Iranian Journal of Mathematical Sciences and Informatics Vol. 4, No. 1 (2009), pp. 79-98 # BCK-Algebras and Hyper BCK-Algebras Induced by a Deterministic Finite Automaton M. Golmohammadian and M. M. Zahedi* Department of Mathematics, Tarbiat Modares University, Tehran, Iran E-mail: golmohamadian@modares.ac.ir E-mail: zahedi_mm@ modares.ac.ir ABSTRACT. In this note first we define a BCK-algebra on the states of a deterministic finite automaton. Then we show that it is a BCK-algebra with condition (S) and also it is a positive implicative BCK-algebra. Then we find some quotient BCK-algebras of it. After that we introduce a hyper BCK-algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite automaton and we prove that this hyper BCK-algebra is simple, strong normal and implicative. Finally we define a semi continuous deterministic finite automaton. Then we introduce a hyper BCK-algebra S on the states of this automaton and we show that S is a weak normal hyper BCK-algebra. **Keywords:** Deterministic finite automaton, BCK-algebra , hyper BCK-algebra , quotient BCK-algebra. 2000 Mathematics subject classification: 03B47, 18B20, 03D05, 06F35. #### 1. Introduction The hyper algebraic structure theory was introduced by F. Marty [9] in 1934. Imai and Iseki [6] in 1966 introduced the notion of *BCK*-algebra. Meng and Received 17 September 2009; Accepted 10 October 2009 ©2009 Academic Center for Education, Culture and Research TMU ^{*}Corresponding Author Jun [10] defined the quotient hyper BCK-algebras in 1994. Torkzadeh, Roodbari and Zahedi [12] introduced the hyper stabilizers and normal hyper BCK-algebras. Corsini and Leoreanu [4] found some connections between a deterministic finite automaton and the hyper algebraic structure theory. Now in this note first we introduce a BCK-algebra on the states of a deterministic finite automaton and we prove some theorems and obtain some related results. Also we define a hyper BCK-algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite automaton. Finally we introduce a hyper BCK-algebra on the states of a semi continuous deterministic finite automaton. #### 2. Preliminaries **Definition 2.1**. [10] Let X be a set with a binary operation " * " and a constant "0". Then (X, *, 0) is called a BCK-algebra if it satisfies the following condition: (i) $$((x*y)*(x*z)) * (z*y) = 0$$, (ii) $$(x * (x * y)) * y = 0$$, (iii) $$x * x = 0$$, (iv) $$0 * x = 0$$, (v) $$x * y = 0$$ and $y * x = 0$ imply $x = y$. For all $x, y, z \in X$. For brevity we also call X a BCK-algebra. If in X we define a binary relation" \leq " by $x \leq y$ if and only if x * y = 0, then (X, *, 0) is a BCK-algebra if and only if it satisfies the following axioms for all $x, y, z \in X$; (I) $$(x * y) * (x * z) < z * y$$, (II) $$x * (x * y) \le y$$, (III) $x \leq x$, (IV) $$0 \le x$$, (V) $x \le y$ and $y \le x$ imply x = y. **Definition 2.2**. [10] Given a *BCK*-algebra (X, *, 0) and given elements a, b of X, we define $$A(a,b) = \{x \in X | x * a < b\}.$$ If for all x, y in X, A(x, y) has a greatest element then the *BCK*-algebra is called to be with condition (S). **Definition 2.3.** [10] Let (X, *, 0) be a *BCK*-algebra and let I be a nonempty subset of X. Then I is called to be an ideal of X if, for all x, y in X, (i) $0 \in I$, (ii) $x * y \in I$ and $y \in I$ imply $x \in I$. **Theorem 2.4.** [10] Let I be an ideal of BCK-algebra X. if we define the relation \sim_I on X as follows: $x \sim_I y$ if and only if $x \circ y \in I$ and $y \circ x \in I$. Then \sim_I is a congruence relation on H. **Definition 2.5.** [10] Let (X, *, 0) be a BCK-algebra, I be an ideal of X and \sim_I be an equivalence relation on X. we denote the equivalence class containing x by C_x and we denote X/I by $\{C_x : x \in H\}$. Also we define the operation $*: X/I \times X/I \to X/I$ as follows: $$C_x * C_y \longrightarrow C_{x*y}$$. **Theorem 2.6.** [10] Let I be an ideal of BCK-algebra X. Then $I=C_0$. **Theorem 2.7.** [10] Let (X, *, 0) be a BCK-algebra and I be an ideal of X. Then $(X/I, *, C_0)$ is a BCK-algebra. **Definition 2.8.** [10] A *BCK*-algebra (X, *, 0) is called positive implicative if it satisfies the following axiom: $$(x*z)*(y*z) = (x*y)*z$$ for all $x, y, z \in X$. **Definition 2.9.** [10] A nonempty subset I of a BCK-algebra X is called a varlet ideal of X if (VI1) $x \in I$ and $y \le x$ imply $y \in I$, (VI2) $x \in I$ and $y \in I$ imply that there exists $z \in I$ such that $x \le z$ and $y \le z$. **Definition 2.10.** [8] Let H be a nonempty set and "o" be a hyper operation on H, that is "o" is a function from $H \times H$ to $\mathcal{P}^*(H) = \mathcal{P}(H) - \{\emptyset\}$. Then on H, that is "o" is a function from $H \times H$ to $\mathcal{P}^*(H) = \mathcal{P}(H) - \{\emptyset\}$. Then H is called a hyper BCK-algebra if it contains a constant "0" and satisfies the following axioms: $(HK1) (x o z) o (y o z) \ll x o y,$ (HK2) $(x \circ y) \circ z = (x \circ z) \circ y$, (HK3) $x \circ H \ll \{x\},\$ (HK4) $x \ll y, y \ll x \Longrightarrow x = y$. For all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x$ o y and for every $A, B \subseteq H$, $A \ll B$ is defined by $\forall a \in A, \exists b \in B \text{ Such that } a \ll b$. **Theorem 2.11.** [2] In a hyper BCK-algebra (H, o, 0), the condition (HK3) is equivalent to the condition: $x \circ y \ll \{x\} \text{ for all } x, y \in H.$ **Definition 2.12.** [7] Let I be a non-empty subset of a hyper BCK-algebra H and $0 \in I$. Then, (1) I is called a weak hyper BCK-ideal of H if x o $y \subseteq I$ and $y \in I$ imply that $x \in I$, for all $x, y \in H$. (2) I is called a hyper BCK-ideal of H if $x \circ y \ll I$ and $y \in I$ imply that $x \in I$, for all $x, y \in H$. (3) I is called a strong hyper BCK-ideal of H if $(x \ o \ y) \cap I \neq \emptyset$ and $y \in I$ imply that $x \in I$, for all $x, y \in H$. **Theorem 2.13.** [7] Any strong hyper BCK-ideal of a hyper BCK-algebra H is a hyper BCK-ideal and a weak hyper BCK-ideal. Also any hyper BCK-ideal of a hyper BCK-algebra H is a weak hyper BCK-ideal. **Definition 2.14.** [12] Let H be a hyper BCK-algebra and A be a nonempty subset of H. Then the $\operatorname{sets}_l A = \{x \in H | a \in a \text{ o } x \ \forall a \in A\}$ and $A_r = \{x \in H | x \in x \text{ o } a \ \forall a \in A\}$ are called left hyper BCK-stabilizer of A and right hyper BCK-stabilizer of A, respectively. **Definition 2.15.** [12] A hyper BCK-algebra H is called: - (i) Weak normal, if a_r is a weak hyper BCK-ideal of H for any element $a \in H$. - (ii) Normal, if a_r is a hyper BCK-ideal of H for any element $a \in H$. - (iii) Strong normal, if a_r is a strong hyper BCK-ideal of H for any element $a \in H$. **Definition 2.16.** [11] A hyper BCK-algebra (H, 0, 0) is called simple if for all distinct elements $a, b \in H - \{0\}$, $a \nleq b$ and $b \nleq a$. **Definition 2.17.** [2] A hyper BCK-algebra (H, o, 0) is called: (i) Weak positive implicative (resp. positive implicative), if it satisfies the axiom $$(x\ o\ z)\ o\ (y\ o\ z) \ll ((x\ o\ y)\ o\ z)\ (\text{resp.}\ (x\ o\ z)\ o\ (y\ o\ z) = (x\ o\ y)\ o\ z)$$ for all $x, y, z \in H$. (ii) Implicative. if $x \ll x$ o $(y \ o \ x)$, for all $x, y, z \in H$. **Definition 2.18.** [5] A deterministic finite automaton consists of: - (i) A finite set of states, often denoted by S. - (ii) A finite set of input symbols, often denoted by M. - (iii) A transition function that takes as arguments a state and an input symbol and returns a state. The transition function will commonly be denoted by t, and in fact $t: S \times M \to S$ is a function. - (iv) A start state, one of the states in S such as s_0 . - (v) A set of final or accepting states F. The set F is a subset of S. For simplicity of notation we write (S, M, s_0, F, t) for a deterministic finite automaton. **Remark 2.19.** [5] Let (S, M, s_0, F, t) be a deterministic finite automaton. A word of M is the product of a finite sequence of elements in M, λ is empty word and M^* is the set of all words on M. We define recursively the extended transition function, $t^*: S \times M^* \longrightarrow S$, as follows: $$\forall s \in S, \forall a \in M, t^*(s, a) = t(s, a),$$ $$\forall s \in S, t^*(s, \lambda) = s,$$ $$\forall s \in S, \forall x \in M^*, \forall a \in M, t^*(s, ax) = t^*(t(s, a), x).$$ Note that the length $\ell(x)$ of a word $x \in M^*$ is the number of its letters. so $\ell(\lambda) = 0$ and $\ell(a_1 a_2) = 2$, where $a_1, a_2 \in M$. **Definition 2.20.** [4] The state s of $S - \{s_0\}$ will be called connected to the state s_0 of S if there exists $x \in M^*$, such that $s = t^*(s_0, x)$. #### 3. BCK-algebras induced by a deterministic finite automaton In this section we present some relationships between BCK-algebras and deterministic finite automata. **Definition 3.1.** Let (S, M, s_0, F, t) be a deterministic finite automaton. If $s \in S - \{s_0\}$ is connected to s_0 , then the order of a state s is the natural number l+1, where $l=\min \{\ell(x) \mid t^*(s_0,x)=s, x \in M^*\}$, and if $s \in S - \{s_0\}$ is not connected to s_0 we suppose that the order of s is 1. Also we suppose that the order of s_0 is 0. We denote the order of a state s by ord s. Now, we define the relation \sim on the set of states S, as follows: $$s_1 \sim s_2 \Leftrightarrow ord \ s_1 = ord \ s_2$$ It is obvious that this relation is an equivalence relation on S. Note that we denote the equivalence class of s by \overline{s} . Also we denote the set of all these classes by \overline{S} . **Theorem 3.2.** Let (S, M, s_0, F, t) be a deterministic finite automaton. We define the following operation on S: $$\forall (s_1, s_2) \in S^2, \ s_1 o s_2 = \left\{ \begin{array}{ll} s_0, & \text{if } ord \ s_1 < ord \ s_2, \quad s_1, s_2
\neq s_0, \quad s_1 \neq s_2 \\ s_1, & \text{if } ord \ s_1 \geq ord \ s_2, \quad s_1, s_2 \neq s_0, \quad s_1 \neq s_2 \\ s_0, & \text{if } s_1 = s_2 \\ s_0, & \text{if } s_1 = s_0 \ , \quad s_2 \neq s_0 \\ s_1, & \text{if } s_2 = s_0 \ , \quad s_1 \neq s_0 \end{array} \right.$$ Then (S, o, s_0) is a *BCK*-algebra and s_0 is the zero element of S. Proof. By definition of the operation 'o', we know that $t \circ t = s_0$ and $s_0 \circ t = s_0$ for all $t \in S$. So (S, o, s_0) satisfies (III) and (IV). Now we consider the following situations to show that (S, o, s_0) satisfies (I) and (II). (i) Let $s_1, s_2, s_3 \neq s_0$ and $ord \ s_1 < ord \ s_2 < ord \ s_3$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_0 = s_0$ and $s_3 \ o \ s_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds. On the other hand, $s_1 o (s_1 o s_2) = s_1 o s_0 = s_1$ and $s_1 o s_2 = s_0$. Hence, in this case (II) holds. (ii) Let $s_1, s_2, s_3 \neq s_0$ and $ord \, s_2 < ord \, s_1 < ord \, s_3$. Then $(s_1 \, o \, s_2) \, o \, (s_1 \, o \, s_3) = s_1 \, o \, s_0 = s_1$ and $s_3 \, o \, s_2 = s_3$. Since $s_1 \, o \, s_3 = s_0$ we get that $s_1 \leq s_3$. Thus in this case (I) holds. Also s_1 o $(s_1$ o $s_2) = s_1$ o $s_1 = s_0$ and s_0 o $s_2 = s_0$. Therefore in this case (II) holds. (iii) Let $s_1, s_2, s_3 \neq s_0$ and $ord \ s_2 < ord \ s_3 < ord \ s_1$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0$ and $s_3 \ o \ s_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_1 = s_0$ and $s_0 \ o \ s_2 = s_0$. So in this case (II) holds. (iv) Let $s_1, s_2, s_3 \neq s_0$ and $ord \ s_1 < ord \ s_3 < ord \ s_2$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_0 = s_0$ and $s_3 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds. Also $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_0$. Hence, in this case (II) holds (v) Let $s_1, s_2, s_3 \neq s_0$ and $ord s_3 < ord s_1 < ord s_2$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_1 = s_0$ and $s_3 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_0$. Thus in this case (II) holds. (vi) Let $s_1, s_2, s_3 \neq s_0$ and $ord \ s_3 < ord \ s_2 < ord \ s_1$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0$ and $s_3 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds. Also $s_1 o (s_1 o s_2) = s_1 o s_1 = s_0$ and $s_0 o s_2 = s_0$. So in this case (II) holds. (vii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = ord \ s_2 < ord \ s_3$ and $s_1 \neq s_2$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_0 = s_1$ and $s_3 \ o \ s_2 = s_3$. Since $s_1 \ o \ s_3 = s_0$ we get that $s_1 \leq s_3$. So in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_1 = s_0$ and $s_0 \ o \ s_2 = s_0$. Therefore in this case (II) holds. (viii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = ord s_2 > ord s_3$ and $s_1 \neq s_2$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_1 \circ s_1 = s_0$ and $s_3 \circ s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds. Also s_1 o $(s_1$ o $s_2) = s_1$ o $s_1 = s_0$ and s_0 o $s_2 = s_0$. Hence, in this case (II) holds. (ix) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = ord s_3 < ord s_2$ and $s_1 \neq s_3$. Then $(s_1 \ os_2) \ o(s_1 \ os_3) = s_0 \ os_1 = s_0$ and $s_3 \ os_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_0$. Thus in this case (II) holds. (x) $s_1, s_2, s_3 \neq s_0$, ord $s_1 = ord \ s_3 > ord \ s_2$ and $s_1 \neq s_3$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0 \ \text{and} \ s_3 \ o \ s_2 = s_3$. Since $s_0 \le s_3$ we get that in this case (I) holds. Also s_1 o $(s_1$ o $s_2) = s_1$ o $s_1 = s_0$ and s_0 o $s_2 = s_0$. So in this case (II) holds. (xi) Let $s_1, s_2, s_3 \neq s_0$, ord $s_2 = ord$ $s_3 > ord$ s_1 and $s_2 \neq s_3$. Then $(s_1 \ os_2) \ o(s_1 \ os_3) = s_0 \ os_0 = s_0$ and $s_3 \ os_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_0$. Therefore in this case (II) holds. (xii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_2 = ord \ s_3 < ord \ s_1$ and $s_2 \neq s_3$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0$ and $s_3 \ o \ s_2 = s_3$. Since $s_0 \leq s_3$ we get that in this case (I) holds. Also $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_1 = s_0$ and $s_0 \ o \ s_2 = s_0$. Hence, in this case (II) holds. (xiii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = ord \ s_2 = ord \ s_3$ and $s_1 \neq s_2 \neq s_3 \neq s_1$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0$ and $s_3 \ o \ s_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds. On the other hand, $s_1 o(s_1 o s_2) = s_1 o s_1 = s_0$ and $s_0 o s_2 = s_0$. Thus in this case (II) holds. (xiv) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = ord \ s_3, \ s_1 \neq s_3$ and $s_1 = s_2$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_1 = s_0$ and $s_3 \ o \ s_2 = s_3$. Since $s_0 \leq s_3$ we get that in this case (I) holds. Also s_1 o $(s_1$ o $s_2) = s_1$ o $s_0 = s_1$ and s_1 o $s_2 = s_0$. So in this case (II) holds. (xv) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = ord$ $s_2, s_1 \neq s_2$ and $s_1 = s_3$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_0 = s_1$ and $s_3 \ o \ s_2 = s_3$. Since $s_1 \ o \ s_3 = s_0$ we get that $s_1 \leq s_3$. So in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_1 = s_0$ and $s_0 \ o \ s_2 = s_0$. Therefore in this case (II) holds. (xvi) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = ord \ s_2, \ s_1 \neq s_2$ and $s_2 = s_3$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0$ and $s_3 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds. Also $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_1 = s_0$ and $s_0 \ o \ s_2 = s_0$. Hence, in this case (II) holds (xvii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 < ord s_3$ and $s_1 = s_2$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_0 = s_0$ and $s_3 \ o \ s_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds. On the other hand, $s_1 o (s_1 o s_2) = s_1 o s_0 = s_1$ and $s_1 o s_2 = s_0$. Thus in this case (II) holds. (xviii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 > ord \, s_3$ and $s_1 = s_2$. Then $(s_1 \, o \, s_2) \, o \, (s_1 \, o \, s_3) = s_0 \, o \, s_1 = s_0 \, \text{and} \, s_3 \, o \, s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds. Also $s_1 \, o \, (s_1 \, o \, s_2) = s_1 \, o \, s_0 = s_1 \, \text{and} \, s_1 \, o \, s_2 = s_0$. So in this case (II) holds. (xix) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 < ord \, s_2 \, \text{and} \, s_1 = s_3$. Then $(s_1 \, o \, s_2) \, o \, (s_1 \, o \, s_3) = s_0 \, o \, s_0 = s_0 \, \text{and} \, s_3 \, o \, s_2 = s_0$. Since $s_0 \leq s_0 \, \text{we}$ obtain that in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_0$. Therefore in this case (II) holds. (xx) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 > ord s_2$ and $s_1 = s_3$. Then $(s_1 \ o \ s_2) \ o (s_1 \ o \ s_3) = s_1 \ o \ s_0 = s_1 \ and \ s_3 \ o \ s_2 = s_3 = s_1$. Since $s_1 \leq s_1$ we get that in this case (I) holds. Also $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_1 = s_0$ and $s_0 \ o \ s_2 = s_0$. Hence, in this case (II) holds. (xxi) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 < ord s_2$ and $s_2 = s_3$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_0 = s_0$ and $s_3 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_0$. Thus in this case (II) holds. (xxii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 > ord s_2$ and $s_2 = s_3$. Then $(s_1 \ o \ s_2) \ o (s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0$ and $s_3 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds. Also $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_1 = s_0$ and $s_0 \ o \ s_2 = s_0$. So in this case (II) holds. (xxiii) Let $s_1 = s_2 = s_3$. Then $(s_1 \ o \ s_2) \ o (s_1 \ o \ s_3) = s_0 \ o \ s_0 = s_0$ and (xxiii) Let $s_1 = s_2 = s_3$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_0 = s_0$ and $s_3 \ o \ s_2 = s_0$. Since $s_0 \le s_0$ we obtain that in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_0$. Therefore in this case (II) holds. (xxiv) Let $s_1 = s_0$ and $s_2, s_3 \neq s_0$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_0 = s_0$. Let $s_3 \ o \ s_2 = t$ and $t \in S$. Since $s_0 \leq t$ we get that in this case (I) holds. Also $s_1 \ o \ (s_1 \ o \ s_2) = s_0 \ o \ s_0 = s_0$ and $s_0 \ o \ s_2 = s_0$. Hence, in this case (II) holds. (xxv) Let $s_2 = s_0$, $s_1, s_3 \neq s_0$. Since s_1 o $s_3 = s_1$ or s_1 o $s_3 = s_0$, we have two cases: (6) $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0$. We know that $s_3 \ o \ s_2 = s_3$. Since $s_0 \le s_3$ we conclude that in this case (I) holds. (7) $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_1 \ o \ s_0 = s_1$. We know that $s_3 \ o \ s_2 = s_3$ and in this case $s_1 \ o \ s_3 = s_0$. So $s_1 \le s_3$ and (I) holds. On the other hand, $s_1 o(s_1 o s_2) = s_1 o s_1 = s_0$ and $s_0 o s_2 = s_0$. Thus in this case (II) holds. (xxvi) Let $s_3 = s_0$ and $s_1, s_2 \neq s_0$. Since $s_1 \ o \ s_2 = s_1$ or $s_1 \ o \ s_2 = s_0$, we obtain that $(s_1 \ o \ s_2) \ o \
(s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0$ or $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_1 = s_0$. Also $s_3 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we conclude that in this case (I) holds. The proof of (II) is studied in other cases. (xxvii) Let $s_1 \neq s_0$ and $s_2 = s_3 = s_0$. Then $(s_1 \ o \ s_2) \ o (s_1 \ o \ s_3) = s_1 \ o \ s_1 = s_0$ and $s_3 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds. On the other hand, $s_1 \ o \ (s_1 \ o \ s_2) = s_1 \ o \ s_1 = s_0$ and $s_0 \ o \ s_2 = s_0$. Therefore in this case (II) holds. (xxviii) Let $s_3 \neq s_0$ and $s_1 = s_2 = s_0$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_0 = s_0$. and $s_1 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds. Also s_1 o $(s_1$ o $s_2) = s_0$ o $s_0 = s_0$ and s_0 o $s_2 = s_0$. Hence, in this case (II) holds. (xxix) Let $s_2 \neq s_0$ and $s_1 = s_3 = s_0$. Then $(s_1 \ o \ s_2) \ o \ (s_1 \ o \ s_3) = s_0 \ o \ s_0 = s_0$ and $s_3 \ o \ s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds. On the other hand, $s_1 o(s_1 o s_2) = s_0 o s_0 = s_0$ and $s_0 o s_2 = s_0$. Thus in this case (II) holds. So we conclude that (S, o, s_0) satisfies (I) and (II). To prove (V), Let $s_1 \le s_2$ and $s_2 \le s_1$. If $s_1 = s_2$, then we are done. Otherwise, since $s_1 \le s_2$, there exist two cases: (i) ord $s_1 < ord\ s_2,\quad s_1,s_2 \neq s_0,\quad s_1 \neq s_2$. Then $s_2o\ s_1 = s_2$. Therefore $s_2 \not\leq s_1$, which is a contradiction. (ii) $s_1=s_0$, $s_2\neq s_0$. Then $s_2o\ s_1=s_2o\ s_0=s_2$. Thus $s_2\nleq s_1$, which is a contradiction. So we show that (S, o, s_0) is a BCK-algebra. **Example 3.3.** Let $A = (S, M, s_0, F, t)$ be a deterministic finite automaton such that $S = \{q_0, q_1, q_2, q_3\}$, $M = \{a, b\}$, $s_0 = q_0$, $F = \{q_1, q_3\}$ and t is defined by FIGURE 1 $$t(q_0, a) = q_1, \ t(q_0, b) = q_2, \ t(q_1, a) = q_2, t(q_1, b) = q_3,$$ $$t(q_2, a) = q_3, \ t(q_2, b) = q_3, \ t(q_3, a) = q_3, \ t(q_3, b) = q_3.$$ It is easy to see that $ord \ q_1 = ord \ q_2 = 2, ord \ q_3 = 3$ and $ord \ q_0 = 0$. According to the definition of operation "o" which is defined in Theorem 3.2, we have the following table: Table 1. | О | q_0 | q_1 | q_2 | q_3 | |-------|-------|-------|-------|-------| | q_0 | q_0 | q_0 | q_0 | q_0 | | q_1 | q_1 | q_0 | q_1 | q_0 | | q_2 | q_2 | q_2 | q_0 | q_0 | | q_3 | q_3 | q_3 | q_3 | q_0 | In this section we suppose that (S, o, s_0) is the *BCK*-algebra, which is defined in Theorem 3.2. **Notation.** We denote the class of all states which their order is n by $\overline{s_n}$. **Theorem 3.4.** (S, o, s_0) is a *BCK*-algebra with condition (S). Proof: Let $s_1, s_2 \in S$, ord $s_1 = n$ and ord $s_2 = m$. Then we should consider following situations: - (1) Let ord $s_1 < ord \ s_2, \quad s_1, s_2 \neq s_0, \quad s_1 \neq s_2$. Then $A(s_1, s_2) = \bigcup_{i=0}^{m-1} \overline{s_i} \cup \{s_2\}$ and the greatest element of $A(s_1, s_2)$ is s_2 . - (2) Let ord $s_1 \geq ord \ s_2$, $s_1, s_2 \neq s_0$, $s_1 \neq s_2$. Then $A(s_1, s_2) = \bigcup_{i=0}^{n-1} \overline{s_i} \cup \{s_1\}$ and the greatest element of $A(s_1, s_2)$ is s_1 . - (3) $s_1 = s_2$. Then $A(s_1, s_2) = \bigcup_{i=0}^{n-1} \overline{s_i} \cup \{s_1\}$ and the greatest element of $A(s_1, s_2)$ is s_1 . - (4) Let $s_1 = s_0$, $s_2 \neq s_0$. Then $A(s_1, s_2) = \bigcup_{i=0}^{m-1} \overline{s_i} \cup \{s_2\}$ and the greatest element of $A(s_1, s_2)$ is s_2 . - (5) Let $s_1 \neq s_0$, $s_2 = s_0$. Then $A(s_1, s_2) = \bigcup_{i=0}^{n-1} \overline{s_i} \cup \{s_1\}$ and the greatest element of $A(s_1, s_2)$ is s_1 . **Theorem 3.5.** Let $I_n = \{s \in S \mid s \in \bigcup_{i=0}^n \overline{s_i}\}$ for any $n \in N$. Then I_n is an ideal of (S, o, s_0) . Proof. Suppose that s_1 o $s_2 \in I_n$ and $s_2 \in I_n$, then we have the following situations: (1) $$s_1 \neq s_2, s_2 \neq s_0 \text{ and } ords_2 < ords_1.$$ By definition of the operation "o", we know that $s_1o s_2=s_1$. So $s_1 \in I_n$. (2) $$s_1 \neq s_2, s_2 \neq s_0 \text{ and } ords_2 = ords_1.$$ Since $s_2 \in I_n$ and $\overline{s_2} \subseteq I_n$, we obtain that $s_1 \in I_n$. (3) $$s_1 \neq s_2, \ s_1 \neq s_0 \ \text{and} \ ords_1 < ords_2.$$ By definition of I_n , it is easy to see that $s_1 \in I_n$. $$(4) s_1 = s_2.$$ It is clear that $s_1 \in I_n$. $$(5) s_2 = s_0.$$ By definition of the operation "o", we know that $s_1o \ s_2=s_1$. So $s_1 \in I_n$. (6) $s_1 = s_0$. Since $s_0 \in I_n$, we get that $s_1 \in I_n$. Also by definition of I_n , we know that $s_0 \in I_n$. So I_n is an ideal of S. **Theorem 3.6.** Let I_n be a set, which is defined in Theorem 3.5. Then $C_x = \{x\}$ for all $x \notin I_n$. Proof. Let $x \notin I_n$. By Theorem 2.6, we know that $I_n = C_{s_0}$. So $s_0 \notin C_x$. Now we suppose that $y \in C_x$ and $y \neq x$. By definition of the equivalence relation \sim_{I_n} , we know that $x \circ y \in I_n$ and $y \circ x \in I_n$. Since $x \notin I_n$ and $x \circ y \in I_n$, we obtain that $ord \ x \ngeq ord \ y$. So $ord \ y > ord \ x$ and $y \circ x = y \in I_n = C_{s_0}$, which is a contradiction. Hence, y = x. **Theorem 3.7.** Let I_n be the ideal of S which is defined in Theorem 3.5. Then $(S/I_n, *, C_{s_0})$ is a BCK-algebra. Proof. By Theorem 2.7, it is obvious that $(S/I_n, *, C_{s_0})$ is a BCK-algebra. **Theorem 3.8.** (S, o, s_0) is a positive implicative BCK-algebra. Proof. By considering 29 situations which have been stated in the proof of Theorem 3.2, we get that in all cases $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = (s_1 \ o \ s_2) \ o \ s_3$, for all $s_1, s_2, s_3 \in S$. So (S, o, s_0) is a positive implicative BCK-algebra. **Theorem 3.9.** Let $n = \max \{ ord \ s \mid s \in S \}$. Then $I = \bigcup_{i=0}^{m-1} \overline{s_i} \cup \{z\}$ for $1 \le m \le n$ and $z \in s_m$, is a varlet ideal of (S, o, s_0) . Proof. To prove (VI1), we suppose that $x \in I$ and $y \le x$. Then $s_0 = y$ o x and we have three cases: - (6) Let ord y < ord x, $x, y \neq s_0$ and $x \neq y$. Then by definition of I, it is obvious that $y \in I$. - (7) Let x = y. Then it is clear that $y \in I$. - (3) Let $y=s_0$, $x\neq s_0$. Then by definition of I, it is easy to see that $s_0=y\in I$. Therefore (VI1) holds. Now we show that I satisfies (VI2). let $x \in I$, $y \in I$ and $x, y \neq z$. Since $ord\ x < ord\ z$ and $ord\ y < ord\ z$, we get that $x \ o \ z = s_0$ and $y \ o \ z = s_0$. So $x \le z$ and $y \le z$. Also if $x \in I$, $y \in I$, x = z and $y \ne z$, then $x \ o \ z = z \ o \ z = s_0$ and $y \ o \ z = s_0$. Thus $x \le z$ and $y \le z$. Similarly we can prove that $x \le z$ and $y \le z$ for the following cases: (6) $$x \in I, y \in I, x \neq z \text{ and } y = z,$$ (7) $$x \in I, y \in I, x = z \text{ and } y = z.$$ So (VI2) holds. ## 4. Hyper BCK-algebras induced by a deterministic finite automaton **Theorem 4.1.** Let (S, M, s_0, F, t) be a deterministic finite automata. We define the following hyper operation on \overline{S} : $$\forall \ (\overline{s_1}, \overline{s_2}) \in \overline{S}^2, \ \overline{s_1}o \ \overline{s_2} = \left\{ \begin{array}{ll} \overline{s_1} \ , & \text{if} \quad \overline{s_1} \neq \ \overline{s_2}, \ \overline{s_2} \neq \overline{s_0} \neq \overline{s_1} \\ \\ \{\overline{s_0}, \ \overline{s_1}\} \ , & \text{if} \quad \overline{s_1} = \ \overline{s_2} \\ \\ \overline{s_0} \ , & \text{if} \quad \overline{s_1} = \overline{s_0}, \ \overline{s_2} \neq \overline{s_0} \\ \\ \overline{s_1} \ , & \text{if} \quad \overline{s_1} \neq \overline{s_0}, \ \overline{s_2} = \overline{s_0}. \end{array} \right.$$ Then $(\overline{S}, o, \overline{s_0})$ is a hyper BCK-algebra and $\overline{s_0}$ is the zero element of \overline{S} . Proof. First we have to consider the following situations to show that $(\overline{S}, o, \overline{s_0})$ satisfies From First we have to consider the following situations to show that (S, o, s_0) satisfies (HK1) and (HK2). (i) Let $\overline{s_1}, \overline{s_2}, \overline{s_3} \neq \overline{s_0}$ and $\overline{s_3} \neq \overline{s_2} \neq \overline{s_1} \neq \overline{s_3}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_1} \ o \ \overline{s_2}$. Since $\overline{s} \ o \ \overline{s} = \{\overline{s_0}, \ \overline{s}\}$ we obtain that $\overline{s} \ll \overline{s}$ for any $\overline{s} \in \overline{S}$. So $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case (HK1) holds. Also $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_1} \ o \ \overline{s_3} = \overline{s_1} \ and \ (\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_1} \ o \ \overline{s_2} = \overline{s_1}$. Thus in this case (HK2) holds. (ii) Let $\overline{s_1}, \overline{s_2}, \overline{s_3} \neq \overline{s_0}$ and $\overline{s_1} = \overline{s_2} \neq \overline{s_3}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_1} \ o \ \overline{s_2}$. So $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case (HK1) holds. On the other hand, $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \{\overline{s_0}, \ \overline{s_1}\} \ o \ \overline{s_3} = \{\overline{s_0}, \ \overline{s_1}\}$ and $(\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_1} \ o \ \overline{s_2} = \{\overline{s_0}, \ \overline{s_1}\}$. Therefore in this case (HK2) holds. (iii) Let $\overline{s_1}, \overline{s_2}, \overline{s_3} \neq \overline{s_0}$ and $\overline{s_1} = \overline{s_3} \neq \overline{s_2}$. Then
$(\overline{s_1} \ o \ \overline{s_3})$ $o \ (\overline{s_2} \ o \ \overline{s_3}) = \{\overline{s_0}, \ \overline{s_1}\}$ $o \ \overline{s_2} = \{\overline{s_0}, \ \overline{s_1}\}$ and $\overline{s_1} \ o \ \overline{s_2} = \overline{s_1}$. Since $\overline{s_0} \ o \ \overline{s_1} = \overline{s_0}$ we obtain that $\overline{s_0} \ll \overline{s_1}$ and also we know that $\overline{s_1} \ll \overline{s_1}$. Hence, $(\overline{s_1} \ o \ \overline{s_3})$ $o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case (HK1) holds. Also $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_1} \ o \ \overline{s_3} = \{\overline{s_0}, \ \overline{s_1}\}$ and $(\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \{\overline{s_0}, \ \overline{s_1}\}$ o $\overline{s_2} = \{\overline{s_0}, \ \overline{s_1}\}$. So in this case (HK2) holds. (iv) Let $\overline{s_1}, \overline{s_2}, \overline{s_3} \neq \overline{s_0}$ and $\overline{s_2} = \overline{s_3} \neq \overline{s_1}$. Then $(\overline{s_1} \ o \ \overline{s_3})$ $o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_1} \ o \ \{\overline{s_0}, \ \overline{s_2}\} = \overline{s_1} \ \text{and} \ \overline{s_1} \ o \ \overline{s_2} = \overline{s_1}$. Thus $(\overline{s_1} \ o \ \overline{s_3})$ $o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case (HK1) holds. On the other hand, $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_1} \ o \ \overline{s_3} = \overline{s_1} \ and (\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_1} \ o \ \overline{s_2} = \overline{s_1}$. Therefore in this case (HK2) holds. (v) Let $\overline{s_1} = \overline{s_2} = \overline{s_3}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \{\overline{s_0}, \ \overline{s_1}\} \ o \ \{\overline{s_0}, \ \overline{s_1}\} = \{\overline{s_0}, \ \overline{s_1}\} \text{ and } \overline{s_1} \ o \ \overline{s_2} = \{\overline{s_0}, \ \overline{s_1}\} \text{. So } (\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2} \text{ and in this } \operatorname{case}(\overline{S}, \ o, \ \overline{s_0}) \text{ satisfies (HK1).}$ Also $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = (\overline{s_1} \ o \ \overline{s_1}) \ o \ \overline{s_1} = (\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2}$. Hence, in this case $(\overline{S}, \ o, \ \overline{s_0})$ satisfies (HK2). (vi) Let $\overline{s_2}, \overline{s_3} \neq \overline{s_0}$, $\overline{s_1} = \overline{s_0}$ and $\overline{s_2} \neq \overline{s_3}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_0} \ o \ \overline{s_2} = \overline{s_0} \ o \ \overline{s_2} = \overline{s_0} \ o \ \overline{s_2} = \overline{s_0}$. Thus $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2} = \overline{s_0}$ and in this case (HK1) holds. On the other hand, $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_0} \ o \ \overline{s_3} = \overline{s_0} \ and (\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_0} \ o \ \overline{s_2} = \overline{s_0}$. So in this case (HK2) holds. (vii) Let $\overline{s_2}, \overline{s_3} \neq \overline{s_0}$, $\overline{s_1} = \overline{s_0}$ and $\overline{s_2} = \overline{s_3}$. Then $(\overline{s_1} \ o \ \overline{s_3})$ $o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_0} \ o \ (\overline{s_0}, \ \overline{s_2}) = \overline{s_0} \ o \ \overline{s_2} = \overline{s_0} \ o \ \overline{s_2} = \overline{s_0}$. Therefore $(\overline{s_1} \ o \ \overline{s_3})$ $o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case $(\overline{S}, \ o, \ \overline{s_0})$ satisfies (HK1). Also $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_0} \ o \ \overline{s_3} = \overline{s_0}$ and $(\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_0} \ o \ \overline{s_2} = \overline{s_0}$. So in this case $(\overline{S}, \ o, \ \overline{s_0})$ satisfies (HK2). (viii) Let $\overline{s_1}, \overline{s_3} \neq \overline{s_0}$, $\overline{s_2} = \overline{s_0}$ and $\overline{s_1} \neq \overline{s_3}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_1} \ o \ \overline{s_0} = \overline{s_1}$ and $\overline{s_1} \ o \ \overline{s_2} = \overline{s_1} \ o \ \overline{s_0} = \overline{s_1}$. Hence, $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case (HK1) holds. On the other hand, $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_1} \ o \ \overline{s_3} = \overline{s_1} \ and (\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_1} \ o \ \overline{s_0} = \overline{s_1}$. Thus in this case (HK2) holds. (ix) Let $\overline{s_1}, \overline{s_3} \neq \overline{s_0}$, $\overline{s_2} = \overline{s_0}$ and $\overline{s_1} = \overline{s_3}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \{\overline{s_0}, \ \overline{s_1}\}$ o $\overline{s_0} = \{\overline{s_0}, \ \overline{s_1}\}$ and $\overline{s_1} \ o \ \overline{s_2} = \overline{s_1} \ o \ \overline{s_0} = \overline{s_1}$. Since $\overline{s_0} \ll \overline{s_1}$ and $\overline{s_1} \ll \overline{s_1}$ we obtain that $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case $(\overline{S}, \ o, \ \overline{s_0})$ satisfies (HK1). Also $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_1} \ o \ \overline{s_3} = \{\overline{s_0}, \ \overline{s_1}\}$ and $(\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \{\overline{s_0}, \ \overline{s_1}\} \ o \ \overline{s_0} = \{\overline{s_0}, \ \overline{s_1}\}$. Hence, in this case $(\overline{S}, \ o, \ \overline{s_0})$ satisfies (HK2). (x) Let $\overline{s_1}$, $\overline{s_2} \neq \overline{s_0}$, $\overline{s_3} = \overline{s_0}$ and $\overline{s_1} \neq \overline{s_2}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_1} \ o \ \overline{s_2} = \overline{s_1}$ and $\overline{s_1} \ o \ \overline{s_2} = \overline{s_1}$. Therefore $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case (HK1) holds. On the other hand, $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_1} \ o \ \overline{s_0} = \overline{s_1}$ and $(\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_1} \ o \ \overline{s_2} = \overline{s_1}$. So in this case (HK2) holds. (xi) Let $\overline{s_1}, \overline{s_2} \neq \overline{s_0}$, $\overline{s_3} = \overline{s_0}$ and $\overline{s_1} = \overline{s_2}$. Then $(\overline{s_1} \ o \ \overline{s_3})$ o $(\overline{s_2} \ o \ \overline{s_3}) = \overline{s_1} \ o \ \overline{s_2} = \{\overline{s_0}, \ \overline{s_1}\}$ and $\overline{s_1} \ o \ \overline{s_2} = \{\overline{s_0}, \ \overline{s_1}\}$. Since $\overline{s_0} \ll \overline{s_0}$ and $\overline{s_1} \ll \overline{s_1}$ we get that $(\overline{s_1} \ o \ \overline{s_3})$ o $(\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case $(\overline{S}, \ o, \ \overline{s_0})$ satisfies (HK1). Also $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \{\overline{s_0}, \ \overline{s_1}\} \ o \ \overline{s_0} = \{\overline{s_0}, \ \overline{s_1}\}$ and $(\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_1} \ o \ \overline{s_2} = \{\overline{s_0}, \ \overline{s_1}\}$. Thus in this case $(\overline{S}, \ o, \ \overline{s_0})$ satisfies (HK2). (xii) Let $\overline{s_1} = \overline{s_2} = \overline{s_0}$ and $\overline{s_3} \neq \overline{s_0}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_0} \ o \ \overline{s_0} = \overline{s_0}$ and $\overline{s_1} \ o \ \overline{s_2} = \overline{s_0}$. Therefore $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case (HK1) holds. On the other hand, $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_0} \ o \ \overline{s_3} = \overline{s_0} \ and (\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_0} \ o \ \overline{s_0} = \overline{s_0}$. Hence, in this case (HK2) holds. (xiii) Let $\overline{s_1} = \overline{s_3} = \overline{s_0}$ and $\overline{s_2} \neq \overline{s_0}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_0} \ o \ \overline{s_2} = \overline{s_0}$ and $\overline{s_1} \ o \ \overline{s_2} = \overline{s_0}$. So $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case $(\overline{S}, \ o, \ \overline{s_0})$ satisfies (HK1). On the other hand, $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_0} \ o \ \overline{s_0} = \overline{s_0} \ and (\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_0} \ o \ \overline{s_2} = \overline{s_0}$. Thus this case $(\overline{S}, \ o, \ \overline{s_0})$ satisfies (HK2). (xiv) Let $\overline{s_2} = \overline{s_3} = \overline{s_0}$ and $\overline{s_1} \neq \overline{s_0}$. Then $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) = \overline{s_1} \ o \ \overline{s_0} = \overline{s_1}$ and $\overline{s_1}
\ o \ \overline{s_2} = \overline{s_1}$. Therefore $(\overline{s_1} \ o \ \overline{s_3}) \ o \ (\overline{s_2} \ o \ \overline{s_3}) \ll \overline{s_1} \ o \ \overline{s_2}$ and in this case (HK1) holds. On the other hand, $(\overline{s_1} \ o \ \overline{s_2}) \ o \ \overline{s_3} = \overline{s_1} \ o \ \overline{s_0} = \overline{s_1}$ and $(\overline{s_1} \ o \ \overline{s_3}) \ o \ \overline{s_2} = \overline{s_1} \ o \ \overline{s_0} = \overline{s_1}$. Hence, in this case (HK2) holds. So we show that $(\overline{S}, o, \overline{s_0})$ satisfies (HK1) and (HK2). Now we should prove that $(\overline{S}, o, \overline{s_0})$ satisfies (HK3). By Theorem 2.11, it is enough to show that $\overline{s_1}$ o $\overline{s_2} \ll \overline{s_1}$ for all $\overline{s_1}$, $\overline{s_2} \in \overline{S}$. By definition of the hyper operation "o" we know that $\overline{s_1}$ o $\overline{s_2}$ is equal to $\overline{s_1}$ or $\{\overline{s_0}, \overline{s_1}\}$ or $\overline{s_0}$ for any $\overline{s_1}$, $\overline{s_2} \in \overline{S}$. Also we know that $\overline{s_1} \ll \overline{s_1}$ and $\overline{s_0} \ll \overline{s_1}$. Hence $(\overline{S}, o, \overline{s_0})$ satisfies (HK3). To prove (HK4), Let $\overline{s_1} \ll \overline{s_2}$ and $\overline{s_2} \ll \overline{s_1}$. If $\overline{s_1} = \overline{s_2}$, then we are done. Otherwise, since $\overline{s_1} \ll \overline{s_2}$, we obtain that $\overline{s_1} = \overline{s_0}$, $\overline{s_2} \neq \overline{s_0}$. So $\overline{s_2}$ o $\overline{s_1} = \overline{s_2}$ o $\overline{s_0} = \overline{s_2}$. Therefore $\overline{s_2} \not \leq \overline{s_1}$, which is a contradiction. **Example 4.2.** Consider the deterministic finite automaton $A = (S, M, s_0, F, t)$ in Example 3.3. Then the structure of the hyper BCK-algebra $(\overline{S}, o, \overline{s_0})$ induced on \overline{S} according to Theorem 4.1 is as follows: Table 2. | 0 | $\overline{q_0}$ | $\overline{q_1}$ | $\overline{q_3}$ | |------------------|------------------|-------------------------------------|-------------------------------------| | $\overline{q_0}$ | $\overline{q_0}$ | $\overline{q_0}$ | $\overline{q_0}$ | | $\overline{q_1}$ | $\overline{q_1}$ | $\{\overline{q_0},\overline{q_1}\}$ | $\overline{q_1}$ | | $\overline{q_3}$ | $\overline{q_3}$ | $\overline{q_3}$ | $\{\overline{q_0},\overline{q_3}\}$ | **Theorem 4.3.** Let $(\overline{S}, o, \overline{s_0})$ be the hyper BCK-algebra, which is defined in Theorem 4.1. Then $(\overline{S}, o, \overline{s_0})$ is a strong normal hyper BCK-algebra. Proof. By definition of the hyper operation "o", we obtain that $\overline{a} \in \overline{a}$ o \overline{t} , for any \overline{a} and \overline{t} in \overline{S} . So we have: $${}_{l}\overline{a}=\left\{\overline{t}\in\overline{S}\ \middle|\ \overline{a}\in\overline{a}\ o\ \overline{t}\right\}=\overline{S},\ \overline{a}_{r}=\left\{\overline{t}\in\overline{S}\ \middle|\ \overline{t}\in\overline{t}\ o\ \overline{a}\right\}=\overline{S},\ \forall\ \overline{a}\in\overline{S}.$$ It is clear that \overline{S} is a strong hyper BCK-ideal. So $(\overline{S}, o, \overline{s_0})$ is a strong normal hyper BCK-algebra. **Theorem 4.4.** Let $(\overline{S}, o, \overline{s_0})$ be the hyper BCK-algebra, which is defined in Theorem 4.1. Then $(\overline{S}, o, \overline{s_0})$ is a simple hyper BCK-algebra. Proof. Let $\overline{s_1} \neq \overline{s_2}$ and $\overline{s_1}, \overline{s_2} \neq \overline{s_0}$. Then $\overline{s_1}o$ $\overline{s_2} = \overline{s_1}$ and $\overline{s_2}o$ $\overline{s_1} = \overline{s_2}$. Hence, $\overline{s_1} \nleq \overline{s_2}$ and $\overline{s_2} \nleq \overline{s_1}$. So $(\overline{S}, o, \overline{s_0})$ is a simple hyper BCK-algebra. **Theorem 4.5.** Let $(\overline{S}, o, \overline{s_0})$ be the hyper BCK-algebra, which is defined in Theorem 4.1. Then $(\overline{S}, o, \overline{s_0})$ is an implicative hyper BCK-algebra. Proof. Since $\overline{s_1} \in \overline{s_1}$ o $\overline{s_2}$ and $\overline{s_1}$ o $\overline{s_2} \neq \emptyset$ for all $\overline{s_1}$, $\overline{s_2} \in \overline{S}$, we obtain that $\overline{s_1} \in \overline{s_1}$ o($\overline{s_2}$ o $\overline{s_1}$). So $\overline{s_1} \ll \overline{s_1}$ o($\overline{s_2}$ o $\overline{s_1}$) and (\overline{S} , o, $\overline{s_0}$) is an implicative hyper BCK-algebra. **Definition 4.6.** A deterministic finite automaton (S, M, s_0, F, t) is called semi continuous if for all distinct elements $s, s' \in S$, the following implication holds: If $\exists x \in M^*$, such that $s' = t^*(s, x) \Rightarrow \nexists x' \in M^*$, such that $s = t^*(s', x')$. **Theorem 4.7.** Let (S, M, s_0, F, t) be a semi continuous deterministic finite automata. We define the following hyper operation on S: $$\forall \; (s_1,s_2) \in \boldsymbol{S}^2, \; \; s_1os_2 = \left\{ \begin{array}{ll} \{s_1,s_0\}, & \text{if} \; \; s_2 \; \text{is connected to} \; s_1 \; , \quad s_1,s_2 \neq s_0 \; \text{and} \; \; s_1 \neq s_2 \\ s_1, & \text{if} \; \; s_2 \; \text{is not connected to} \; s_1 \; , \quad s_1,s_2 \neq s_0 \; \text{and} \; \; s_1 \neq s_2 \\ s_0, & \text{if} \; s_1 = s_2 \\ s_0, & \text{if} \; s_1 = s_0 \; , \quad s_2 \neq s_0 \\ s_1, & \text{if} \; s_2 = s_0 \; , \quad s_1 \neq s_0. \end{array} \right.$$ Then (S, o, s_0) is a hyper BCK-algebra and s_0 is the zero element of S. Proof. First we consider the following situations to prove (HK1) and (HK2). (i) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is connected to s_1 , s_3 is connected to s_1 and s_3 is connected to s_2 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = \{s_1, s_0\} \ o \ \{s_2, s_0\} = \{s_1, s_0\}$ and $s_1 \ o \ s_2 = \{s_1, s_0\}$. Since $s_1 \ o \ s_1 = s_0$ and $s_0 \ o \ s_1 = s_0$, we obtain that $s_1 \ll s_1$ and $s_0 \ll s_1$. So in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = \{s_1, s_0\} \ o \ s_3 = \{s_1, s_0\}$ and $(s_1 \ o \ s_3) \ o \ s_2 = \{s_1, s_0\} \ o \ s_2 = \{s_1, s_0\}.$ Thus in this case (HK2) holds. (ii) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is not connected to s_1 , s_3 is connected to s_1 and s_3 is connected to s_2 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = \{s_1, s_0\} \ o \ \{s_2, s_0\} = \{s_1, s_0\}$ and $s_1 \ o \ s_2 = s_1$. Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we conclude that in this case (HK1) holds. Also $(s_1 \ o \ s_2) \ o \ s_3 = \{s_1\} \ o \ s_3 = \{s_1, s_0\}$ and $(s_1 \ o \ s_3) \ o \ s_2 = \{s_1, s_0\} \ o \ s_2 = \{s_1, s_0\}$. Therefore in this case (HK2) holds. (iii) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is connected to s_1 , s_3 is not connected to s_1 and s_3 is connected to s_2 . Since s_2 is connected to s_1 and s_3 is connected to s_2 , we get that s_3 is connected to s_1 . So this case does not happen. (iv) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is connected to s_1 , s_3 is connected to s_1 and s_3 is not connected to s_2 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = \{s_1, s_0\} \ o \ s_2 = \{s_1, s_0\} \text{ and } s_1 \ o \ s_2 = \{s_1, s_0\}.$ Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we obtain that in this case (HK1) holds. Also $(s_1 \ o \ s_2) \ o \ s_3 = \{s_1, s_0\} \ o \ s_3 = \{s_1, s_0\} \ and \ (s_1 \ o \ s_3) \ o \ s_2 = \{s_1, s_0\} \ o \ s_2 = \{s_1, s_0\}.$ Hence, in this case (HK2) holds. (v) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is not connected to s_1 , s_3 is not connected to s_1 and s_3 is connected to s_2 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_1 \ o \ \{s_2, s_0\} = s_1$ and $s_1 \ o \ s_2 = s_1$. Since $s_1 \ll s_1$ we conclude that in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = s_1 \ o \ s_3 = s_1$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_1 o \ s_2 = s_1$. Thus in this case (HK2) holds. (vi) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is not connected to s_1 , s_3 is connected to s_1 and s_3 is not connected to s_2 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = \{s_1, s_0\} \ o \ s_2 = \{s_1, s_0\} \text{ and } s_1 \ o \ s_2 = s_1$. Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we get that in this case (HK1) holds. Also $(s_1 \ o \ s_2) \ o \ s_3 = s_1 \ o \ s_3 = \{s_1, s_0\}$ and $(s_1 \ o \ s_3) \ o \ s_2 = \{s_1, s_0\}$ o $s_2 = \{s_1, s_0\}$. So in this case (HK2) holds. (vii) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is connected to s_1 , s_3 is not connected to s_1 and s_3 is not connected to s_2 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_1 \ o \ s_2 = \{s_1, s_0\}$ and $s_1 \ o \ s_2 = \{s_1, s_0\}$. Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we obtain that in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = \{s_1, s_0\} \ o \ s_3 = \{s_1, s_0\}$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_1 o \ s_2 = \{s_1, s_0\}$. Therefore in this case (HK2) holds. (viii) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is not connected to s_1 , s_3 is not connected to s_1 and s_3 is not connected to s_2 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_1 \ o \ s_2 = s_1$ and $s_1 \ o \ s_2 = s_1$. Since $s_1 \ll s_1$ we conclude that in this case (HK1) holds. Also $(s_1 \ o \ s_2)$ o $s_3=s_1 \ o \ s_3=s_1$ and $(s_1 \ o \ s_3)$ o $s_2=s_1 o \ s_2=s_1$. Hence, in this case (HK2) holds. (ix) Let $s_1, s_2, s_3 \neq s_0$, $s_1 = s_2 \neq s_3$ and s_3 is connected to s_1 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = \{s_1, s_0\} \ o \ \{s_2, s_0\}$ $= s_0$ and s_1 o $s_2 = s_0$. Since $s_0 \ll s_0$ we get that in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = s_0 \ o \ s_3 = s_0$ and $(s_1 \ o \ s_3) \ o \ s_2 = \{s_1, s_0\} \ o \ s_1 = s_0$. Thus
in this case (HK2) holds. (x) Let $s_1, s_2, s_3 \neq s_0$, $s_1 = s_2 \neq s_3$ and s_3 is not connected to s_1 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_1 \ o \ s_2 = s_0$ and $s_1 \ o \ s_2 = s_0$. Since $s_0 \ll s_0$ we obtain that in this case (HK1) holds. Also $(s_1 \ o \ s_2)$ o $s_3 = s_0$ o $s_3 = s_0$ and $(s_1 \ o \ s_3)$ o $s_2 = s_1 o \ s_1 = s_0$. So in this case (HK2) holds. (xi) Let $s_1, s_2, s_3 \neq s_0$, $s_1 = s_3 \neq s_2$ and s_3 is connected to s_2 . By definition of semi continuous automaton we know that when s_3 is connected to s_2 then s_2 is not connected to s_3 or s_1 . So $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_0 \ o \ \{s_2, s_0\} = s_0$ and $s_1 \ o \ s_2 = s_1$. Since $s_0 \ll s_1$ we conclude that in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = s_1 \ o \ s_1 = s_0$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_0 o \ s_2 = s_0$. Hence, in this case (HK2) holds. (xii) Let $s_1,s_2,s_3\neq s_0,\ s_1=s_3\neq s_2,\ s_3$ is not connected to s_2 and s_2 is connected to s_3 . Then we have $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_0 \ o \ s_2 = s_0 \ \text{and} \ s_1 \ o \ s_2 = \{s_1, s_0\}$. Since $s_0 \ll s_1$ we get that in this case (HK1) holds. Also $(s_1 \ o \ s_2) \ o \ s_3 = \{s_1, s_0\} \ o \ s_1 = s_0 \text{ and } (s_1 \ o \ s_3) \ o \ s_2 = s_0 o \ s_2 = s_0.$ Therefore in this case (HK2) holds. (xiii) Let $s_1, s_2, s_3 \neq s_0$, $s_1 = s_3 \neq s_2$, s_3 is not connected to s_2 and s_2 is not connected to s_3 . Then we have $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_0 \ o \ s_2 = s_0$ and $s_1 \ o \ s_2 = s_1$. Since $s_0 \ll s_1$ we obtain that in this case (HK1) holds. Also $(s_1 \ o \ s_2)$ o $s_3=s_1 \ o \ s_1=s_0$ and $(s_1 \ o \ s_3)$ o $s_2=s_0 o \ s_2=s_0$. Thus in this case (HK2) holds. (xiv) Let $s_1, s_2, s_3 \neq s_0$, $s_1 \neq s_2 = s_3$ and s_3 is connected to s_1 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = \{s_1, s_0\} \ o \ s_0 = \{s_1, s_0\}$ and $s_1 \ o \ s_2 = \{s_1, s_0\}$. Since $s_1 \ll s_1$ and $s_0 \ll s_0$ we conclude that in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = \{s_1, s_0\} \ o \ s_3 = \{s_1, s_0\}$ and $(s_1 \ o \ s_3) \ o \ s_2 = \{s_1, s_0\} \ o \ s_2 = \{s_1, s_0\}$. So in this case (HK2) holds. (xv) Let $s_1, s_2, s_3 \neq s_0$, $s_1 \neq s_2 = s_3$ and s_3 is not connected to s_1 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_1$. Since $s_1 \ll s_1$ we get that in this case (HK1) holds. Also $(s_1 \ o \ s_2) \ o \ s_3 = s_1 \ o \ s_3 = s_1$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_1 o \ s_2 = s_1$. Hence, in this case (HK2) holds. (xvi) Let $s_1 = s_2 = s_3$. Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_0 \ o \ s_0 = s_0$ and $s_1 \ o \ s_2 = s_0$. Since $s_0 \ll s_0$ we obtain that in this case (HK1) holds. Also $(s_1 \ o \ s_2)$ $o \ s_3 = s_0 \ o \ s_3 = s_0$ and $(s_1 \ o \ s_3)$ $o \ s_2 = s_0 o \ s_2 = s_0$. Therefore in this case (HK2) holds. (xvii) Let $s_1 = s_0$. Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_0 \ o \ (s_2 \ o \ s_3) = s_0$ and $s_1 \ o \ s_2 = s_0$. Since $s_0 \ll s_0$ we conclude that in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = s_0 \ o \ s_3 = s_0$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_0 o \ s_2 = s_0$. Thus in this case (HK2) holds. (xviii) Let $s_2=s_0, s_3\neq s_1, s_1\neq s_0\neq s_3$ and s_3 is connected to s_1 . Then $(s_1\ o\ s_3)\ o\ (s_2\ o\ s_3)=\{s_1,s_0\}\ o\ s_0$ = $\{s_1, s_0\}$ and s_1 o $s_2 = s_1$. Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we get that in this case (HK1) holds. Also $(s_1 \ o \ s_2) \ o \ s_3 = s_1 \ o \ s_3 = \{s_1, s_0\}$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_1 o \ s_3 = \{s_1, s_0\}$. So in this case (HK2) holds. (xix) Let $s_2 = s_0$, $s_3 \neq s_1$, $s_1 \neq s_0 \neq s_3$ and s_3 is not connected to s_1 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_1$. Since $s_1 \ll s_1$ we obtain that in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = s_1 \ o \ s_3 = s_1$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_1 o \ s_2 = s_1$. Hence, in this case (HK2) holds. (xx) Let $s_2 = s_0$, $s_3 = s_1$ and $s_1 \neq s_0 \neq s_3$. Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_0 \circ s_0 = s_0$ and $s_1 \circ s_2 = s_1$. Since $s_0 \ll s_1$ we conclude that in this case (HK1) holds. Also $(s_1 \ o \ s_2) \ o \ s_3 = s_1 \ o \ s_3 = s_0$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_0 o \ s_0 = s_0$. Therefore in this case (HK2) holds. (xxi) Let $s_3 = s_0$, $s_2 \neq s_1$, $s_1 \neq s_0 \neq s_2$ and s_2 is connected to s_1 . Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_1 \ o \ s_2 = \{s_1, s_0\}$ and $s_1 \ o \ s_2 = \{s_1, s_0\}$. Since $s_1 \ll s_1$ and $s_0 \ll s_0$, we get that in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = \{s_1, s_0\} \ o \ s_3 = \{s_1, s_0\}$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_1 o \ s_2 = \{s_1, s_0\}$. So in this case (HK2) holds. (xxii) Let $s_3=s_0$, $s_2\neq s_1$, $s_1\neq s_0\neq s_2$ and s_2 is not connected to s_1 . Then $(s_1\ o\ s_3)\ o\ (s_2\ o\ s_3)=s_1\ o\ s_2=s_1$ and $s_1\ o\ s_2=s_1$. Since $s_1\ll s_1$ we obtain that in this case (HK1) holds. Also $(s_1 \ o \ s_2)$ o $s_3 = s_1$ o $s_3 = s_1$ and $(s_1 \ o \ s_3)$ o $s_2 = s_1 o \ s_2 = s_1$. Hence, in this case (HK2) holds. (xxiii) Let $s_3 = s_0$, $s_2 = s_1$ and $s_1 \neq s_0 \neq s_2$. Then $(s_1 \ o \ s_3) \ o \ (s_2 \ o \ s_3) = s_1 \ o \ s_2 = s_0$ and $s_1 \ o \ s_2 = s_0$. Since $s_0 \ll s_0$ we conclude that in this case (HK1) holds. On the other hand, $(s_1 \ o \ s_2) \ o \ s_3 = s_0 \ o \ s_0 = s_0$ and $(s_1 \ o \ s_3) \ o \ s_2 = s_1 o \ s_2 = s_0$. Therefore in this case (HK2) holds. (xxiv) Let $s_2 = s_3 = s_0$ and $s_1 \neq s_0$. Then $(s_1 \ o \ s_3) \ o (s_2 \ o \ s_3) = s_1 \ o \ s_0 = s_1$ and $s_1 \ o \ s_2 = s_1$. Since $s_1 \ll s_1$ we get that in this case (HK1) holds. Also $(s_1 \ o \ s_2)$ $o \ s_3 = s_1 \ o \ s_0 = s_1$ and $(s_1 \ o \ s_3)$ $o \ s_2 = s_1 o \ s_0 = s_1$. Thus in this case (HK2) holds. So we obtain that (S, o, s_0) satisfies (HK1)and (HK2). Now we should prove that (S, o, s_0) satisfies (HK3). By Theorem 2.11, it is enough to show that $s_1o s_2 \ll \{s_1\}$ for all $s_1, s_2 \in S$. By definition of the hyper operation "o" we know that $s_1o s_2$ is equal to s_1 or $\{s_1, s_0\}$ or s_0 for any $s_1, s_2 \in S$. Also we know that $s_1 \ll s_1$ and $s_0 \ll s_1$. Hence (S, o, s_0) satisfies (HK3). To prove (HK4), Let $s_1 \ll s_2$ and $s_2 \ll s_1$. If $s_1 = s_2$, then we are done. Otherwise, since $s_1 \ll s_2$, there exist two cases: - (i) s_2 is connected to s_1 , $s_1, s_2 \neq s_0$ and $s_1 \neq s_2$. Then by definition of semi continuous automaton we know that s_2 is not connected to s_1 and we have s_2o $s_1 = s_2$. Therefore $s_2 \nleq s_1$, which is a contradiction. - (ii) $s_1 = s_0$, $s_2 \neq s_0$. Then $s_2 \circ s_1 = s_2 \circ s_0 = s_2$. Thus $s_2 \nleq s_1$, which is a contradiction. So we show that (S, o, s_0) is a hyper BCK-algebra. **Theorem 4.8.** Let (S, o, s_0) be a hyper BCK-algebra which is defined in Theorem 4.7. Then (S, o, s_0) is a weak normal hyper BCK-algebra. Proof. By definition of the hyper operation "o", we know that $a_r = \{t \in S \mid t \in t \text{ o } a\} = S - \{a\}$ for all $a \neq s_0$ and $a \in S$. Also $a_r = S$ for $a = s_0$. It is clear that S is a weak hyper BCK-ideal. So it is enough to show that $S - \{s\}$ for all $s \neq s_0$ and $s \in S$, is a weak hyper BCK-ideal. It is easy to see that $s_0 \in S - \{s\}$. Let s_1 o $s_2 \subseteq S - \{s\}$ and $s_2 \in S - \{s\}$. Then we have to consider the following situations: (1) s_2 is connected to s_1 , $s_1, s_2 \neq s_0$ and $s_1 \neq s_2$. Since $s_1 \circ s_2 = \{s_1, s_0\}$ and $s_1 \circ s_2 \subseteq S - \{s\}$, we obtain that $s_1 \in S - \{s\}$. (2) s_2 is not connected to s_1 , $s_1, s_2 \neq s_0$ and $s_1 \neq s_2$. $Since s_1o\ s_2 = s_1 \text{ and } s_1\ o\ s_2\ \subseteq S - \{s\}\,,\ \text{we get that } s_1 \in S - \{s\}\,.$ (3) $s_1 = s_2$. Since $s_2 \in S - \{s\}$, it is clear that $s_1 \in S - \{s\}$. $(4) s_1 = s_0 , \quad s_2 \neq s_0.$ Since $s_1 \circ s_2 = s_0$ and $s_0 \in S - \{s\}$, we obtain that $s_1 \in S - \{s\}$. (5) $s_2 = s_0$, $s_1 \neq s_0$. Since $s_1 \circ s_2 = s_1$ and $s_1 \circ s_2 \subseteq S - \{s\}$, we conclude that $s_1 \in S - \{s\}$. So (S, o, s_0) is a weak normal hyper BCK-algebra. **Example 4.9.** Consider the deterministic finite automaton $A = (S, M, s_0, F, t)$ in Example 3.3. Then the structure of the hyper BCK-algebra (S, o, s_0) induced on the states of this automaton according to Theorem 4.7 is as follows: Table 3. | О | q_0 | q_1 | q_2 | q_3 | |-------|-------|-------|---------------|---------------| | q_0 | q_0 | q_0 | q_0 | q_0 | | q_1 | q_1 | q_0 | $\{q_0,q_1\}$ | $\{q_0,q_1\}$ | | q_2 | q_2 | q_2 | q_0 | $\{q_0,q_2\}$ | | q_3 | q_3 | q_3 | q_3 | q_0 | Thus (S, o, s_0) is a hyper BCK-algebra. **Remark 4.10.** Let (S, o, s_0) be the hyper *BCK*-algebra which is defined in Theorem 4.7. In example 4.9, we saw that $q_0 \in q_1 o \ q_3$ and $q_0 \notin q_3 o \ q_1$. So $q_1 \ll q_3$ and $q_3 \nleq q_1$. Hence, (S, o, s_0) may not be simple. **Acknowledgement.** We are grateful to the referees for their valuable suggestions, which have improved this paper. ### REFERENCES A. Borumand Saeid, M. M. Zahedi, "Quotient hyper BCK-algebras", Quasigroups and Related Systems, 12 (2004), 93-102. - [2] A. Borumand Saeid, "Topics in hyper K-algebras", Ph.D. Thesis, Islamic Azad University, Science and Research Branch of Kerman, 2004. - [3] P. Corsini, "Prolegomena of hypergroup theory", Aviani Edittore, Italy, 1993. - [4] P. Corsini, V. Leoreanu, "Applications of hyperstructure
theory", Advances in Mathematics, Vol. 5, Kluwer Academic Publishers, 2003. - [5] J. E. Hopcroft, R. Motwani, J. D. Ullman, "Introduction to automata theory, languages and computation", seconded, Addision –wesley, Reading, MA, 2001. - [6] Y. Imai, K. Iseki, "On axiom systems of propositional calculi", XIV Proc. Japan Academy, 42 (1966), 19-22. - [7] Y. B. Jun, X. L. Xin, E. H. Roh, M. M. Zahedi, "Strong hyper BCK-ideals of hyper BCK-algebras", Math. Japon, 51, no. 3 (2000), 493-498. - [8] Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei," On hyper BCK-algebras", Italian Journal of Pure and Applied Mathematics, 8 (2000), 127-136. - [9] F. Marty, "Sur une generalization de la notion de groups", 8th Congress Math. Scandinaves, Stockholm, (1934), 45-49. - $[10]\,$ J. Meng, Y.B. Jun, " BCK-algebra ", Kyung Moonsa, Seoul, 1994. - [11] T. Roodbari, " *Positive implicative and commutative hyper K-ideals*", Ph.D. Thesis, Shahid Bahonar University of Kerman, Dept. of Mathematics, 2008. - [12] L. Torkzadeh, T. Roodbari, M. M. Zahedi, "Hyper stabilizers and normal hyper BCK-algebras", Set Valued Mathematics and Applications, to appear.