Iranian Journal of Mathematical Sciences and Informatics Vol. 4, No. 1 (2009), pp. 79-98

*BCK***-Algebras and Hyper** *BCK***-Algebras Induced by a Deterministic Finite Automaton**

M. Golmohammadian and M. M. Zahedi[∗]

Department of Mathematics, Tarbiat Modares University, Tehran, Iran

E-mail: golmohamadian@modares.ac.ir E-mail: zahedi mm@ modares.ac.ir

ABSTRACT. In this note first we define a BCK -algebra on the states of a deterministic finite automaton. Then we show that it is a *BCK* -algebra with condition (S) and also it is a positive implicative *BCK* -algebra. Then we find some quotient *BCK* -algebras of it. After that we introduce a hyper *BCK* -algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite automaton and we prove that this hyper *BCK* -algebra is simple, strong normal and implicative. Finally we define a semi continuous deterministic finite automaton. Then we introduce a hyper *BCK-*algebra *S* on the states of this automaton and we show that *S* is a weak normal hyper *BCK-*algebra.

Keywords: Deterministic finite automaton, *BCK*-algebra , hyper *BCK*-algebra, quotient *BCK*-algebra.

2000 Mathematics subject classification: 03B47, 18B20, 03D05, 06F35.

1. INTRODUCTION

The hyper algebraic structure theory was introduced by F. Marty [9] in 1934. Imai and Iseki [6] in 1966 introduced the notion of *BCK*-algebra. Meng and

[∗]Corresponding Author

Received 17 September 2009; Accepted 10 October 2009 c 2009 Academic Center for Education, Culture and Research TMU

⁷⁹

Jun [10] defined the quotient hyper *BCK*-algebras in 1994. Torkzadeh, Roodbari and Zahedi [12] introduced the hyper stabilizers and normal hyper *BCK*algebras. Corsini and Leoreanu [4] found some connections between a deterministic finite automaton and the hyper algebraic structure theory. Now in this note first we introduce a *BCK*-algebra on the states of a deterministic finite automaton and we prove some theorems and obtain some related results. Also we define a hyper *BCK*-algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite automaton. Finally we introduce a hyper *BCK-*algebra on the states of a semi continuous deterministic finite automaton.

2. Preliminaries

Definition 2.1. [10] Let *X* be a set with a binary operation " $*$ " and a constant "0". Then $(X, * , 0)$ is called a *BCK*-algebra if it satisfies the following condition:

(i) $((x * y) * (x * z)) * (z * y) = 0$ (ii) $(x * (x * y)) * y = 0$, (iii) $x * x = 0$, $(iv) 0 * x = 0,$ (v) $x * y = 0$ and $y * x = 0$ imply $x = y$. For all $x, y, z \in X$. For brevity we also call *X* a *BCK*-algebra. If in *X* we define a binary relation" \leq " by $x \leq y$ if and only if $x * y = 0$, then $(X, \ast, 0)$ is a *BCK*-algebra if and only if it satisfies the following axioms for all $x, y, z \in X$; (I) $(x * y) * (x * z) \leq z * y$ (II) $x * (x * y) \leq y$, (III) $x \leq x$, (IV) $0 \leq x$, (V) $x \leq y$ and $y \leq x$ imply $x = y$. **Definition 2.2**. [10] Given a *BCK*-algebra $(X, *, 0)$ and given elements a, b of *X*, we define

$$
A(a, b) = \{x \in X | x * a \le b\}.
$$

If for all x, y in X , $A(x, y)$ has a greatest element then the *BCK*-algebra is called to be with condition (*S*).

Definition 2.3. [10] Let $(X, *, 0)$ be a *BCK*-algebra and let *I* be a nonempty subset of *X*. Then *I* is called to be an ideal of *X* if, for all x, y in *X*, $(i) 0 \in I$,

(ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

Theorem 2.4. [10] Let *I* be an ideal of *BCK*-algebra *X*. if we define the relation \sim_I on *X* as follows:

x∼ I *y* if and only if *x* o *y* ∈ *I* and *y* o *x* ∈ *I*.

Then \sim_I is a congruence relation on *H*.

Definition 2.5. [10] Let $(X, *, 0)$ be a *BCK*-algebra, *I* be an ideal of *X* and \sim_I be an equivalence relation on *X*. we denote the equivalence class containing *x* by C_x and we denote X/I by $\{C_x : x \in H\}$. Also we define the operation ∗ : *X/I* × *X/I* → *X/I* as follows:

$$
C_x * C_y \longrightarrow C_{x*y}.
$$

Theorem 2.6. [10] Let *I* be an ideal of *BCK*-algebra *X*. Then $I=C_0$. **Theorem 2.7.** [10] Let $(X, *, 0)$ be a *BCK*-algebra and *I* be an ideal of *X*. Then $(X/I, *, C_0)$ is a *BCK*-algebra.

Definition 2.8. [10] A *BCK*-algebra $(X, *, 0)$ is called positive implicative if it satisfies the following axiom:

$$
(x * z) * (y * z) = (x * y) * z
$$

for all $x, y, z \in X$.

Definition 2.9. [10] A nonempty subset *I* of a *BCK*-algebra *X* is called a varlet ideal of *X* if

(VI1) $x \in I$ and $y \leq x$ imply $y \in I$,

(VI2) $x \in I$ and $y \in I$ imply that there exists $z \in I$ such that $x \leq z$ and $y \leq z$. **Definition 2.10.** [8] Let *H* be a nonempty set and "o" be a hyper operation on *H*, that is "o" is a function from $H \times H$ to $\mathcal{P}^*(H) = \mathcal{P}(H) - \{\emptyset\}$. Then *H* is called a hyper *BCK-*algebra if it contains a constant "0" and satisfies the following axioms:

(HK1) $(x \circ z) \circ (y \circ z) \ll x \circ y$,

(HK2) $(x o y) o z = (x o z) o y$,

(HK3) $x \circ H \ll \{x\},\$

(HK4) $x \ll y, y \ll x \Longrightarrow x = y$.

For all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq$ *H,* $A \ll B$ is defined by $\forall a \in A$, $\exists b \in B$ Such that $a \ll b$.

Theorem 2.11. [2] In a hyper BCK -algebra $(H, o, 0)$, the condition (HK3) is equivalent to the condition:

 $x \circ y \ll \{x\}$ for all $x, y \in H$.

Definition 2.12. [7] Let *I* be a non-empty subset of a hyper *BCK-*algebra *H* and $0 \in I$. Then,

(1) *I* is called a weak hyper *BCK*-ideal of *H* if *x* o $y \subseteq I$ and $y \in I$ imply that $x \in I$ *I*, for all $x, y \in H$.

(2)*I* is called a hyper *BCK*-ideal of *H* if *x* o $y \ll I$ and $y \in I$ imply that $x \in$ *I*, for all $x, y \in H$.

(3) *I* is called a strong hyper *BCK*-ideal of *H* if $(x \circ y) \cap I \neq \emptyset$ and $y \in$ *I* imply that $x \in I$, for all $x, y \in H$.

Theorem 2.13. [7] Any strong hyper *BCK*-ideal of a hyper *BCK*-algebra *H* is a hyper *BCK*-ideal and a weak hyper *BCK*-ideal. Also any hyper *BCK*-ideal of a hyper *BCK*-algebra *H* is a weak hyper *BCK*-ideal.

Definition 2.14. [12] Let *H* be a hyper *BCK*-algebra and *A* be a nonempty subset of *H*. Then the sets_l</sub> $A = \{x \in H | a \in a \text{ or } x \forall a \in A\}$ and $A_r =$ ${x \in H \mid x \in x \text{ o } a \; \forall a \in A}$ are called left hyper *BCK*-stabilizer of *A* and right hyper *BCK*-stabilizer of *A*, respectively.

Definition 2.15. [12] A hyper *BCK*-algebra *H* is called:

(i) Weak normal, if a_r is a weak hyper *BCK*-ideal of *H* for any element $a \in H$. (ii) Normal, if a_r is a hyper *BCK*-ideal of *H* for any element $a \in H$.

(iii) Strong normal, if a_r is a strong hyper *BCK*-ideal of *H* for any element $a \in$ *H*.

Definition 2.16. [11] A hyper *BCK-*algebra (*H*, o, 0) is called simple if for all distinct elements $a, b \in H - \{0\}, \quad a \nleq b$ and $b \nleq a$.

Definition 2.17. [2] A hyper *BCK*-algebra $(H, o, 0)$ is called:

(i) Weak positive implicative (resp. positive implicative), if it satisfies the axiom

 $(x \circ z)$ \circ $(y \circ z) \ll ((x \circ y) \circ z)$ (resp. $(x \circ z) \circ (y \circ z) = (x \circ y) \circ z)$

for all $x, y, z \in H$.

(ii) Implicative. if $x \ll x \circ (y \circ x)$, for all $x, y, z \in H$.

Definition 2.18. [5] A deterministic finite automaton consists of:

(i) A finite set of states, often denoted by *S*.

(ii) A finite set of input symbols, often denoted by *M.*

(iii) A transition function that takes as arguments a state and an input symbol and returns a state. The transition function will commonly be denoted by *t*, and in fact $t : S \times M \to S$ is a function.

(iv) A start state, one of the states in S such as s_0 .

(v) A set of final or accepting states *F.* The set *F* is a subset of *S*.

For simplicity of notation we write (S, M, s_0, F, t) for a deterministic finite automaton.

Remark 2.19. [5] Let (S, M, s_0, F, t) be a deterministic finite automaton. A word of *M* is the product of a finite sequence of elements in M , λ is empty word and *M*[∗] is the set of all words on *M.* We define recursively the extended transition function, t^* : $S \times M^* \longrightarrow S$, as follows:

$$
\forall s \in S, \forall a \in M, t^*(s, a) = t(s, a),
$$

$$
\forall s \in S, t^*(s, \lambda) = s,
$$

$$
\forall s \in S, \ \forall x \in M^*, \ \forall a \in M, \ t^*(s, ax) = t^*(t(s, a), x).
$$

Note that the length $\ell(x)$ of a word $x \in M^*$ is the number of its letters. so $\ell(\lambda) = 0$ and $\ell(a_1 a_2) = 2$, where $a_1, a_2 \in M$.

Definition 2.20. [4] The state *s* of $S - \{s_0\}$ will be called connected to the state s_0 of *S* if there exists $x \in M^*$, such that $s = t^* (s_0, x)$.

3. *BCK*-algebras induced by a deterministic finite automaton

In this section we present some relationships between *BCK*-algebras and deterministic finite automata.

Definition 3.1. Let (S, M, s_0, F, t) be a deterministic finite automaton. If $s \in S - \{s_0\}$ is connected to s_0 , then the order of a state *s* is the natural number $l + 1$, where $l = \min \{l(x) | t^*(s_0, x) = s, x \in M^*\}$, and if $s \in$ $S - \{s_0\}$ is not connected to s_0 we suppose that the order of *s* is 1. Also we suppose that the order of s_0 is 0.

We denote the order of a state *s* by *ord s.*

Now, we define the relation \sim on the set of states *S*, as follows:

$$
s_1 \sim s_2 \Leftrightarrow ord \ s_1 = ord \ s_2
$$

It is obvious that this relation is an equivalence relation on *S*.

Note that we denote the equivalence class of *s* by *s*. Also we denote the set of all these classes by \overline{S} .

Theorem 3.2. Let (S, M, s_0, F, t) be a deterministic finite automaton. We define the following operation on *S*:

$$
\forall (s_1, s_2) \in S^2, \ s_1 \circ s_2 = \begin{cases} s_0, & \text{if } \text{ord } s_1 < \text{ord } s_2, \quad s_1, s_2 \neq s_0, \quad s_1 \neq s_2 \\ s_1, & \text{if } \text{ord } s_1 \geq \text{ord } s_2, \quad s_1, s_2 \neq s_0, \quad s_1 \neq s_2 \\ s_0, & \text{if } s_1 = s_0, \quad s_2 \neq s_0 \\ s_1, & \text{if } s_2 = s_0, \quad s_1 \neq s_0 \end{cases}
$$

Then (S, o, s_0) is a *BCK*-algebra and s_0 is the zero element of *S*.

Proof. By definition of the operation 'o', we know that $t \circ t = s_0$ and $s_0 \circ t = s_0$ for all $t \in S$. So (S, o, s_0) satisfies (III) and (IV).

Now we consider the following situations to show that (S, o, s_0) satisfies (I) and (II).

(i) Let $s_1, s_2, s_3 \neq s_0$ and *ord* $s_1 < \text{ord } s_2 < \text{ord } s_3$. Then $(s_1 \text{ o } s_2)$ $\text{o}(s_1 \text{ o } s_3)$ s_0 *o* $s_0 = s_0$ and s_3 *o* $s_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds.

On the other hand, $s_1 \circ (s_1 \circ s_2) = s_1 \circ s_0 = s_1$ and $s_1 \circ s_2 = s_0$. Hence, in this case (II) holds.

(ii) Let $s_1, s_2, s_3 \neq s_0$ and *ord* $s_2 < \text{ord } s_1 < \text{ord } s_3$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) =$ *s*₁ *o s*₀ = *s*₁ and *s*₃ *o s*₂ = *s*₃. Since *s*₁ *o s*₃=*s*₀ we get that $s_1 \le s_3$. Thus in this case (I) holds.

Also s_1 *o* $(s_1 \circ s_2) = s_1 \circ s_1 = s_0$ and $s_0 \circ s_2 = s_0$. Therefore in this case (II) holds.

(iii) Let $s_1, s_2, s_3 \neq s_0$ and *ord* $s_2 < ord\ s_3 < ord\ s_1$. Then $(s_1 \circ s_2) o(s_1 \circ s_3)$ s_1 *o* $s_1 = s_0$ and s_3 *o* $s_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds.

On the other hand, s_1 *o* (s_1 *o* s_2) = s_1 *o* s_1 = s_0 and s_0 *o* s_2 = s_0 . So in this case (II) holds.

 (iv) Let $s_1, s_2, s_3 \neq s_0$ and *ord* $s_1 < ord s_3 < ord s_2$. Then $(s_1 \circ s_2) o(s_1 \circ s_3)$ s_0 *o* $s_0 = s_0$ and s_3 *o* $s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds. Also s_1 *o* $(s_1 \circ s_2) = s_1 \circ s_0 = s_1$ and $s_1 \circ s_2 = s_0$. Hence, in this case (II) holds.

 (v) Let $s_1, s_2, s_3 \neq s_0$ and *ord* $s_3 < ord s_1 < ord s_2$. Then $(s_1 \circ s_2) o(s_1 \circ s_3)$ s_0 *o* $s_1 = s_0$ and s_3 *o* $s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds.

On the other hand, s_1 *o* (s_1 *o* s_2) = s_1 *o* s_0 = s_1 and s_1 *o* s_2 = s_0 . Thus in this case (II) holds.

 (vi) Let $s_1, s_2, s_3 \neq s_0$ and *ord* $s_3 < ord s_2 < ord s_1$. Then $(s_1 \circ s_2) o(s_1 \circ s_3)$ $s_1 \circ s_1 = s_0$ and $s_3 \circ s_2 = s_0$. Since $s_0 \le s_0$ we get that in this case (I) holds. Also s_1 *o* $(s_1 \circ s_2) = s_1 \circ s_1 = s_0$ and $s_0 \circ s_2 = s_0$. So in this case (II) holds. (vii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = \text{ord } s_2 < \text{ord } s_3$ and $s_1 \neq s_2$. Then $(s_1 \circ s_2) o(s_1 \circ s_3) = s_1 \circ s_0 = s_1$ and $s_3 \circ s_2 = s_3$. Since $s_1 \circ s_3 = s_0$ we get that $s_1 \leq s_3$. So in this case (I) holds.

On the other hand, $s_1 \circ (s_1 \circ s_2) = s_1 \circ s_1 = s_0$ and $s_0 \circ s_2 = s_0$. Therefore in this case (II) holds.

(viii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = \text{ord } s_2 > \text{ord } s_3$ and $s_1 \neq s_2$. Then $(s_1 \circ s_2) o(s_1 \circ s_3) = s_1 \circ s_1 = s_0 \text{ and } s_3 \circ s_2 = s_0.$ Since $s_0 \leq s_0$ we get that in this case (I) holds.

Also s_1 *o* $(s_1 \circ s_2) = s_1 \circ s_1 = s_0$ and $s_0 \circ s_2 = s_0$. Hence, in this case (II) holds.

(ix) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = \text{ord } s_3 < \text{ord } s_2$ and $s_1 \neq s_3$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_0 \circ s_1 = s_0$ and $s_3 \circ s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds.

On the other hand, s_1 *o* (s_1 *o* s_2) = s_1 *o* s_0 = s_1 and s_1 *o* s_2 = s_0 . Thus in this case (II) holds.

 (x) $s_1, s_2, s_3 \neq s_0$, ord $s_1 = \text{ord } s_3 > \text{ord } s_2$ and $s_1 \neq s_3$.

Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_1 \circ s_1 = s_0$ and $s_3 \circ s_2 = s_3$. Since $s_0 \leq s_3$ we get that in this case (I) holds.

Also s_1 *o* (s_1 *o* s_2) = s_1 *o* s_1 = s_0 and s_0 *o* s_2 = s_0 . So in this case (II) holds. (xi) Let $s_1, s_2, s_3 \neq s_0$, ord $s_2 = \text{ord } s_3 > \text{ord } s_1$ and $s_2 \neq s_3$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_0 \circ s_0 = s_0$ and $s_3 \circ s_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds.

On the other hand, s_1 *o* (s_1 *o* s_2) = s_1 *o* s_0 = s_1 and s_1 *o* s_2 = s_0 . Therefore in this case (II) holds.

(xii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_2 = \text{ord } s_3 < \text{ord } s_1$ and $s_2 \neq s_3$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_1 \circ s_1 = s_0$ and $s_3 \circ s_2 = s_3$. Since $s_0 \leq s_3$ we get that in this case (I) holds.

Also s_1 *o* $(s_1 \circ s_2) = s_1 \circ s_1 = s_0$ and $s_0 \circ s_2 = s_0$. Hence, in this case (II) holds.

(xiii) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = ord \ s_2 = ord \ s_3$ and $s_1 \neq s_2 \neq s_3 \neq s_1$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_1 \circ s_1 = s_0$ and $s_3 \circ s_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds.

On the other hand, s_1 *o* (s_1 *o* s_2) = s_1 *o* s_1 = s_0 and s_0 *o* s_2 = s_0 . Thus in this case (II) holds.

(xiv) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = \text{ord } s_3$, $s_1 \neq s_3$ and $s_1 = s_2$. Then $(s_1 \circ s_2) o(s_1 \circ s_3) = s_0 \circ s_1 = s_0$ and $s_3 \circ s_2 = s_3$. Since $s_0 \leq s_3$ we get that in this case (I) holds.

Also s_1 *o* $(s_1 \circ s_2) = s_1 \circ s_0 = s_1$ and $s_1 \circ s_2 = s_0$. So in this case (II) holds. (xv) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = \text{ord } s_2$, $s_1 \neq s_2$ and $s_1 = s_3$. Then $(s_1 \circ s_2) o(s_1 \circ s_3) = s_1 \circ s_0 = s_1$ and $s_3 \circ s_2 = s_3$. Since $s_1 \circ s_3 = s_0$ we get that $s_1 \leq s_3$. So in this case (I) holds.

On the other hand, s_1 o (s_1 o s_2) = s_1 o s_1 = s_0 and s_0 o s_2 = s_0 . Therefore in this case (II) holds.

(xvi) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 = \text{ord } s_2$, $s_1 \neq s_2$ and $s_2 = s_3$. Then $(s_1 \circ s_2) o(s_1 \circ s_3) = s_1 \circ s_1 = s_0 \text{ and } s_3 \circ s_2 = s_0.$ Since $s_0 \leq s_0$ we get that in this case (I) holds.

Also s_1 *o* $(s_1$ *o* $s_2) = s_1$ *o* $s_1 = s_0$ and s_0 *o* $s_2 = s_0$. Hence, in this case (II) holds.

 $(xvii)$ Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 < \text{ord } s_3$ and $s_1 = s_2$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) =$ s_0 *o* $s_0 = s_0$ and s_3 *o* $s_2 = s_3$. Since $s_0 \leq s_3$ we obtain that in this case (I) holds.

On the other hand, s_1 *o* (s_1 *o* s_2) = s_1 *o* s_0 = s_1 and s_1 *o* s_2 = s_0 . Thus in this case (II) holds.

 $(xviii)$ Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 > ord s_3$ and $s_1 = s_2$. Then $(s_1 \circ s_2) o(s_1 \circ s_3)$ s_0 *o* $s_1 = s_0$ and s_3 *o* $s_2 = s_0$. Since $s_0 \le s_0$ we get that in this case (I) holds. Also s_1 *o* $(s_1 \circ s_2) = s_1 \circ s_0 = s_1$ and $s_1 \circ s_2 = s_0$. So in this case (II) holds. (xix) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 < \text{ord } s_2$ and $s_1 = s_3$. Then $(s_1 \text{ o } s_2)$ $\text{o } (s_1 \text{ o } s_3)$ s_0 *o* $s_0 = s_0$ and s_3 *o* $s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds.

On the other hand, $s_1 \circ (s_1 \circ s_2) = s_1 \circ s_0 = s_1$ and $s_1 \circ s_2 = s_0$. Therefore in this case (II) holds.

 $(\text{xx}) \text{Let } s_1, s_2, s_3 \neq s_0, \text{ ord } s_1 > \text{ord } s_2 \text{ and } s_1 = s_3. \text{ Then } (s_1 \text{ o } s_2) \text{ o } (s_1 \text{ o } s_3) =$ $s_1 \circ s_0 = s_1$ and $s_3 \circ s_2 = s_3 = s_1$. Since $s_1 \leq s_1$ we get that in this case (I) holds.

Also s_1 *o* $(s_1$ *o* $s_2) = s_1$ *o* $s_1 = s_0$ and s_0 *o* $s_2 = s_0$. Hence, in this case (II) holds.

 (xxi) Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 < \text{ord } s_2$ and $s_2 = s_3$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) =$ s_0 *o* $s_0 = s_0$ and s_3 *o* $s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds.

On the other hand, s_1 *o* (s_1 *o* s_2) = s_1 *o* s_0 = s_1 and s_1 *o* s_2 = s_0 . Thus in this case (II) holds.

 $(xxii)$ Let $s_1, s_2, s_3 \neq s_0$, ord $s_1 > \text{ord } s_2$ and $s_2 = s_3$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) =$ $s_1 \circ s_1 = s_0$ and $s_3 \circ s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds.

Also s_1 *o* $(s_1 \circ s_2) = s_1 \circ s_1 = s_0$ and $s_0 \circ s_2 = s_0$. So in this case (II) holds. $(xxiii)$ Let $s_1 = s_2 = s_3$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_0 \circ s_0 = s_0$ and s_3 *o* $s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds.

On the other hand, $s_1 o (s_1 o s_2) = s_1 o s_0 = s_1$ and $s_1 o s_2 = s_0$. Therefore in this case (II) holds.

 (xxi) Let $s_1 = s_0$ and $s_2, s_3 \neq s_0$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_0 \circ s_0 = s_0$. Let s_3 o $s_2 = t$ and $t \in S$. Since $s_0 \leq t$ we get that in this case (I) holds.

Also s_1 *o* $(s_1$ *o* $s_2)$ = s_0 *o* s_0 = s_0 and s_0 *o* s_2 = s_0 . Hence, in this case (II) holds.

 $(x x y)$ Let $s_2 = s_0$, $s_1, s_3 \neq s_0$. Since $s_1 \circ s_3 = s_1$ or $s_1 \circ s_3 = s_0$, we have two cases:

(6) $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_1 \circ s_1 = s_0$. We know that $s_3 \circ s_2 = s_3$. Since $s_0 \leq s_3$ we conclude that in this case (I) holds.

 (7) $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_1 \circ s_0 = s_1$. We know that $s_3 \circ s_2 = s_3$ and in this case s_1 o $s_3 = s_0$. So $s_1 \leq s_3$ and (I) holds.

On the other hand, s_1 *o* (s_1 *o* s_2) = s_1 *o* s_1 = s_0 and s_0 *o* s_2 = s_0 . Thus in this case (II) holds.

 $(x x v i)$ Let $s_3 = s_0$ and $s_1, s_2 \neq s_0$. Since $s_1 o s_2 = s_1$ or $s_1 o s_2 = s_0$, we obtain that $(s_1 \circ s_2) o(s_1 \circ s_3) = s_1 \circ s_1 = s_0$ or $(s_1 \circ s_2) o(s_1 \circ s_3) = s_0 \circ s_1 = s_0$. Also s_3 *o* $s_2 = s_0$. Since $s_0 \leq s_0$ we conclude that in this case (I) holds. The proof of (II) is studied in other cases.

 (xxvii) Let $s_1 \neq s_0$ and $s_2 = s_3 = s_0$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_1 \circ s_1 = s_0$ and s_3 o $s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds.

On the other hand, s_1 o (s_1 o s_2) = s_1 o s_1 = s_0 and s_0 o s_2 = s_0 . Therefore in this case (II) holds.

 (xxviii) Let $s_3 \neq s_0$ and $s_1 = s_2 = s_0$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_0 \circ s_0 = s_0$. and s_1 *o* $s_2 = s_0$. Since $s_0 \leq s_0$ we get that in this case (I) holds.

Also s_1 *o* $(s_1$ *o* $s_2) = s_0$ *o* $s_0 = s_0$ and s_0 *o* $s_2 = s_0$. Hence, in this case (II) holds.

 $(x \text{x} \text{ix})$ Let $s_2 \neq s_0$ and $s_1 = s_3 = s_0$. Then $(s_1 \circ s_2) \circ (s_1 \circ s_3) = s_0 \circ s_0 = s_0$ and s_3 o $s_2 = s_0$. Since $s_0 \leq s_0$ we obtain that in this case (I) holds.

On the other hand, s_1 *o* (s_1 *o* s_2) = s_0 *o* s_0 = s_0 and s_0 *o* s_2 = s_0 . Thus in this case (II) holds.

So we conclude that (S, o, s_0) satisfies (I) and (II) .

To prove (V), Let $s_1 \leq s_2$ and $s_2 \leq s_1$. If $s_1 = s_2$, then we are done. Otherwise, since $s_1 \leq s_2$, there exist two cases:

(i) *ord* $s_1 < \text{ord } s_2$, $s_1, s_2 \neq s_0$, $s_1 \neq s_2$. Then $s_2 \circ s_1 = s_2$. Therefore $s_2 \nleq s_1$, which is a contradiction.

(ii) $s_1 = s_0$, $s_2 \neq s_0$. Then $s_2 \circ s_1 = s_2 \circ s_0 = s_2$. Thus $s_2 \nleq s_1$, which is a contradiction.

So we show that (*S, o, s*0) is a *BCK*-algebra.

Example 3.3. Let $A = (S, M, s_0, F, t)$ be a deterministic finite automaton such that $S = \{q_0, q_1, q_2, q_3\}$, $M = \{a, b\}$, $s_0 = q_0$, $F = \{q_1, q_3\}$ and *t* is defiend by

FIGURE 1

$$
t(q_0, a) = q_1, t(q_0, b) = q_2, t(q_1, a) = q_2, t(q_1, b) = q_3,
$$

 $t(q_2, a) = q_3, t(q_2, b) = q_3, t(q_3, a) = q_3, t(q_3, b) = q_3.$

It is easy to see that *ord* $q_1 = ord\ q_2 = 2, ord\ q_3 = 3$ and *ord* $q_0 = 0$. According to the definition of operation "o" which is defined in Theorem 3.2, we have the following table:

Table 1.

In this section we suppose that (S, o, s_0) is the *BCK*-algebra, which is defined in Theorem 3.2.

Notation. We denote the class of all states which their order is n by $\overline{s_n}$. **Theorem 3.4.** (S, o, s_0) is a *BCK*-algebra with condition (S) .

Proof: Let $s_1, s_2 \in S$, ord $s_1 = n$ and ord $s_2 = m$. Then we should consider following situations:

(1) Let *ord* $s_1 < \text{ord } s_2$, $s_1, s_2 \neq s_0$, $s_1 \neq s_2$. Then $A(s_1, s_2) =$ $\bigcup_{i=0}^{m-1} \overline{s_i} \cup \{s_2\}$ and the greatest element of $A(s_1, s_2)$ is s_2 .

(2) Let *ord* $s_1 \geq \text{ord } s_2$, $s_1, s_2 \neq s_0$, $s_1 \neq s_2$. Then $A(s_1, s_2) =$ $\bigcup_{i=0}^{n-1} \overline{s_i} \cup \{s_1\}$ and the greatest element of $A(s_1, s_2)$ is s_1 .

 (3) $s_1 = s_2$. Then $A(s_1, s_2) = \bigcup_{i=0}^{n-1} \overline{s_i} \cup \{s_1\}$ and the greatest element of $A(s_1, s_2)$ is s_1 .

(4) Let $s_1 = s_0$, $s_2 \neq s_0$. Then $A(s_1, s_2) = \bigcup_{i=0}^{m-1} \overline{s_i} \cup \{s_2\}$ and the greatest element of $A(s_1, s_2)$ is s_2 .

(5) Let $s_1 \neq s_0$, $s_2 = s_0$. Then $A(s_1, s_2) = \bigcup_{i=0}^{n-1} \overline{s_i} \cup \{s_1\}$ and the greatest element of $A(s_1, s_2)$ is s_1 .

Theorem 3.5. Let $I_n = \{s \in S \mid s \in \bigcup_{i=0}^n \overline{s_i}\}$ for any $n \in N$. Then I_n is an ideal of (S, o, s_0) .

Proof. Suppose that $s_1 \circ s_2 \in I_n$ and $s_2 \in I_n$, then we have the following situations:

(1)
$$
s_1 \neq s_2, s_2 \neq s_0 \text{ and } or ds_2 < or ds_1.
$$

By definition of the operation "o", we know that $s_1 \circ s_2 = s_1$. So $s_1 \in I_n$.

(2)
$$
s_1 \neq s_2, \ s_2 \neq s_0 \text{ and } or ds_2 = or ds_1.
$$

Since $s_2 \in I_n$ and $\overline{s_2} \subseteq I_n$, we obtain that $s_1 \in I_n$.

$$
(3) \t s_1 \neq s_2, \ s_1 \neq s_0 \text{ and } or ds_1 < or ds_2.
$$

By definition of I_n , it is easy to see that $s_1 \in I_n$.

(4) $s_1 = s_2.$

It is clear that $s_1 \in I_n$.

$$
(5) \t\t s_2 = s_0.
$$

By definition of the operation "o", we know that $s_1 \circ s_2 = s_1$. So $s_1 \in I_n$.

 $(6) s_1 = s_0.$

Since $s_0 \in I_n$, we get that $s_1 \in I_n$.

Also by definition of I_n , we know that $s_0 \in I_n$. So I_n is an ideal of *S*.

Theorem 3.6. Let I_n be a set, which is defined in Theorem 3.5. Then $C_x = \{x\}$ for all $x \notin I_n$.

Proof. Let $x \notin I_n$. By Theorem 2.6, we know that $I_n = C_{s_0}$. So $s_0 \notin C_x$. Now we suppose that $y \in C_x$ and $y \neq x$. By definition of the equivalence relation \sim_{I_n} , we know that *x* $o y \in I_n$ and *y* $o x \in I_n$. Since $x \notin I_n$ and *x* $o y \in I_n$, we obtain that *ord* $x \ngeq \text{ord } y$. So *ord* $y > \text{ord } x$ and $y \circ x = y \in I_n = C_{s_0}$, which is a contradiction. Hence, $y = x$.

Theorem 3.7. Let I_n be the ideal of S which is defined in Theorem 3.5. Then $(S/I_n, *, C_{s_0})$ is a *BCK*-algebra.

Proof. By Theorem 2.7, it is obvious that $(S/I_n, *, C_{s_0})$ is a *BCK*-algebra.

Theorem 3.8. (S, o, s_0) is a positive implicative *BCK*-algebra.

Proof. By considering 29 situations which have been stated in the proof of Theorem 3.2, we get that in all cases $(s_1 \circ s_3) \circ (s_2 \circ s_3) = (s_1 \circ s_2) \circ s_3$, for all $s_1, s_2, s_3 \in S$. So (S, o, s_0) is a positive implicative *BCK*-algebra.

Theorem 3.9. Let $n = \max \{ord s \mid s \in S \}$. Then $I = \bigcup_{i=0}^{m-1} \overline{s_i} \cup \{z\}$ for $1 \leq m \leq n$ and $z \in s_m$, is a varlet ideal of (S, o, s_0) .

Proof. To prove (VI1), we suppose that $x \in I$ and $y \leq x$. Then $s_0 = y$ o x and we have three cases:

(6) Let *ord* $y < \text{ord } x$, $x, y \neq s_0$ and $x \neq y$. Then by definition of *I*, it is obvious that $y \in I$.

(7) Let $x = y$. Then it is clear that $y \in I$.

(3) Let $y = s_0$, $x \neq s_0$. Then by definition of *I*, it is easy to see that $s_0 = y \in I$. Therefore (VI1) holds.

Now we show that *I* satisfies (VI2). let $x \in I$, $y \in I$ and $x, y \neq z$. Since *ord* $x < \text{ord } z$ and $\text{ord } y < \text{ord } z$, we get that $x \circ z = s_0$ and $y \circ z = s_0$. So $x \leq z$ and $y \leq z$. Also if $x \in I$, $y \in I$, $x = z$ and $y \neq z$, then $x \circ z = z \circ z = s_0$ and *y* $oz = s_0$. Thus $x \leq z$ and $y \leq z$. Similarly we can prove that $x \leq z$ and $y \leq z$ for the following cases:

(6)
$$
x \in I, y \in I, x \neq z \text{ and } y = z,
$$

(7)
$$
x \in I, y \in I, x = z \text{ and } y = z.
$$

So (VI2) holds.

4. Hyper *BCK*-algebras induced by a deterministic finite **AUTOMATON**

Theorem 4.1. Let (S, M, s_0, F, t) be a deterministic finite automata. We define the following hyper operation on \overline{S} :

$$
\forall (\overline{s_1}, \overline{s_2}) \in \overline{S}^2, \overline{s_1} \circ \overline{s_2} = \begin{cases} \overline{s_1}, & \text{if } \overline{s_1} \neq \overline{s_2}, \overline{s_2} \neq \overline{s_0} \neq \overline{s_1} \\ \overline{\{s_0, s_1\}}, & \text{if } \overline{s_1} = \overline{s_2} \\ \overline{s_0}, & \text{if } \overline{s_1} = \overline{s_0}, \overline{s_2} \neq \overline{s_0} \\ \overline{s_1}, & \text{if } \overline{s_1} \neq \overline{s_0}, \overline{s_2} = \overline{s_0}. \end{cases}
$$

Then $(\overline{S}, o, \overline{s_0})$ is a hyper *BCK*-algebra and $\overline{s_0}$ is the zero element of \overline{S} . Proof. First we have to consider the following situations to show that $(\overline{S}, o, \overline{s_0})$ satisfies (HK1) and (HK2).

(i) Let $\overline{s_1}, \overline{s_2}, \overline{s_3} \neq \overline{s_0}$ and $\overline{s_3} \neq \overline{s_2} \neq \overline{s_1} \neq \overline{s_3}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) =$ $\overline{s_1}$ *o* $\overline{s_2}$. Since \overline{s} *o* \overline{s} = $\{\overline{s_0}, \overline{s}\}$ we obtain that $\overline{s} \ll \overline{s}$ for any $\overline{s} \in \overline{S}$. So $(\overline{s_1} \circ \overline{s_3})$ *o* $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1} \circ \overline{s_2}$ and in this case (HK1) holds. Also $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_1} \circ \overline{s_3} = \overline{s_1}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_1} \circ \overline{s_2} = \overline{s_1}$. Thus in this case (HK2) holds. (ii) Let $\overline{s_1}, \overline{s_2}, \overline{s_3} \neq \overline{s_0}$ and $\overline{s_1} = \overline{s_2} \neq \overline{s_3}$. Then($\overline{s_1} \circ \overline{s_3}$) $\circ (\overline{s_2} \circ \overline{s_3}) = \overline{s_1} \circ \overline{s_2}$. So $(\overline{s_1} \circ \overline{s_3})$ *o* $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1} \circ \overline{s_2}$ and in this case (HK1) holds. On the other hand, $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = {\overline{s_0}, \overline{s_1}} \circ \overline{s_3} = {\overline{s_0}, \overline{s_1}}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} =$ $\overline{s_1}$ *o* $\overline{s_2} = {\overline{s_0}, \overline{s_1}}$. Therefore in this case (HK2) holds. (iii) Let $\overline{s_1}, \overline{s_2}, \overline{s_3} \neq \overline{s_0}$ and $\overline{s_1} = \overline{s_3} \neq \overline{s_2}$. Then $(\overline{s_1} \circ \overline{s_3})$ $o(\overline{s_2} \circ \overline{s_3}) = {\overline{s_0}, \overline{s_1}} o \overline{s_2} = {\overline{s_0}, \overline{s_1}}$ and $\overline{s_1} \circ \overline{s_2} = \overline{s_1}$. Since $\overline{s_0}$ *o* $\overline{s_1} = \overline{s_0}$ we obtain that $\overline{s_0} \ll \overline{s_1}$ and also we know that $\overline{s_1} \ll \overline{s_1}$. Hence, $(\overline{s_1} \circ \overline{s_3})$ *o* $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1} \circ \overline{s_2}$ and in this case (HK1) holds. Also $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_1} \circ \overline{s_3} = {\overline{s_0}, \overline{s_1}}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = {\overline{s_0}, \overline{s_1}} \circ \overline{s_2} =$ $\{\overline{s_0}, \overline{s_1}\}\$. So in this case (HK2) holds. (iv) Let $\overline{s_1}, \overline{s_2}, \overline{s_3} \neq \overline{s_0}$ and $\overline{s_2} = \overline{s_3} \neq \overline{s_1}$. Then($\overline{s_1}$ *o* $\overline{s_3}$) *o* ($\overline{s_2}$ *o* $\overline{s_3}$) = $\overline{s_1}$ *o* { $\overline{s_0}$, $\overline{s_2}$ } = $\overline{s_1}$ and $\overline{s_1}$ *o* $\overline{s_2}$ = $\overline{s_1}$. Thus $(\overline{s_1} \circ \overline{s_3})$ *o* $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1} \circ \overline{s_2}$ and in this case (HK1) holds.

On the other hand, $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_1} \circ \overline{s_3} = \overline{s_1}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_1} \circ \overline{s_2} =$ $\overline{s_1}$. Therefore in this case (HK2) holds.

(v) Let $\overline{s_1} = \overline{s_2} = \overline{s_3}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) = {\overline{s_0}, \overline{s_1}} \circ {\overline{s_0}, \overline{s_1}} =$ ${\overline{s_0, s_1}}$ and ${\overline{s_1} \circ \overline{s_2}} = {\overline{s_0, s_1}}$. So $({\overline{s_1} \circ \overline{s_3}}) \circ ({\overline{s_2} \circ \overline{s_3}}) \ll {\overline{s_1} \circ \overline{s_2}}$ and in this $case(\overline{S}, o, \overline{s_0})$ satisfies (HK1).

Also $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = (\overline{s_1} \circ \overline{s_1}) \circ \overline{s_1} = (\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2}$. Hence, in this case $(\overline{S_2}, 0, \overline{s_0})$ satisfies (HK2).

(vi) Let $\overline{s_2}, \overline{s_3} \neq \overline{s_0}$, $\overline{s_1} = \overline{s_0}$ and $\overline{s_2} \neq \overline{s_3}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) =$ $\overline{s_0}$ $\overline{s_2} = \overline{s_0}$ and $\overline{s_1}$ $\overline{s_2} = \overline{s_0}$ $\overline{s_2} = \overline{s_0}$. Thus $(\overline{s_1} \circ \overline{s_3})$ $\overline{s_2}$ $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1}$ $\overline{s_2}$ and in this case (HK1) holds.

On the other hand, $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_0} \circ \overline{s_3} = \overline{s_0}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_0} \circ \overline{s_2} =$ $\overline{s_0}$. So in this case (HK2) holds.

(vii) Let $\overline{s_2}, \overline{s_3} \neq \overline{s_0}$, $\overline{s_1} = \overline{s_0}$ and $\overline{s_2} = \overline{s_3}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) =$ $\overline{s_0}$ $o \{\overline{s_0}, \overline{s_2}\} = \overline{s_0}$ and $\overline{s_1}$ $o \overline{s_2} = \overline{s_0}$ $o \overline{s_2} = \overline{s_0}$. Therefore $(\overline{s_1} \circ \overline{s_3})$ $o (\overline{s_2} \circ \overline{s_3}) \ll$ $\overline{s_1}$ *o* $\overline{s_2}$ and in this case(\overline{S} , *o*, $\overline{s_0}$) satisfies (HK1).

 $\text{Also}(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_0} \circ \overline{s_3} = \overline{s_0} \text{ and } (\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_0} \circ \overline{s_2} = \overline{s_0}.$ So in this case $(\overline{S}, o, \overline{s_0})$ satisfies (HK2).

(viii) Let $\overline{s_1}, \overline{s_3} \neq \overline{s_0}, \overline{s_2} = \overline{s_0}$ and $\overline{s_1} \neq \overline{s_3}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) =$ $\overline{s_1}$ $\overline{s_0} = \overline{s_1}$ and $\overline{s_1}$ $\overline{s_2} = \overline{s_1}$ $\overline{s_0} = \overline{s_1}$. Hence, $(\overline{s_1} \circ \overline{s_3})$ $\overline{s_1}$ $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1}$ $\overline{s_2}$ and in this case (HK1) holds.

On the other hand, $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_1} \circ \overline{s_3} = \overline{s_1}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_1} \circ \overline{s_0} =$ $\overline{s_1}$. Thus in this case (HK2) holds.

(ix) Let $\overline{s_1}, \overline{s_3} \neq \overline{s_0}$, $\overline{s_2} = \overline{s_0}$ and $\overline{s_1} = \overline{s_3}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) =$ ${\overline{s_0}, \overline{s_1}}$ *o* $\overline{s_0} = {\overline{s_0}, \overline{s_1}}$ and $\overline{s_1}$ *o* $\overline{s_2} = \overline{s_1}$ *o* $\overline{s_0} = \overline{s_1}$. Since $\overline{s_0} \ll \overline{s_1}$ and $\overline{s_1} \ll \overline{s_1}$ we obtain that $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1} \circ \overline{s_2}$ and in this case $(\overline{S}, o, \overline{s_0})$ satisfies (HK1).

Also $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_1} \circ \overline{s_3} = {\overline{s_0}, \overline{s_1}}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = {\overline{s_0}, \overline{s_1}} \circ \overline{s_0} =$ $\{\overline{s_0}, \overline{s_1}\}\.$ Hence, in this case $(\overline{S}, o, \overline{s_0})$ satisfies (HK2).

 (x) Let $\overline{s_1}, \overline{s_2} \neq \overline{s_0}, \overline{s_3} = \overline{s_0}$ and $\overline{s_1} \neq \overline{s_2}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) = \overline{s_1} \circ \overline{s_2} =$ $\overline{s_1}$ and $\overline{s_1}$ *o* $\overline{s_2} = \overline{s_1}$. Therefore $(\overline{s_1} \circ \overline{s_3})$ *o* $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1}$ *o* $\overline{s_2}$ and in this case (HK1) holds.

On the other hand, $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_1} \circ \overline{s_0} = \overline{s_1}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_1} \circ \overline{s_2} =$ $\overline{s_1}$. So in this case (HK2) holds.

(xi) Let $\overline{s_1}, \overline{s_2} \neq \overline{s_0}$, $\overline{s_3} = \overline{s_0}$ and $\overline{s_1} = \overline{s_2}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) =$ $\overline{s_1}$ *o* $\overline{s_2}$ = $\{\overline{s_0}, \overline{s_1}\}\$ and $\overline{s_1}$ *o* $\overline{s_2}$ = $\{\overline{s_0}, \overline{s_1}\}\$. Since $\overline{s_0} \ll \overline{s_0}$ and $\overline{s_1} \ll \overline{s_1}$ we get that $(\overline{s_1} \circ \overline{s_3})$ *o* $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1} \circ \overline{s_2}$ and in this case $(\overline{S}, o, \overline{s_0})$ satisfies (HK1).

Also $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = {\overline{s_0}, \overline{s_1}} \circ \overline{s_0} = {\overline{s_0}, \overline{s_1}} \text{ and } (\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_1} \circ \overline{s_2} =$ $\{\overline{s_0}, \overline{s_1}\}\.$ Thus in this case $(\overline{S}, o, \overline{s_0})$ satisfies (HK2).

(xii) Let $\overline{s_1} = \overline{s_2} = \overline{s_0}$ and $\overline{s_3} \neq \overline{s_0}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) = \overline{s_0} \circ \overline{s_0} = \overline{s_0}$ and $\overline{s_1}$ *o* $\overline{s_2} = \overline{s_0}$. Therefore $(\overline{s_1} \circ \overline{s_3})$ *o* $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1}$ *o* $\overline{s_2}$ and in this case (HK1) holds.

On the other hand, $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_0} \circ \overline{s_3} = \overline{s_0}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_0} \circ \overline{s_0} =$ $\overline{s_0}$. Hence, in this case (HK2) holds.

(xiii) Let $\overline{s_1} = \overline{s_3} = \overline{s_0}$ and $\overline{s_2} \neq \overline{s_0}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) = \overline{s_0} \circ \overline{s_2} = \overline{s_0}$ and $\overline{s_1}$ *o* $\overline{s_2}$ = $\overline{s_0}$. So $(\overline{s_1}$ *o* $\overline{s_3})$ *o* $(\overline{s_2}$ *o* $\overline{s_3})$ $\ll \overline{s_1}$ *o* $\overline{s_2}$ and in this case $(\overline{S}, o, \overline{s_0})$ satisfies (HK1).

On the other hand, $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_0} \circ \overline{s_0} = \overline{s_0}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_0} \circ \overline{s_2} =$ $\overline{s_0}$. Thus this case $(\overline{S}, o, \overline{s_0})$ satisfies (HK2).

(xiv) Let $\overline{s_2} = \overline{s_3} = \overline{s_0}$ and $\overline{s_1} \neq \overline{s_0}$. Then $(\overline{s_1} \circ \overline{s_3}) \circ (\overline{s_2} \circ \overline{s_3}) = \overline{s_1} \circ \overline{s_0} = \overline{s_1}$ and $\overline{s_1}$ *o* $\overline{s_2} = \overline{s_1}$. Therefore $(\overline{s_1} \circ \overline{s_3})$ *o* $(\overline{s_2} \circ \overline{s_3}) \ll \overline{s_1}$ *o* $\overline{s_2}$ and in this case (HK1) holds.

On the other hand, $(\overline{s_1} \circ \overline{s_2}) \circ \overline{s_3} = \overline{s_1} \circ \overline{s_0} = \overline{s_1}$ and $(\overline{s_1} \circ \overline{s_3}) \circ \overline{s_2} = \overline{s_1} \circ \overline{s_0} =$ $\overline{s_1}$. Hence, in this case (HK2) holds.

So we show that $(\overline{S}, o, \overline{s_0})$ satisfies (HK1) and (HK2).

Now we should prove that $(\overline{S}, o, \overline{s_0})$ satisfies (HK3). By Theorem 2.11, it is enough to show that $\overline{s_1}$ *o* $\overline{s_2} \ll \overline{s_1}$ for all $\overline{s_1}$, $\overline{s_2} \in \overline{S}$. By definition of the hyper operation "o" we know that $\overline{s_1}$ *o* $\overline{s_2}$ is equal to $\overline{s_1}$ or $\overline{s_0}$, $\overline{s_1}$ or $\overline{s_0}$ for any $\overline{s_1}$, $\overline{s_2} \in \overline{S}$. Also we know that $\overline{s_1} \ll \overline{s_1}$ and $\overline{s_0} \ll \overline{s_1}$. Hence $(\overline{S}, o, \overline{s_0})$ satisfies (HK3).

To prove (HK4), Let $\overline{s_1} \ll \overline{s_2}$ and $\overline{s_2} \ll \overline{s_1}$. If $\overline{s_1} = \overline{s_2}$, then we are done. Otherwise, since $\overline{s_1} \ll \overline{s_2}$, we obtain that $\overline{s_1} = \overline{s_0}$, $\overline{s_2} \neq \overline{s_0}$. So $\overline{s_2}$ *o* $\overline{s_1}$ = $\overline{s_2}$ *o* $\overline{s_0} = \overline{s_2}$. Therefore $\overline{s_2} \nleq \overline{s_1}$, which is a contradiction.

Example 4.2. Consider the deterministic finite automaton $A = (S, M, s_0, F, t)$ in Example 3.3. Then the structure of the hyper *BCK*-algebra $(\overline{S}, o, \overline{s_0})$ induced on \overline{S} according to Theorem 4.1 is as follows:

Table 2.

	$\overline{q_0}$	q_1	$\overline{q_3}$
q_0	$\overline{q_0}$	q_0	\overline{q}_0
$\overline{q_1}$	$\overline{q_1}$	$\overline{q_0},\overline{q_1}\}$	$\overline{q_1}$
$\overline{q_3}$	$\overline{q_3}$	q_{3}	$\{\overline{q_0},\overline{q_3}\}$

Theorem 4.3. Let $(\overline{S}, o, \overline{s_0})$ be the hyper *BCK*-algebra, which is defined in Theorem 4.1. Then $(\overline{S}, o, \overline{s_0})$ is a strong normal hyper *BCK*-algebra. Proof. By definition of the hyper operation "o", we obtain that $\overline{a} \in \overline{a}$ o \overline{t} , for any \overline{a} and \overline{t} in \overline{S} . So we have:

 $a_{\overline{i}}\overline{a} = \{\overline{t} \in \overline{S} \mid \overline{a} \in \overline{a} \text{ or } \overline{t}\} = \overline{S}, \overline{a}_r = \{\overline{t} \in \overline{S} \mid \overline{t} \in \overline{t} \text{ or } \overline{a}\} = \overline{S}, \forall \overline{a} \in \overline{S}.$

It is clear that \overline{S} is a strong hyper *BCK*-ideal. So $(\overline{S}, o, \overline{s_0})$ is a strong normal hyper *BCK*-algebra.

Theorem 4.4. Let $(\overline{S}, o, \overline{s_0})$ be the hyper *BCK*-algebra, which is defined in Theorem 4.1. Then $(\overline{S}, o, \overline{s_0})$ is a simple hyper *BCK*-algebra.

Proof. Let $\overline{s_1} \neq \overline{s_2}$ and $\overline{s_1}, \overline{s_2} \neq \overline{s_0}$. Then $\overline{s_1} \circ \overline{s_2} = \overline{s_1}$ and $\overline{s_2} \circ \overline{s_1} = \overline{s_2}$. Hence, $\overline{s_1} \nleq \overline{s_2}$ and $\overline{s_2} \nleq \overline{s_1}$. So $(S, o, \overline{s_0})$ is a simple hyper *BCK*-algebra.

Theorem 4.5. Let $(\overline{S}, o, \overline{s_0})$ be the hyper *BCK*-algebra, which is defined in Theorem 4.1. Then $(\overline{S}, o, \overline{s_0})$ is an implicative hyper *BCK*-algebra.

Proof. Since $\overline{s_1} \in \overline{s_1}$ *o* $\overline{s_2}$ and $\overline{s_1}$ *o* $\overline{s_2} \neq \emptyset$ for all $\overline{s_1}$, $\overline{s_2} \in \overline{S}$, we obtain that $\overline{s_1} \in \overline{s_1}$ $o(\overline{s_2} \circ \overline{s_1})$. So $\overline{s_1} \ll \overline{s_1}$ $o(\overline{s_2} \circ \overline{s_1})$ and $(\overline{S}, o, \overline{s_0})$ is an implicative hyper *BCK*-algebra.

Definition 4.6. A deterministic finite automaton (S, M, s_0, F, t) is called semi continuous if for all distinct elements $s, s' \in S$, the following implication holds: If $\exists x \in M^*$, such that $s' = t^*$ $(s, x) \Rightarrow \nexists x' \in M^*$, such that $s = t^*$ (s', x') .

Theorem 4.7. Let (S, M, s_0, F, t) be a semi continuous deterministic finite automata. We define the following hyper operation on *S*:

$$
\forall (s_1, s_2) \in S^2, \quad s_1 \circ s_2 = \left\{\begin{array}{c} \{s_1, s_0\}, \quad \text{if} \quad s_2 \text{ is connected to } s_1 \text{ , } \quad s_1, s_2 \neq s_0 \text{ and } s_1 \neq s_2 \\ s_1, \quad \text{if} \quad s_2 \text{ is not connected to } s_1 \text{ , } \quad s_1, s_2 \neq s_0 \text{ and } s_1 \neq s_2 \\ s_0, \quad \text{if} \quad s_1 = s_0 \\ s_0, \quad \text{if} \quad s_1 = s_0 \text{ , } \quad s_2 \neq s_0 \\ s_1, \quad \text{if} \quad s_2 = s_0 \text{ , } \quad s_1 \neq s_0. \end{array} \right.
$$

Then (S, o, s_0) is a hyper *BCK*-algebra and s_0 is the zero element of *S*. Proof. First we consider the following situations to prove (HK1) and (HK2). (i) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is connected to s_1 , s_3 is connected to s_1 and s_3 is connected to s_2 . Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = \{s_1, s_0\} \circ (s_2, s_0) = \{s_1, s_0\}$ and $s_1 \circ s_2 =$ ${s₁, s₀}$. Since $s₁ o s₁ = s₀$ and $s₀ o s₁ = s₀$, we obtain that $s₁ \ll s₁$ and $s_0 \ll s_1$. So in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = \{s_1, s_0\} \circ s_3 = \{s_1, s_0\}$ and $(s_1 \circ s_3) \circ s_2 =$ ${s_1, s_0} \circ s_2 = {s_1, s_0}$. Thus in this case (HK2) holds.

(ii) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is not

connected to s_1 , s_3 is connected to s_1 and s_3 is connected to s_2 .

Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = \{s_1, s_0\} \circ (s_2, s_0) = \{s_1, s_0\}$ and $s_1 \circ s_2 = s_1$. Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we conclude that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = \{s_1\} \circ s_3 = \{s_1, s_0\}$ and $(s_1 \circ s_3) \circ s_2 = \{s_1, s_0\} \circ s_2 =$ $\{s_1, s_0\}$. Therefore in this case (HK2) holds.

(iii) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is

connected to s_1 , s_3 is not connected to s_1 and s_3 is connected to s_2 . Since s_2 is connected to s_1 and s_3 is connected to s_2 , we get that s_3 is connected to s_1 . So this case does not happen.

(iv) Let $s_1, s_2, s_3 \neq s_0, s_3 \neq s_1 \neq s_2 \neq s_3, s_2$ is connected to s_1, s_3 is connected to s_1 and s_3 is not connected to s_2 .

Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = \{s_1, s_0\}$ $\circ s_2 = \{s_1, s_0\}$ and $s_1 \circ s_2 = \{s_1, s_0\}$. Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we obtain that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = \{s_1, s_0\} \circ s_3 = \{s_1, s_0\}$ and $(s_1 \circ s_3) \circ s_2 = \{s_1, s_0\} \circ s_2 =$ ${s₁, s₀}$. Hence, in this case (HK2) holds.

(v) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is not connected to s_1 , s_3 is not connected to s_1 and s_3 is connected to s_2 .

Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_1 \circ (s_2, s_0) = s_1$ and $s_1 \circ s_2 = s_1$. Since $s_1 \ll s_1$ we conclude that in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_3 = s_1$ and $(s_1 \circ s_3) \circ s_2 = s_1 \circ s_2 =$ *s*1. Thus in this case (HK2) holds.

(vi) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is not connected to s_1 , s_3 is connected to s_1 and s_3 is not connected to s_2 .

Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = \{s_1, s_0\} \circ s_2 = \{s_1, s_0\}$ and $s_1 \circ s_2 = s_1$. Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we get that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_3 = \{s_1, s_0\}$ and $(s_1 \circ s_3) \circ s_2 = \{s_1, s_0\} \circ s_2 =$ ${s₁, s₀}$. So in this case (HK2) holds.

(vii) Let $s_1, s_2, s_3 \neq s_0$, $s_3 \neq s_1 \neq s_2 \neq s_3$, s_2 is connected to s_1 , s_3 is not connected to s_1 and s_3 is not connected to s_2 .

Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_1 \circ s_2 = \{s_1, s_0\}$ and $s_1 \circ s_2 = \{s_1, s_0\}$. Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we obtain that in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = \{s_1, s_0\} \circ s_3 = \{s_1, s_0\}$ and $(s_1 \circ s_3) \circ s_2 =$ $s_1 \circ s_2 = \{s_1, s_0\}.$ Therefore in this case (HK2) holds.

(viii) Let $s_1, s_2, s_3 \neq s_0, s_3 \neq s_1 \neq s_2 \neq s_3, s_2$ is not connected to s_1 , s_3 is not connected to s_1 and s_3 is not connected to s_2 .

Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_1 \circ s_2 = s_1$ and $s_1 \circ s_2 = s_1$. Since $s_1 \ll s_1$ we conclude that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_3 = s_1$ and $(s_1 \circ s_3) \circ s_2 = s_1 \circ s_2 = s_1$. Hence, in this case (HK2) holds.

(ix) Let $s_1, s_2, s_3 \neq s_0$, $s_1 = s_2 \neq s_3$ and s_3 is connected to s_1 .

Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = \{s_1, s_0\} \circ (s_2, s_0)$

 $= s_0$ and s_1 *o* $s_2 = s_0$. Since $s_0 \ll s_0$ we get that in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = s_0 \circ s_3 = s_0$ and $(s_1 \circ s_3) \circ s_2 =$ $\{s_1, s_0\}$ *o* $s_1 = s_0$. Thus in this case (HK2) holds.

(x) Let $s_1, s_2, s_3 \neq s_0$, $s_1 = s_2 \neq s_3$ and s_3 is not connected to s_1 . Then $(s_1 \circ s_3) o(s_2 \circ s_3) = s_1 \circ s_2 = s_0 \text{ and } s_1 \circ s_2 = s_0.$ Since $s_0 \ll s_0$ we obtain that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_0 \circ s_3 = s_0$ and $(s_1 \circ s_3) \circ s_2 = s_1 \circ s_1 = s_0$. So in this case (HK2) holds.

(xi) Let $s_1, s_2, s_3 \neq s_0$, $s_1 = s_3 \neq s_2$ and s_3 is connected to s_2 . By definition of semi continuous automaton we know that when s_3 is connected to s_2 then *s*² is not connected to *s*³ or *s*1*.*

So $(s_1 \circ s_3) o(s_2 \circ s_3) = s_0 o(s_2, s_0) = s_0$ and $s_1 \circ s_2 = s_1$. Since $s_0 \ll s_1$ we conclude that in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_1 = s_0$ and $(s_1 \circ s_3) \circ s_2 = s_0 \circ s_2 =$ s_0 . Hence, in this case (HK2) holds.

(xii) Let $s_1, s_2, s_3 \neq s_0$, $s_1 = s_3 \neq s_2$, s_3 is not connected to s_2 and *s*² is connected to *s*³ *.* Then we have

 $(s_1 \circ s_3) o(s_2 \circ s_3) = s_0 \circ s_2 = s_0 \text{ and } s_1 \circ s_2 = \{s_1, s_0\}$. Since $s_0 \ll s_1$ we get that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = \{s_1, s_0\} \circ s_1 = s_0 \text{ and } (s_1 \circ s_3) \circ s_2 = s_0 \circ s_2 = s_0.$ Therefore in this case (HK2) holds.

(xiii) Let $s_1, s_2, s_3 \neq s_0$, $s_1 = s_3 \neq s_2$, s_3 is not connected to s_2 and *s*₂ is not connected to *s*₃. Then we have $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_0 \circ s_2 = s_0$ and s_1 *o* $s_2 = s_1$. Since $s_0 \ll s_1$ we obtain that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_1 = s_0$ and $(s_1 \circ s_3) \circ s_2 = s_0 \circ s_2 = s_0$. Thus in this case (HK2) holds.

(xiv) Let $s_1, s_2, s_3 \neq s_0$, $s_1 \neq s_2 = s_3$ and s_3 is connected to s_1 . Then $(s_1 \circ s_3) o(s_2 \circ s_3) = \{s_1, s_0\} \circ s_0 = \{s_1, s_0\}$ and $s_1 \circ s_2 = \{s_1, s_0\}$. Since $s_1 \ll s_1$ and $s_0 \ll s_0$ we conclude that in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = \{s_1, s_0\} \circ s_3 = \{s_1, s_0\}$ and $(s_1 \circ s_3) \circ s_2 =$ ${s_1, s_0} \circ s_2 = {s_1, s_0}$. So in this case (HK2) holds.

(xv) Let $s_1, s_2, s_3 \neq s_0$, $s_1 \neq s_2 = s_3$ and s_3 is not connected to s_1 . Then $(s_1 \circ s_3) o(s_2 \circ s_3) = s_1 \circ s_0 = s_1$ and $s_1 \circ s_2 = s_1$. Since $s_1 \ll s_1$ we get that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_3 = s_1$ and $(s_1 \circ s_3) \circ s_2 = s_1 \circ s_2 = s_1$. Hence, in this case (HK2) holds.

(xvi) Let $s_1 = s_2 = s_3$. Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_0 \circ s_0 = s_0$ and s_1 *o* $s_2 = s_0$. Since $s_0 \ll s_0$ we obtain that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_0 \circ s_3 = s_0$ and $(s_1 \circ s_3) \circ s_2 = s_0 \circ s_2 = s_0$. Therefore in this case (HK2) holds.

(xvii) Let $s_1 = s_0$. Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_0 \circ (s_2 \circ s_3) = s_0$ and s_1 *o* $s_2 = s_0$. Since $s_0 \ll s_0$ we conclude that in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = s_0 \circ s_3 = s_0$ and $(s_1 \circ s_3) \circ s_2 = s_0 \circ s_2 =$ s_0 . Thus in this case (HK2) holds.

(xviii) Let $s_2 = s_0$, $s_3 \neq s_1$, $s_1 \neq s_0 \neq s_3$ and s_3 is connected to s_1 . Then $(s_1 \circ s_3) o(s_2 \circ s_3) = \{s_1, s_0\} o(s_0$

 $=\{s_1, s_0\}$ and $s_1 \circ s_2 = s_1$. Since $s_1 \ll s_1$ and $s_0 \ll s_1$, we get that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_3 = \{s_1, s_0\}$ and $(s_1 \circ s_3) \circ s_2 = s_1 \circ s_3 = \{s_1, s_0\}.$ So in this case (HK2) holds.

(xix) Let $s_2 = s_0$, $s_3 \neq s_1$, $s_1 \neq s_0 \neq s_3$ and s_3 is not connected to s_1 . Then $(s_1 \circ s_3) o(s_2 \circ s_3) = s_1 \circ s_0 = s_1$ and $s_1 \circ s_2 = s_1$. Since $s_1 \ll s_1$ we obtain that in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_3 = s_1$ and $(s_1 \circ s_3) \circ s_2 = s_1 \circ s_2 =$ *s*1. Hence, in this case (HK2) holds.

 (xx) Let $s_2 = s_0$, $s_3 = s_1$ and $s_1 \neq s_0 \neq s_3$. Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) =$ s_0 *o* s_0 = s_0 and s_1 *o* s_2 = s_1 . Since $s_0 \ll s_1$ we conclude that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_3 = s_0$ and $(s_1 \circ s_3) \circ s_2 = s_0 \circ s_0 = s_0$. Therefore in this case (HK2) holds.

(xxi) Let $s_3 = s_0$, $s_2 \neq s_1$, $s_1 \neq s_0 \neq s_2$ and s_2 is connected to s_1 . Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_1 \circ s_2 = \{s_1, s_0\}$ and $s_1 \circ s_2 = \{s_1, s_0\}$. Since $s_1 \ll s_1$ and $s_0 \ll s_0$, we get that in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = \{s_1, s_0\} \circ s_3 = \{s_1, s_0\}$ and $(s_1 \circ s_3) \circ s_2 =$ $s_1 \text{o} s_2 = \{s_1, s_0\}.$ So in this case (HK2) holds.

(xxii) Let $s_3 = s_0$, $s_2 \neq s_1$, $s_1 \neq s_0 \neq s_2$ and s_2 is not connected to s_1 . Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_1 \circ s_2 = s_1$ and $s_1 \circ s_2 = s_1$. Since $s_1 \ll s_1$ we obtain that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_3 = s_1$ and $(s_1 \circ s_3) \circ s_2 = s_1 \circ s_2 = s_1$. Hence, in this case (HK2) holds.

 $(xxiii)$ Let $s_3 = s_0$, $s_2 = s_1$ and $s_1 \neq s_0 \neq s_2$. Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) =$ s_1 *o* s_2 = s_0 and s_1 *o* s_2 = s_0 . Since $s_0 \ll s_0$ we conclude that in this case (HK1) holds.

On the other hand, $(s_1 \circ s_2) \circ s_3 = s_0 \circ s_0 = s_0$ and $(s_1 \circ s_3) \circ s_2 = s_1 \circ s_2 =$ *s*0. Therefore in this case (HK2) holds.

(xxiv) Let $s_2 = s_3 = s_0$ and $s_1 \neq s_0$. Then $(s_1 \circ s_3) \circ (s_2 \circ s_3) = s_1 \circ s_0 = s_1$ and s_1 *o* $s_2 = s_1$. Since $s_1 \ll s_1$ we get that in this case (HK1) holds.

Also $(s_1 \circ s_2) \circ s_3 = s_1 \circ s_0 = s_1$ and $(s_1 \circ s_3) \circ s_2 = s_1 \circ s_0 = s_1$. Thus in this case (HK2) holds.

So we obtain that (S, o, s_0) satisfies (HK1)and (HK2).

Now we should prove that (*S, o, s*0) satisfies (HK3). By Theorem 2.11, it is enough to show that $s_1 \circ s_2 \ll \{s_1\}$ for all $s_1, s_2 \in S$. By definition of the hyper operation "o" we know that $s_1 \circ s_2$ is equal to s_1 or $\{s_1, s_0\}$ or s_0 for any $s_1, s_2 \in S$. Also we know that $s_1 \ll s_1$ and $s_0 \ll s_1$.

Hence (S, o, s_0) satisfies (HK3).

To prove (HK4), Let $s_1 \ll s_2$ and $s_2 \ll s_1$. If $s_1 = s_2$, then we are done. Otherwise, since $s_1 \ll s_2$, there exist two cases:

(i) s_2 is connected to s_1 , $s_1, s_2 \neq s_0$ and $s_1 \neq s_2$. Then by definition of semi continuous automaton we know that s_2 is not connected to s_1 and we have $s_2 \circ s_1 = s_2$. Therefore $s_2 \nleq s_1$, which is a contradiction.

(ii) $s_1 = s_0$, $s_2 \neq s_0$. Then $s_2 \circ s_1 = s_2 \circ s_0 = s_2$. Thus $s_2 \nleq s_1$, which is a contradiction.

So we show that (S, o, s_0) is a hyper *BCK*-algebra.

Theorem 4.8. Let (S, o, s_0) be a hyper *BCK*-algebra which is defined in Theorem 4.7. Then (S, o, s_0) is a weak normal hyper *BCK*-algebra.

Proof. By definition of the hyper operation "o", we know that $a_r = \{t \in S \mid t \in$ $t \circ a$ } = $S - \{a\}$ for all $a \neq s_0$ and $a \in S$. Also $a_r = S$ for $a = s_0$.

It is clear that *S* is a weak hyper *BCK*-ideal. So it is enough to show that $S - \{s\}$ for all $s \neq s_0$ and $s \in S$, is a weak hyper *BCK*-ideal. It is easy to see that $s_0 \in S - \{s\}$. Let $s_1 \circ s_2 \subseteq S - \{s\}$ and $s_2 \in S - \{s\}$. Then we have to consider the following situations:

(1) s₂ is connected to s_1 , $s_1, s_2 \neq s_0$ and $s_1 \neq s_2$. *Since*s₁*o* $s_2 = \{s_1, s_0\}$ and s_1 *o* $s_2 \subseteq S - \{s\}$, we obtain that $s_1 \in S - \{s\}$. (2) s₂ is not connected to s_1 , $s_1, s_2 \neq s_0$ and $s_1 \neq s_2$. *Since*s₁*o* $s_2 = s_1$ and s_1 *o* $s_2 \subseteq S - \{s\}$, we get that $s_1 \in S - \{s\}$. $(3) s_1 = s_2.$ *Since* $s_2 \in S - \{s\}$, it is clear that $s_1 \in S - \{s\}$. $(4) s_1 = s_0, s_2 \neq s_0.$ *Since*s₁*o* $s_2 = s_0$ and $s_0 \in S - \{s\}$, we obtain that $s_1 \in S - \{s\}$. (5) s₂ = *s*₀, s₁ \neq *s*₀. *Since*s₁*o* $s_2 = s_1$ and s_1 *o* $s_2 \subseteq S - \{s\}$, we conclude that $s_1 \in S - \{s\}$. So (*S, o, s*0) is a weak normal hyper *BCK*-algebra.

Example 4.9. Consider the deterministic finite automaton $A = (S, M, s_0, F, t)$ in Example 3.3. Then the structure of the hyper BCK -algebra (S, o, s_0) induced on the states of this automaton according to Theorem 4.7 is as follows:

Table 3.

O	q_0	q_1	q_2	q_3
q_0	q_0	q_0	q_0	q_0
q_1	q_1	q_0	$\{q_0,q_1\}$	$\{q_0,q_1\}$
q_2	q_2	q_2	q0	${q_0, q_2}$
q_3	q_3	q_3	q_3	q_0

Thus (*S, o, s*0) is a hyper *BCK-*algebra.

Remark 4.10. Let (S, o, s_0) be the hyper *BCK*-algebra which is defined in Theorem 4.7. In example 4.9, we saw that $q_0 \in q_1 \circ q_3$ and $q_0 \notin q_3 \circ q_1$. So $q_1 \ll q_3$ and $q_3 \nleq q_1$. Hence, (S, o, s_0) may not be simple.

Acknowledgement. We are grateful to the referees for their valuable suggestions, which have improved this paper.

REFERENCES

[1] A. Borumand Saeid, M. M. Zahedi ," *Quotient hyper BCK-algebras* ", Quasigroups and Related Systems, **12** (2004), 93-102.

- [2] A. Borumand Saeid, " *Topics in hyper K-algebras* ", Ph.D. Thesis, Islamic Azad University, Science and Research Branch of Kerman, 2004.
- [3] P. Corsini, "*Prolegomena of hypergroup theory* ", Aviani Edittore, Italy, 1993.
- [4] P. Corsini, V. Leoreanu, "*Applications of hyperstructure theory* ", Advances in Mathematics, Vol. 5, Kluwer Academic Publishers, 2003.
- [5] J. E. Hopcroft, R. Motwani, J. D. Ullman, " *Introduction to automata theory, languages and computation*", seconded, Addision –wesley, Reading, MA, 2001.
- [6] Y. Imai, K. Iseki, "*On axiom systems of propositional calculi* ", XIV Proc. Japan Academy, **42** (1966), 19-22.
- [7] Y. B. Jun, X. L. Xin, E. H. Roh, M. M. Zahedi, " *Strong hyper BCK-ideals of hyper BCK-algebras* ", Math. Japon, **51**, no. 3 (2000), 493-498.
- [8] Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei,"*On hyper BCK-algebras* ", Italian Journal of Pure and Applied Mathematics, **8** (2000), 127-136.
- [9] F. Marty, "*Sur une generalization de la notion de groups* ", 8th Congress Math. Scandinaves, Stockholm, (1934), 45-49.
- [10] J. Meng, Y.B. Jun, " *BCK-algebra* ", Kyung Moonsa, Seoul, 1994.
- [11] T. Roodbari, " *Positive implicative and commutative hyper K-ideals* ", Ph.D. Thesis, Shahid Bahonar University of Kerman, Dept. of Mathematics, 2008.
- [12] L. Torkzadeh, T. Roodbari, M. M. Zahedi, "*Hyper stabilizers and normal hyper BCKalgebras* ", Set - Valued Mathematics and Applications, to appear.