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Abstract. In this paper, first a new algorithm for pole assignment of

closed-loop multi-variable controllable systems in a prescribed region of

the z-plane is presented. Then, robust state feedback controllers are de-

signed by implementing a neural fuzzy system for the placement of closed-

loop poles of a controllable system in a prescribed region in the left-hand

side of z-plane. A new method based on the parameterizations of condi-

tion number function of a closed-loop system whose poles are varied in a

prescribed region by neural fuzzy system is also designed.
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1. Introduction

Pole placement, also known as pole assignment, is an essential problem in
order to obtain stability and robustness in the control system theory [1], [3],
[5], [11], [13]. In many problems, pole assignment in a prescribed region is the
main goal instead of assignment of a certain pole spectrum to the problem.
For example, we can allude to, the pole assignment into the prescribed region
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of the left-half z-plane for continuous systems and inside unit disk for discrete
systems(see Figure 1), in order to stabilize a controllable system. The other
important concept, in pole assignment problem, is to decrease sensitivity or
to increase robustness of the closed-loop matrix to external perturbations [4],
[11], [14], [17], [18]. In this paper, we have three sections. In the first section a
new explicit method, based on the parameterizations of gain matrix, for pole
assignment in a prescribed region for continuous systems is described. This
method is to look at implicit methods of placing poles in regions instead of
points. Arcasoy [2] has extendedKalman’s criterion of a single state optimal
control system to the multivariable case and later he introduced an algorithm,
which obtains an optimal regulator with the prescribed pole assignment prop-
erty using frequency response approach. In this work, a new method is given for
determination of feedback controller matrix K for placing poles in prescribed re-
gions for multivariable time-invariant continuous systems by taking advantage
of non-linear parametric forms proposed by Karbassi and Tehrani [10]. In the
second section,by implementing the neuro-fuzzy hybrid system, as a universal
approximation of the robustness function, and by using the method described
in the first section, we determine the poles spectrum with minimum sensitivity
to external perturbations. Then by using an iterative method, assignment of
linear independent eigenvectors corresponding to the required poles is obtained
such that feedback matrix is insensitive to perturbations as far as possible. Fi-
nally a numerical example is presented to illustrate the advantages of this new
method.

Figure 1. a: Specified regions for continuous systems b: Specified

regions for discrete systems
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2. Explicit method of pole placement in a prescribed region by

state feedback

Consider a controllable linear time-invariant system defined by the state
equation

(1) ẋ(t) = Ax(t) + Bu(t)

where x(k) ∈ Rn, u(k) ∈ Rm and the matrices A and B are real constant
matrices of dimensions n × n and n × m respectively, with rank(B) = m. The
aim of pole assignment is to design a state feedback controller,

(2) u(t) = Kx(t)

where K ∈ Rm×n is the state feedback controller matrix, producing a closed-
loop system

(3) ẋ(t) = (A + BK)x(t)

with a satisfactory response by shifting controllable poles from actual to desir-
able locations.
Karbassi and Bell [9] have presented an algorithm obtaining an explicit para-
metric controller matrix Kα by performing elementary similarity operations,
which transforms the controllable pair (B, A) into primary vector companion
form

(4) Kα = Kp + Fα

where Kp is the primary state feedback matrix such that the closed-loop ma-
trix (A + BKp) has the required poles and Fαis the parametric state feed-
back matrix with linear parameters such that (A + BFα) has zero poles [9].
Later Karabassi and Tehrani [10], obtained an explicit parametric formula for
Kα.Here we briefly review important results of [9]. Consider state transforma-
tion:

(5) x(t) = T x̃(t)

where T can be obtained by elementary similarity operations as described in
[18]. In this way, Ã = T−1AT and B̃ = T−1B are in the compact canonical
form known as vector companion form:

(6) Ã =
[

G0

In−m, 0n−m,m

]
, B̃ =

[
B0

0n−m,m

]

where G0 is a m×n matrix and B0 is an m×m upper triangular matrix. Note
that if the Kronecker invariants [17] of the pair (B, A) are regular, then Ã and
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B̃ are always in the above form [7]. The state feedback matrix, which assigns
all the poles to zero, for the transformed pair (B̃, Ã), is then chosen as

(7) u = −B−1
0 G0x̃ = F̃ x̃

which results in the primary state feedback matrix for the pair (B, A) defined
as

(8) FP = F̃ T−1

The transformed closed-loop matrix Γ̃0 = Ã + B̃F̃ assumes a compact Jordan
form with zero eigenvalues:

(9) Γ̃0 =
[

0m,n

In−m, 0n−m,m

]

Now let Ãλ be any matrix in vector companion form, i.e.

(10) Ãλ =
[

Gλ

In−m, 0n−m,m

]

with the eigenvalue spectrum Λ = {λ1, λ2, ..., λn}, a set of self conjugate eigen-
value. Then

(11) K̃ = B−1
0 (Gλ − G0)

is the feedback matrix which assigns the pole spectrum to the closed-loop ma-
trix Γ̃ = Ã+ B̃K̃. Furthermore, if K is the controller matrix which assigns the
set of self conjugate poles Λ = {λ1, λ2, ..., λn} to the transformed pair (B̃, Ã),
then

(12) K = K̃T−1 = B−1
0 (Gλ − G0)T−1

is the controller matrix which assigns the same set of poles to the pair (B, A).
For more detail, the interested reader is referred to [7 − 10]. It is from this
result that a general framework for obtaining the explicit form of parametric
controllers with non-linear parameters can be deduced. Let

(13) det(Ãλ − λI) = Pn(λ) = 0

where

(14) Pn(λ) = (−1)n(λn + c1λ
n−1 + ... + cn−1λ + cn)

is the characteristic polynomial of the closed-loop system. Since it is required
that that zeros of this polynomial lie in the set Λ = {λ1, λ2, ..., λn}, it is clear
that

(15) Pn(λ) = (−1)n(λ − λ1)(λ − λ2)...(λ − λn)
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By equating these two equations the coefficients ci,(i = 1, 2, ..., n) can be ob-
tained as follows [6]:

(16) c1 = −
n∑

i=1

(λi) = −trace(Ãλ)

(17) c2 =
n∑

i,j=1,i6=j

(λiλj) = −(c1trace(Ãλ) + trace(Ã2
λ))/2

... ... ...

(18)
cn = (−1)nΠn

i=1(λi) = −(cn−1trace(Ãλ)+cn−2trace(Ã2
λ)+...+c1trace(Ãn−1

λ ))/n

There is a MATLAB program that computes c1, c2, ..., cn when the desired
roots of the characteristic polynomial, i.e. λi , (i = 1, 2, ..., n) are specified.
Now by direct computation of det(Ãλ − λI) = Pn(λ) in parametric form and
equating the coefficients of the characteristic polynomial with (16−18), a non-
linear system of equations is obtained:

(19) f1(g11, g12, ...g1n, g21, g22, ..., gm1, gm2, ..., gmn) = c1

(20) f2(g11, g12, ...g1n, g21, g22, ..., gm1, gm2, ..., gmn) = c2

... ... ...

(21) fn(g11, g12, ...g1n, g21, g22, ..., gm1, gm2, ..., gmn) = cn

where gij , (i = 1, 2, ..., m), j = (1, 2, ..., n), are the elements of Gλ:

(22) Gλ =




g11 g12 ... g1n

g21 g22 ... g2n

. . ... .

gm1 gm2 ... gmn




In this way, a non-linear system of n equations with n × m unknown is ob-
tained. By choosing N = n(m − 1) unknowns arbitrarily it is then possi-
ble to solve the system. There are many ways to reduce the non-linear sys-
tem of equation to a linear one. A simple choice is to let gkj = 1 for(k =
1, 2, ..., i− 1, i + 1, ...m)and(j = 1, 2, ..., n) in Gλ. That is to choose Gλ in the
form:

(23) Gλ =




1 1 ... 1
. . ... .

gi1 gi2 ... gin

. . ... .

1 1 ... 1



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The i−th row of Gλ can then be obtained by solving a linear system of equations
of dimension n. Now, if it is required to locate the poles in a region specified
by x = α and x = β in the left half z-plane (as in figure 1:a) such that

(24) β ≤ real(λi) ≤ α for i = 1, 2, ..., n

We may assume that all the poles are set equal to α or β. Then according to
the definition of the characteristic equation

(25) t11 ≤ c1 ≤ t12

where

(26) t11 = min{−nα,−nβ}

and

(27) t12 = max{−nα,−nβ}

are lower and upper bounds for c1, respectively. Also

(28) tk1 ≤ ck ≤ tk2

where

(29) tk1 = min{(−1)k

(
n

k

)
αk, (−1)k

(
n

k

)
βk}

and

(30) tk2 = max{(−1)k

(
n

k

)
αk, (−1)k

(
n

k

)
βk}

and finally

(31) tn1 ≤ cn ≤ tn2

where

(32) tn1 = min{(−1)nαn, (−1)nβn}

and

(33) tn2 = max{(−1)nαn, (−1)nβn}

in which tj1 and tj2 are the lower and upper bounds of the j − th coefficients.
We now introduce parameter ω to ensure a convex combination of the lower
and upper limits, that is:

(34) C1 = ωt12 + (1 − ω)t11

(35) C2 = ωt22 + (1 − ω)t21

... ... ...

(36) Cn = ωtn2 + (1 − ω)tn1
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where ω ∈ (0, 1). Then the non-linear system of equations (19)−(21) is reduced
to a linear system with new right hand sides:

(37) f1(g11, g12, ...g1n, g21, g22, ..., gm1, gm2, ..., gmn) = C1

(38) f2(g11, g12, ...g1n, g21, g22, ..., gm1, gm2, ..., gmn) = C2

... ... ...

(39) fn(g11, g12, ...g1n, g21, g22, ..., gm1, gm2, ..., gmn) = Cn

which can be easily solved. From this solution, the controller matrix K thus
obtained locates the poles of the closed-loop system in the desired region. The
effectiveness of the proposed methodologies can be conveniently presented by
a numerical example in section three.

3. Design of robust controllers by neuro-fuzzy system

In the first section, the parametric state feedback matrix K for pole place-
ment in a prescribed region was calculated by the following equation:

(40) K = −B−1
0 (G0 − Gλ)T−1

where

(41) Gλ =




g11 g12 ... g1n

g21 g22 ... g2n

. . ... .

gm1 gm2 ... gmn




According to the previous section, gij is related to ω for all values of parameter
ω ∈ (0, 1). In other words

(42) gij = fij(ω) for all ω ∈ (0, 1), i = 1, 2, ., ., ., m and j = 1, 2, ., ., ., n

In this section, by using the search method based on the neuro-fuzzy hybrid
system on the parameter ω in (0, 1), the parametric state feedback matrix K,
and the parameters gij = fij(ω) are found such that the eigenvalue spectrum,
Λ = {λ1λ2, ..., λn} of the closed-loop matrix A+BK, is assigned to the closed-
loop system with least sensitivity. Then by implementing an iterative method,
a measure of conditioning of the eigenvector matrix X , corresponding to Λ,
is minimized. Finally the robust controller in prescribed region is obtained.
First, the required neuro-fuzzy hybrid system is described and then the itera-
tive method for finding the eigenvector matrix X and the robust controller K

is explained.
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3.1. Neuro-fuzzy hybrid system modeling. The process of design a fuzzy
inference system, is called fuzzy modeling. The fuzzy modeling has the follow-
ing features.
a. According to the rule structure of a fuzzy inference system, for modeling
a system by human expertise. The fuzzy modeling take the information that
might not be easily employed in the other modeling approaches.
b. Conventional system identification techniques for designing the fuzzy mod-
eling are based on the input-output data of the system.Thus the structure
determination and parameters identification are usually two essential parts of
fuzzy modeling system process.
• The structure determination, is the process to determine relevant input, num-
ber of MF’s for each input, number of rules and types of fuzzy models.
• The parameter identification, is the process of identifying the values of pa-
rameters that can present the best performance of the model. In particular, the
neuro-fuzzy modeling refers to the process of applying various learning algo-
rithms, in the neural network technique, to design the adaptive fuzzy inference
system. Consider the fuzzy rule base with m rules in the following form [16]-
[19],

(43) Rule k : IFx1 is Ak
1 and x2 is Ak

2 and ... and xn is Ak
n THEN y is Bk

where xi, i = 1, 2, ..., n and y are the input and output variables, respectively;
and Ak

i and Bk, k = 1, 2, ...l are the input and output fuzzy sets that charac-
terized by corresponding fuzzy membership functions. The neuro-fuzzy system
with n input and m rules is in the following form

(44) y(x, x, δ, w) = wT µ(x, x, δ)

where
x = [x1

1, ..., x
1
n, ..., xm

1 , ..., xm
n ]T , δ = [δ1

1 , ..., δ
1
n, ..., δm

1 , ..., δm
n ]T ,

x = [x1, x2, ..., xn]T , w = [w1, w2, ..., wm]T and µ = [µ1, µ2, ..., µm]T .

such that xk
i , δk

i , wk and µk(x) =
Πn

i=1µ
Ak

i
(x)

∑
m
k=1 Πn

i=1µ
Ak

i
(x) are the center, width of

the activation function, the inference weight and value of output membership
function, respectively. If x∗, δ∗ and w∗ are the optimal value of x, δ and w then
by the universal approximation theorem, there exist a neuro-fuzzy system that
can approximate uniformly the optimal values [15], [19]. If the algorithm used
for training the neural network is combine of to algorithms, then the resulting
system is called a hybrid system. Now, the neuro-fuzzy hybrid system, made
up of the identifier system and universal approximator is introduced. First,
the functional representation of the fuzzy system will be derived, and then the
hybrid neuro-fuzzy system will be described. Fuzzy system and ANN system
are both a universal approximator [19].
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Consider the following fuzzy rule base:

(45) If ω is Aτ Then J = F τ (ω)

where Aτ is a fuzzy set in [0, 1] and ω is the parameter described in the first
section and

(46) F τ (ω) =
‖Cτ

ω‖2√
n

such that Cτ
ω = [cτ

ω(j)]n×1 for j = 1, 2, ..., n is the vector whose elements are
the condition number, corresponding to value of ω ∈ [0, 1] and

(47) cτ
ω(j) =

1
(yτ

ω(j))xτ
ω(j)

where, xτ
ω(j) and yτ

ω(j) are respectively right and left eigenvector corresponding
to λτ

ω(j) in Λω. Therefore

(48) F τ (ω) =
‖Cτ

ω‖2√
n

= (
n∑

j=1

(cτ
ω(j))2

n
)

1
2

The fuzzy logic system with center average defuzzifier, max-product inference,
singleton fuzzifier is of the following form [19]:

(49) f(ω) =
∑k

τ=1 F τ (ω)µAτ (ω)
∑k

τ=1 µAτ (ω)

By choosing a certain type of membership function such as a Gaussian mem-
bership function we can drive the fuzzy system in a functional form:

(50) f(ω) =
∑k

τ=1 F τ (ω) exp(−(ω−ωτ

στ )2)
∑k

τ=1 exp(−(ω−ωτ

στ )2)

By substituting, from (48) into (50) this functional takes the following form:

(51) f(ω) =

∑k
τ=1(

∑n
j=1

(cτ
ω(j))2

n )
1
2 exp(−(ω−ωτ

στ )2)
∑k

τ=1 exp(−(ω−ωτ

στ )2)

The functional of the form (51) is a universal approximator of condition number
function J , over [0, 1]. Any degree of accuracy can now be reached if ωτ and
στ , are chosen properly. Universal approximator in (51) justifies the fuzzy logic
system to our search problem. Here, the training fuzzy system using neural
network learning method, which is a combination of least-squares estimation
with back propagation is implemented. This learning method is supported by
MATLAB software in the fuzzy logic toolbox.
Fuzzy systems can be trained by using various training algorithms based on
the numerical data or training data. Assume that, Aτ is a fuzzy set with the
membership function µ−Aτ and (ω, F ω) is given as the training data, the goal
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of the neuro-fuzzy hybrid system is to find values of the parameters ωτ and στ ,
so that f(ω) is universal approximator of

(52) J(ω) =
‖Cτ

ω‖2√
n

In other words:

(53) sup
ω∈[0,1]

‖J(ω) − f(ω)‖2 < tol

Since we can train the fuzzy system using hybrid method, we can call such a
fuzzy system a fuzzy identifier. By this identifier system, we can find value(s)
of ω such that the corresponding spectrum(s)of eigenvalues in a prescribed
region, has the least sensitivity. Now, the eigenvectors matrix X0, for use as
initial matrix in the iterative method for calculating the robust controller, can
be obtained.

3.2. Iterative method for finding robust controller. The object here is
to choose eigenvectors xj , for j = 1, 2, ..., n, corresponding to the spectrum
Λ, such that each vector is as orthogonal as possible to the space spanned
by remaining vectors; that is the angle between vector xj and space, χj =<

xi, i 6= j >, is maximized for all j. Equivalently we choose xj to minimize
the angle between xj and the normalized vector yj orthogonal to space χj .
The solution is found here by an iteration method in which a matrix X =
[xj ], for j = 1, 2, ..., n at each step. The objective of the update is now to
select a new vector xj , for each j = 1, 2, ..., n in order to minimize the measure
of conditioning ν = ‖X−1‖2

F over all xj at each step. Thus at each step,
a non-linearly constraint least-squares problem must be solved. This can be
accomplished by QR decomposition method. Any set of independent vectors
xj may be used to start the procedure(See Kautsky,et.al. for details [12]). But
in this paper, to procurability convergence in least steps, we choose x0

j the
j − th column of the eigenvector matrix X0, ( the initial eigenvector matrix).
This eigenvector is found by the method of parameterizations and neuro-fuzzy
system. The iteration is stopped when the reduction in measure ν is less than
a given tolerance after a full sweep.
After finding the eigenvector matrix X we can calculate the state feedback
matrix K. Let Γ = A + BK, be the closed-loop matrix and X the eigenvector
matrix corresponding to Λ, then:

(54) ΓX = XΛ

But the matrix X is non-defective. Therefore, the matrix Γ = XΛX−1, is
constructed by solving the equation XT ΓT = (XΛ)T for ΓT using a direct LU

decomposition method. This process is stable for a well condition matrix X.
To calculate matrix K, by QR decomposition we have:
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(55) B =
[

Q0 Q1

] [
R

0

]

where R is an upper triangular matrix, thus [12] :

(56) K = R−1QT
0 (Γ − A)

In the next subsection a numerical example is presented to illustrate the ad-
vantages of this new method for the design of optimal robust controller in a
specified region.

4. ILLUSTRATIVE EXAMPLES

i) For pole placement in a prescribed region, the same continuous time prob-
lem by Kautsky, et.al. [12] is considered here.

A =




1.3800 −0.2077 6.7150 −5.6760
−0.5814 −4.2900 0 0.6750
1.0670 4.2730 −6.6540 5.8930
0.048 4.273 1.3430 −2.1040


 , B =




0 0
5.6790 0
1.1360 −3.1460
1.1360 0




It is desired to obtain a state feedback controller, which locates the poles of the
closed-loop system in the region defined by β ≤ real(lambdai ≤ α. The trans-
formed pair (B̃, Ã), in vector companion form and the corresponding transfor-
mation matrix are:

Ã =




−5.2588 0.2498 −1.2493 2.6983
−1.3832 −6.4092 −11.0617 19.5403
1 0 0 0
0 1 0 0


 B̃ =




1 0
0 1
0 0
0 0




T−1 =




−0.004 0.1839 0 −0.0393
−0.0653 0.0098 −0.3179 0.2687
−0.0071 −0.0071 0 0.0356
−0.0473 0 0 0




clearly

B−1
0 =

[
1 0
0 1

]

and

G0 =
[

−5.2588 0.2498 −1.2493 2.6983
−1.3832 −6.4092 −11.0617 19.5403

]
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Now let us consider

Ãλ =




g11 g12 g13 g14

g21 g22 g23 g24

1 0 0 0
0 1 0 0




with the same canonical structure as Ã. Here

G̃λ =
[

g11 g12 g13 g14

g21 g22 g23 g24

]

is the parametric controller matrix in transformed space. Our aim is to obtain
the set of equations relating these parameters such that the poles of Aλ are in
the region defined by lines x = α = −1 x = β = −3. Now it can be easily
verified that

det(Ãλ−λI) =λ4−(g11+g22)λ3+(g11g22−g12g21−g13−g24)λ2+(g22g13−g12g23

+g11g24−g14g21)λ+(g13g24−g14g23) (57)
Now by using equations (26) - (33) we obtain values for the lower and upper
bounds of ci , (for i = 1, 2, 3, 4) as follows:

(58) t11 = 4 t12 = 12

(59) t21 = 6 t22 = 54

(60) t31 = 4 t32 = 108

(61) t41 = 1 t42 = 81

Now from the characteristic equation of the closed-loop system in the trans-
formed space we obtain the set of non-linear system of inequalities:

(62) t11 ≤ −(g11 + g22) ≤ t12

(63) t21 ≤ (g11g22 − g12g21 − g13 − g24) ≤ t22

(64) t31 ≤ (g22g13 − g12g23 + g11g24 − g14g21) ≤ t32

(65) t41 ≤ (g13g24 − g14g23) ≤ t42

By choosing ω = 0.75, say and assuming g21 = g22 = g23 = g24 = 1 as was
proposed, and substituting these in the above inequalities it follows that

(66) g11 = −ωt12 − (1 − ω)t11 − 1 = −11
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(67) −g12 − g13 = ωt22 + (1 − ω)t21 + 1 − g11 = 54

(68) g13 − g12 − g14 = ωt32 + (1 − ω)t31 − g11 = 93

(69) g13 − g14 = ωt42 + (1 − ω)t41 = 61

Here we have four equations with four unknowns, which can be solved readily.
The solution yields

g11 = −11 , g12 = −32 , g13 = −22 , g14 = −83.

0 0.2 0.4 0.6 0.8 1
0.499

0.4992

0.4994
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0.5004
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x 10
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Figure.2 Universal approximator Figure.3 Performance error

Therefore

(70) Gλ =
[

−11 −32 −22 −83
1 1 1 1

]

Producing

(71) K =
[

0.0820 −0.8736 −0.2385 0.4319
0.9664 −1.2970 −0.6315 0.1455

]

It is a simple matter to check and see that the poles of the closed-loop system
A + BK now are −2.8406 ± 2.1373i and −2.1594 ± 0.4052i, which clearly lie
inside the specified region as required. However, the measure of robustness of
this feedback matrix is not determined.
ii) For finding the optimal robust controller in the same prescribed region as
in the above example, the method described in the section 2 is applied. Now
by using the neuro-fuzzy hybrid system we have the following table:
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Table.1: neuro-fuzzy system properties

In-MF Number MF Out-MF Tol Epoch Err ω

Gaussian 15 Linear 10−5 200 1.174×10−6 0.189

Figure 2 shows the variation of condition number with ω (from which the
the minimum agrees with 0.189). Figure 3 shows the performance error with
the epoch number of training. This error agrees with 1.174 × 10−6 after 200
epoches, and this is less than tol (10−5). Therefore this approximator is a uni-
versal approximator.
The optimal eigenvector is:

X =




−0.7807 −0.7807 0.0546− 0.1405i 0.0546 + 0.1405i

−0.1809 + 0.1093i −0.1809− 0.1093i −0.1337 + 0.4639i −0.1337− 0.4639i

0.3056− 0.4802i 0.3056 + 0.4802i 0.5724 + 0.1237i 0.5724− 0.1237i

−0.0712 + 0.1297i −0.0712− 0.1297i 0.6335 0.6335




whose corresponding optimal robust controller matrix is:

K =
[

0.3865 0.1935 0.1196 −0.7248
2.0172 0.4150 −0.8368 1.0817

]

with the eigenvalue spectrum:
Λ = {−1.8143+5.1027i,−1.8143−5.1027i,−2.4976+3.4712i,−2.4976−3.4712i}

The measures of robustness in the specified region are presented in the fol-
lowing table :

Table.2: measure of robustness

‖c‖∞ κ2(X) ‖c‖2 ‖K‖2 Number of sweeps
1 1.3887 2 2.4722 4

Therefore, this controller matrix not only assigns the poles in the prescribed
region but also is the most robust controller with minimum condition number
1.3887 for the eigenvector matrix of the closed-loop system.
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Conclusion

In this work the explicit method based on the parametrization of feedback
matrix for pole placement and the search method by implementing the neuro-
fuzzy system to determine an optimal robust controller, or well-conditioned
controller is presented. Specially the poles are located in a prescribed region
such that least sensitivity to perturbations in the closed-loop matrix is achieved.
For such robust solution it is shown that the criterions of robustness and the
norm of feedback matrix are both optimized.
The idea for finding the robust controller suggested by Kautsky et.al [12] is
extended. However, in our iterative method, the initial eigenvector, is the
eigenvector that is found by the method of parameterizations and neuro-fuzzy
system. This strategy guaranties convergence and minimizes the number of
sweeps of iterations. The test example confirms better result and is numerically
more efficient than the previous methods.

Acknowledgement. We are grateful to the referees for their valuable sugges-
tions, which have improved this paper.
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