and $\epsilon < \delta$, then the same number of balls with radius 2δ covers graph(g). Since each ball of radius 2δ can be covered by 4^{n+1} balls of radius $\delta,$ then

$$
N_{\delta}(graph(g)) \leq 4^{n+1}N_{\delta}(graph(f))
$$

If $\delta < 1$ then

$$
\frac{log N_{\delta}(graph(g))}{-log(\delta)} \leq (n+1)\frac{lo4}{-log\delta} + \frac{log N_{\delta}(graph(f))}{-log\delta}
$$

Since $\underline{dim}_B(graph(f)) = n$ and $\lim_{\delta \to 0} \frac{\log 4}{-\log \delta} = 0$, then for each $k \in N$ there exists $\delta = \delta(f, k) > 0$ such that

Put
$$
g: M \to R
$$
, $g(x) = f(x) + g_6(x)$. Since f is differentiable, then by Remark
\n2.4, $\overline{dim}_B(graph(g)) = \overline{dim}_B(graph(g_6) = n + 1)$. Also, we have $d(f, g) =$
\n $max_{x \in M} |g(x) - f(x)| = max_{x \in M} |g_6(x)| = max_{x \in M} g_5(x, f(x)) < \epsilon$.
\n**Theorem 3.2.** Let M be a compact Riemannian manifold, $dim(M) = n$, and
\n $C(M, R)$ be the set of all continuous functions defined on M . Then for typical
\nmembers f in $C(M, R)$, $\underline{dim}_B(graph(f)) = n$.
\nProof. Put
\n $A = \{f \in C(M, R) : \underline{dim}_B(graph(f)) = n\}$.
\nLet $f \in A$ and consider a positive number $\epsilon > 0$ and $g \in C(M, R)$ such that
\n $d(f, g) < \epsilon$. If a collection of balls with radius δ in $M \times R$ covers graph (f) and
\n $\epsilon < \delta$, then the same number of balls with radius 2δ covers graph (g) . Since
\neach ball of radius 2δ can be covered by 4^{n+1} balls of radius δ , then
\n $N_{\delta}(graph(g)) \leq 4^{n+1}N_{\delta}(graph(f))$
\nIf $\delta < 1$ then
\n $\frac{logN_{\delta}(graph(g))}{log(\delta)} \leq (n+1)\frac{log}{-log\delta} + \frac{logN_{\delta}(graph(f))}{-log\delta}$
\nSince $\underline{dim}_B(graph(f)) = n$ and $\lim_{\delta \to 0} \frac{\log_4}{-\log\delta} = 0$, then for each $k \in N$ there
\nexists $\delta = \delta(f, k) > 0$ such that
\n $\log N_{\delta}(graph(g)) \leq (n+1)\frac{\log_4}{-\log\delta} + \frac{\log N_{\delta}(graph(f))}{-\log\delta} < n + \frac{1}{k}$
\nPut
\n $U_{f,k} = \$

and

 $\mathbf P$

$$
W_k = \bigcup_{(f \in A)} U_{f,k}
$$

 $W_{f,k}$ is an open set in $C(M, R)$ such that for each $g \in W_k$,

$$
\underline{\dim}_B(\operatorname{graph}(g) < n + \frac{1}{k}.
$$

Clearly $A \subset \bigcap_k W_k$. If $g \in \bigcap_k W_k$ then $\underline{\dim}_B(\text{graph}(g)) \leq n$, and since for all $g \in C(M, R)$, $n \leq \underline{dim}_B(graph(g))$ then $\underline{dim}_B(graph(g)) = n$. Thus

<www.SID.ir>

98 R. Mirzaie

 $\bigcap_k W_k = A$. Now, we show that W_k is dense for all k, then the proof will be complete. Given $g \in C(M, R)$ and $\epsilon > 0$. By Remark 2.5, collection of differentiable functions is dense, so there exists a differentiable function $f: M \to R$ such that $d(f,g) < \epsilon$. But for a differentiable function f, $\underline{dim}_B(graph(f)) = \overline{dim}_B(graph(f)) = n.$ So $f \in A \subset W_k$.

Lemma 3.3. If $g \in C(M, R)$ and $\epsilon > 0$, then there exists $k \in C(M, R)$ such that $d(g, k) < \epsilon$ and $\overline{dim}_B(graph(k)) = n + 1$.

Proof. By Remark 2.5, for a given $\delta > 0$ there exists a differentiable function $f \in C(M, R)$ such that $df, g) < \delta$. Consider a function $f_1 \in C(M, R)$ such δ and $f_2 \in C(M, R)$ such that $|\delta_1 f_1(x)| < \delta_2$ for all $x \in H + \delta_1 f$ *Proof.* By Remark 2.5, for a given $\delta > 0$ there exists a differentiable function $f \in C(M, R)$ such that $d(f, g) < \delta$. Consider a function $f_1 \in C(M, R)$ such that $\overline{dim}_B(graph(f_1)) = n+1$. Since M is compact, for a given number $\delta_2 > 0$ there is a positive number δ_1 such that $|\delta_1 f_1(x)| < \delta_2$ for all $x \in M$. Now, put $k = f + \delta_1 f_1$. By Remark 2.4, we have

$$
\overline{dim}_B(gradph(k) = \overline{dim}_B(gradph(\delta_1 f_1)) = \overline{dim}_B(gradph(f_1)) = n + 1.
$$

If we choose δ and δ_2 smaller than $\frac{\epsilon}{2}$, then

$$
d(g,k) \leq d(g,f) + d(f,k) \leq \delta + \delta_1 ||f_1|| \leq \delta + \delta_2 < \epsilon.
$$

 \Box

Theorem 3.4. Let M be a compact Riemannian manifold, $dim(M) = n$, and $C(M, R)$ be the set of all continuous functions defined on M. Then for typical members f in $C(M, R)$, $\overline{dim}_B(graph(f)) = n + 1$.

Proof. Clearly for all
$$
f \in C(M, R)
$$
, $\overline{dim}_B(graph(f)) \leq n + 1$. Put

$$
A = \{ f \in C(M, R) : dim_B(graph(f)) = n + 1 \}.
$$

Consider $f \in A$, a positive number $\epsilon > 0$ and $g \in C(M, R)$ such that $d(f, g) < \epsilon$. If a collection of balls of radius δ in $M \times R$ covers $graph(g)$ and $\epsilon < \delta$, then the same number of balls with radius 2δ covers $graph(f)$. Since each ball of radius 2δ can be covered by 4^{n+1} balls of radius δ , then

$$
N_{\delta}(graph(f)) < 4^{n+1}N_{\delta}(graph(g))
$$

So, if $\delta < 1$ then $logN_{\delta}(graph(f))$ $\frac{I_{\delta}(graph(f))}{-log(\delta)} < (n+1)\frac{lo4}{-log\delta} + \frac{logN_{\delta}(graph(g))}{-log\delta}$ $-log\delta$

Since $\overline{dim}_B(graph(f)) = n+1$, then for each $k \in N$ there is $\delta(k) = \delta(f, k) >$ 0 such that

$$
n+1-\frac{1}{k}<\frac{logN_{\delta(k)}(graph(f))}{-log(\delta(k))}-(n+1)\frac{log4}{-log\delta(k)}<\frac{logN_{\delta(k)}(graph(g))}{-log\delta(k)}
$$

Put

$$
U_{f,k} = \{ g \in C(M, R) : d(f, g) < \delta(f, k) \}
$$

and

$$
W_k = \bigcup_{(f \in A)} U_{f,k}
$$

 W_k is an open set in $C(M, R)$ such that for each $g \in W_k$,

$$
\overline{dim}_B(graph(g) > n + 1 - \frac{1}{k}
$$

Clearly

$$
\bigcap_k W_k = A
$$

 $\left[\begin{array}{l} W_k = A \end{array}\right] W_k = A$
Sow it remains to show that W_k is dense for all k . Let $h \in C(M, R)$ and $\epsilon > 0$
 As, the collection of all differentiable functions is dense in $C(M, R)$ such that $d(h, g) < \epsilon$. Since by Remark
 Now it remains to show that W_k is dense for all k. Let $h \in C(M, R)$ and $\epsilon > 0$ we show that there exists $g \in W_k$ such that $d(h, g) < \epsilon$. Since by Remark 2.5, the collection of all differentiable functions is dense in $C(M, R)$ then there exists a differentiable function $g_1 \in C(M, R)$ such that $d(h, g_1) < \frac{\epsilon}{2}$. Consider a function $f \in A \subset W_k$. Since f is continuous and M is compact then there exists $\delta > 0$ such that $|\delta f(x)| < \frac{\epsilon}{2}$ for all $x \in M$. Now, put $g = g_1 + \delta f$. Since g_1 is differentiable then $\overline{dim}_B(graph(g) = \overline{dim}_B(graph\delta f) = \overline{dim}_B(graph(f)) =$ $n + 1$. So, $g \in A \subset W_k$ and we have

$$
d(h,g) \le d(h,g_1) + d(g_1,g) \le \frac{\epsilon}{2} + \max_{x \in M} |\delta f| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
$$

ACKNOWLEDGMENTS

The author wish to thank the referee for his/her helpful comments.

REFERENCES

- 1. S. Banach, Uberdie Baire'sche kategorie gewisser funktionenmengen, Studia Math, 3, (1931), 147-179.
- 2. A. S. Besicovitch, H. D. Ursell, On dimensional numbers of some curves, J. London Math. Soc., 12, (1937), 18-25.
- 3. J. Hyde, V. Laschos, L. Olsen, I. Petrykiewicz, A. Shaw, On the box dimensions of graphs of typical continuous functions, J. Math. Anal. Appl., 391, (2012), 567-581.
- 4. K. Falconer, Fractal Geometry: Mathematical foundations, Wiley, New york, 1990.
- 5. P. Gruber, Dimension and structure of typical compact sets, Continua and curvs, Mh. Math., 108, (1989), 149-164.
- 6. R. D. Mauldin, S. C. Williams, On the Hausdorff dimension of some graphs, Trans. Am. Math. Soc., 298, (1986), 793-803.
- 7. R. Mirzaie, On images of continous functions from a compact manifold in to Euclidean space, Bulletin Of The Iranian Mathematical Society, 37, (2011), 93-100.
- 8. J. R. Munkres, Topology a first course, Appleton Century Grotfs, 2000.
- 9. A. Ostaszewski, Families of compact sets and their universals, Mathematica, 21, (1974), 116-127.
- 10. W. Rudin, Principles of mathematical analysis, MGH, 1976.
- 11. J. A. Wieacker, The convex hull of a typical compact set, Math. Ann., 282, (1998), 637-644.

 \Box