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Abstract 
Background: Prostate cancer, a serious genetic disease, has known as the first 

widespread cancer in men, but the molecular changes required for the cancer 

progression has not fully understood. Availability of high-throughput gene 

expression data has led to the development of various computational methods, 

for identification of the critical genes, have involved in the cancer. 

Methods: In this paper, we have shown the construction of co-expression 

networks, which have been using Y-chromosome genes, provided an 

alternative strategy for detecting of new candidate, might involve in prostate 

cancer. In our approach, we have constructed independent co-expression 

networks from normal and cancerous stages have been using a reverse 

engineering approach. Then we have highlighted crucial Y chromosome genes 

involved in the prostate cancer, by analyzing networks, based on party and date 

hubs. 

Results: Our results have led to the detection of 19 critical genes, related to 

prostate cancer, which 12 of them have previously shown to be involved in this 

cancer. Also, essential Y chromosome genes have searched based on 

reconstruction of sub-networks which have led to the identification of 4 

experimentally established as well as 4 new Y chromosome genes might be 

linked putatively to prostate cancer. 

Conclusion: Correct inference of master genes, which mediate molecular, has 

changed during cancer progression would be one of the major challenges in 

cancer genomics. In this paper, we have shown the role of Y chromosome 

genes in finding of the prostate cancer susceptibility genes. Application of our 

approach to the prostate cancer has led to the establishment of the previous 

knowledge about this cancer as well as prediction of other new genes. 
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Introduction 
Prostate cancer has known a complex polygenic 

disorder which would be one of the most known 

cause of mortality in men [1]. Although recent 

studies have identified a number of variants, gene 

fusions, and expression signatures have affiliated 

with prostate cancer, then identification and 

characterization of genes that have involved in this 

cancer, has remained as a formidable challenge [2]. 

The complexity and multigenic nature of cancer 

has caused various genome-wide studies, have been 

achieving a systems-level understanding of the key 

genetic mediators, involved in prostate cancer [3]. 

One focal point in cancer analysis would be the 

reconstruction of co-expression networks. When 

accurate, co-expression networks have represented 

the key mediators that have involved in a specific 

process. The availability of the genome-wide gene 

expression data has helped the development of 

various state-of-art co-expression networks 

reconstruction methods [4-6]. Taking a systems-

wide approach, we have reconstructed two stage-

specific co-expression networks, based on a 

comprehensive prostate cancer gene expression 
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dataset containing 171 different samples monitoring 

gene expression in two different cell states. 

The Y chromosome would be the male-specific 

chromosome in the human genome. It has played 

critical vital functions in male-specific organs, such 

as testis and prostate glands [7]. There were 

evidences indicating that many forms of tumors have 

associated with structural and gene expression 

variations of the Y chromosome [8]. Previous 

studies have shown that there were about 60 genes 

existing, but  in the present day human Y 

chromosome have identified as the survivors of at 

least a set of 1500 genes that have assumed to exist 

in the early proto-Y element [7, 9]. Although the 

involvement of Y chromosome has reported for 

association with prostate cancer [10, 11], currently 

there was little information regarding the 

contribution of the Y linked genes, with progression 

of prostate cancer. 

 In this paper we have tried to address this 

problem to identify candidate genes on the Y 

chromosome that have involved in prostate cancer. 

Our analysis has led to identification of both 

well-established and novel genes, have involved in 

the prostate cancer. Additionally, we have identified 

27 important genes putatively involved in prostate 

cancer. After extensive literature search, we have 

found that for 16 of our candidate genes (about 

60%), there was experimental evidences suggesting 

a role in prostate cancer. 

 

Materials and Methods 
Network reverse engineering approaches 

Reverse engineering of co-expression networks, 

from the whole genome data, has entailed 

deciphering the underlying gene regulatory circuits, 

observing the changes in gene expression profiles. 

After advances in high-throughput technologies, 

several computational reverse engineering has 

approached the different statistical measures [12-

15], including information-theoretic network 

inference methods, which has identified connections, 

between genes, to approach the quantity of common 

information to any pair of genes. Based on the 

Dialogue on Reverse Engineering Assessment and 

Methods 5 (DREAM5) challenge, the context 

likelihood relevance (CLR) algorithm by Faith et al. 

[4] had the best performance among information 

theory based approaches [16]. 

Briefly, CLR has evaluated an interaction 

between two genes as significant by estimation the 

significance of their mutual information (MI) value, 

against a MI values background distribution of every 

other pair, which have involved one of the two genes 

of interest. In this way, the significance level has 

dynamically determined for each interacting pair, 

according to their expression profiles. To give a 

gene expression dataset and the significance scores, 

have calculated by the CLR algorithm, the 

corresponding empirical false discovery rate (FDR) 

could be estimated by running the algorithm on 

randomly shuffled datasets. 

 In this study, we have reconstructed two co-

expression networks using CLR with an FDR 

threshold of 0.05.  

Y chromosome genes 
Through a series of expression studies that have 

conducted on all 60 genes (locus) on the human Y 

chromosome [7], at the initial phase of this study, 

we have retrieved all genes that interact with Y 

chromosome genes from Information Hyperlinked 

over Proteins (iHOP) database [17]. Overall, we 

have identified 471 genes in the entire human 

genome that interact with genes on the Y 

chromosome.  

Prostate cancer microarray data 
Prostate cancer microarray data have 

downloaded from the Gene Expression Omnibus 

(GEO) database, accession number GDS2545 [18]. 

This dataset has contained 171 samples, including 

samples from normal prostate tissue free of any 

pathology (Normal with 18 samples), normal 

prostate tissue adjacent to tumors (Adjacent with 63 

samples), primary prostate tumor tissue (Tumor with 

65 samples), and metastatic prostate cancer 

(Metastasis with 25 samples). We have considered 

Normal and Adjacent tissues as normal prostate 

tissues and Tumor and Metastasis as cancerous 

prostate tissues. Microarray data have preprocessed 

and analyzed, using the LIMMA package in R [19] 

which has originally developed for differential 

expression analysis of microarray data. Quantile 

normalization and a moderated t-statistic have used 

to find differentially expressed genes. More detailed 

descriptions of the methods could be found in the 

original publications. 

Network topological analysis 
Our analysis had two distinct objectives. The 

first was for identifying the most likely candidate 

oncogene among the genes in the reconstructed 

networks via topological analysis. The second one 

was for evaluating the Y-chromosome genes that 
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involved in prostate cancer, based on whether they 

interact with the identified candidate(s) in the 

reconstructed sub-networks. 

To predict the key genes in the prostate cancer, 

we have searched in the stage-specific co-expression 

networks of prostate cancer for genes which either 

had a high number of connections or were 

bottleneck [20, 21]. The bottleneck genes were 

important, because if they have removed from a 

network, the network would be disrupted, as they are 

Table 1. 19 of 22 genes have shown different topological characteristics in different networks. 

Investigations have shown that 12 genes have putatively involved in prostate cancer. 

Gene name Normal  Cancerous Gene functions 

GAPDH Party hub Date hub Expression level of GAPDH is significantly different between cancer 

and normal tissue, so this gene is a suitable denominator for gene 

expression studies in prostate cancer [34].  

FGFR1 Party hub Date hub Expression of FGFR1 is closely linked to prostate cancer progression 

[35]. 

RB1 Party hub NA The loss of the RB1 gene is an important event in prostate cancer 

tumorigenesis [36].  

MYB Party hub Date hub MYB is amplified in prostate cancer [37]. 

USP9X Party hub Date hub Over-expression of USP9X was reported in breast cancer tissue 

compared to adjacent normal tissue [38]. 

SF1 Party hub NA Studies showed the importance of SF1 dosage during tumorigenesis of 

adrenal cortex [39]. 

KLK3 Date hub Party hub KLK3 and its encoded protein (PSA) are related to prostate cancer and 

used as a biomarker for this disease [40]. 

SMAD3 Date hub Party hub SMAD3 is an important co-regulator for the androgen-signaling 

pathway and has a positive role in prostate cancer growth [41]. 

BCR Date hub Party hub BCR–ABL1 gene fusion is the underlying aberration that cause to 10% 

of all leukemia [42]. 

HEXA NA Party hub Activity increasement of HEXA were reported in various types of 

human cancer such as ovarian [43]. 

CD44 Date hub Party hub CD44 is a metastasis suppressor gene for prostate cancer and its 

expression level is down-regulated during prostate cancer progression 

[44]. 

SFN NA Party hub Some of tumor suppressor gene such as SFN was highly methylated in 

prostate cancer [45].  

HMGB2 NA Party hub AR signaling is modulated by AR cofactors such as HMGB2, so the 

modification of this cofactor may cause androgen-dependent PCa to 

gain castration-resistant status [46]. 

IL10RB NA Party hub There is a strong association between the IL10RB SNPs and benign 

prostate hyperplasia in Korean population [47]. 

FAS Date hub NA FAS-mediated programmed cell death correlate with the clinical stage 

of tumors in prostate cancer [48].  

TNFRSF25 NA Date hub Studies related to bladder cancer showed the higher rates of methylation 

for TNFRSF25 in malignant than in normal Urothelial tissue [49]. 

GPI NA Date hub GPI influence tumor growth and promoting cell motility and 

proliferation [50]. 

UBE3A NA Date hub UBE3A involves in prostate and mammary gland development. Down-

regulation of this gene was reported in prostate cancer compared with 

normal tissue [51].  

OLFM1 NA Date hub OLFM1 protein was significantly up-regulated in lung carcinoma than 

in normal lung tissues [52]. 

ACTB Date hub Date hub - 

MAOA Date hub Date hub - 

PTPRC Date hub Date hub - 

NA: Neither Party hub nor Date hub 
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major intersections between clusters in the network 

[22]. To find such genes, we have topologically 

analyzed both constructed networks, following the 

same rules, have been using cyto-Hubba package. 

[23]. 

 

Results 
Stage specific network reconstruction of 

prostate cancer 
For the first step, we have reconstructed two 

independent co-expression networks for the normal 

and cancerous tissues using the CLR algorithm. We 

have considered 310 genes of the 471 genes 

extracted from iHOP due to the availability of 

expression data from our transcriptomics dataset. 

The resulting normal network that has contained 

2147 interactions, and the cancerous network 

contained 2201 interactions have used for further 

analysis. Additionally, topological analysis of the 

networks has revealed that both networks exhibit the 

small-word property [24] and scales-free 

architecture [25] (Figure 1). Both reconstructed 

networks have mainly composed of the same set 

genes; however the conserved interactions among 

these two networks were very low. 

Detection of essential genes involved in the 

prostate cancer 
To consider the importance of hub and 

bottleneck proteins in the structure of co-expression 

networks, the 10 highest-ranked genes have 

identified for each stage-specific network based on 

their degree and bottleneck scores, separately. In 

total, 22 candidate genes have selected for further 

analysis. 

In each network, we have categorized these 22 

genes based on their degree and bottleneck scores in 

two groups: 1) Hub-NonBottleneck: genes with high 

degrees and low bottleneck scores, were putative 

party hubs [26]; 2) Hub-Bottleneck: genes with high 

degrees and high bottleneck scores, were putative 

date hubs [26]. 

The results have shown hub type variation for 

19 genes across different tissues, whereas 3 other 

genes have functionally conserved as date hubs 

under both conditions (Table 1). We have 

considered these 19 genes as defined critical genes 

for further analysis.  

Detection of Y chromosome genes involved in 

the prostate cancer 
For the second step, due to detection of the Y 

chromosome genes that interact with 19 defined 

critical genes, we have extracted a sub-network 

 
Figure 1. Co-expression Network architecture. Both networks (normal and cancerous network) have 

followed the well-known characteristics of most biological networks, scales-free architecture (A) defined as 

few highly connected genes (hubs) that link the other less connected genes to the network and small-word 

property (B) which meant any two genes in the network could be connected by relatively short paths through 

all interactions. 
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using these critical genes and 60 genes on the Y 

chromosome. The sub-networks have extracted and 

visualized by Cytoscape software (Figure 2). 

According to Figure 2, all of the 19 defined critical 

genes had interactions with 19 genes of 60 genes on 

the Y chromosome in the normal sub-network while 

the number of Y chromosome genes in cancerous 

network decreased to 15 genes of 60 genes. Closer 

investigation have shown some genes such as SRY, 

XKRY2, AMELY, UTY, DDX3Y and EIF1AY of 

the normal network have substituted by BPY2 and 

RPS4Y1 in the cancerous network (Figure 2). 

Topological comparison of these two sub-networks 

have recapitulated the previous findings about 

extensive networks rewiring [27]. We have done 

some literature search about these 8 genes. Among 

the 8 genes, we have identified 4 genes associated 

with prostate cancer. Although BPY2, UTY, SRY 

and EIF1AY would be the most prominent in 

prostate cancer [11, 28], we could not find any 

evidence to show the relationship between the 4 

remaining genes such as RPS4Y1, AMELY, 

XKRY2 and DDX3Y to any type of cancer. 

 

Discussion 
To reconstruct cell stage specific co-expression 

networks, we have focused on the available 

comprehensive transcriptome dataset, originally 

published in [18]. In our approach, genes have 

analyzed and prioritized based on the transcriptome 

data. Hence, we were able to make reliable 

predictions only for genes with altered expression 

level across normal and cancerous conditions. To 

focus on these genes, we have considered only genes 

that have up-/ down-regulated (fold change≥1.5 and 

p-value<0.05) in cancerous stage and had interaction 

with Y chromosome genes (310 genes). Although 

most of the computational have approached to 

identify group of genes that have significantly up-

/down regulated during cancer progression, we have 

believed in complementary analysis to identify 

critical genes which involved in cancer. We have 

checked for enrichment of known cancer genes 

among this set by using a previously curated list of 

555 high confidence cancer genes, originally 

published in [29]. We have also collected 100 genes 

identified as mediators in metastatic prostate cancer 

from [30], and we have added 276 genes annotated 

as either a cancer pathway or prostate cancer gene in 

the KEGG database.  

To identify master genes and their associated 

interactions governing cell-specific behavior in 

normal and cancerous state, we have compared the 

networks of prostate cells in both stages with each 

other.  

 
Figure 2. Comparison of normal and cancerous prostate network in terms of interactions among 19 

defined critical genes, and Y chromosome genes. Both sub-networks have extracted from constructed co-

expression networks based on 19 defined genes and Y chromosome genes. The networks have contained 

genes from normal prostate tissue (A) and cancerous prostate tissue (B). The 19 defined critical genes have 

colored in pink and the Y chromosome genes colored in green. Orange nodes in the sub-networks were the 

genes that have rewired during cancer progression. 
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Han et al. suggested the existence of two types 

of protein hubs in the protein-protein interaction 

networks: party hubs and date hubs [26]. Although 

both interactions with many proteins, the difference 

was that party hubs would be proteins that interact 

with many other proteins simultaneously, whereas 

date hubs interacted with their partners 

asynchronously [26]. By definition, the bottleneck 

proteins were responsible for the inter connection of 

clusters in the network, and thus bottlenecks with 

high degrees were most likely date hubs which 

contain groups of genes that assist to present 

common functions [22, 31]. The obtained results 

have recapitulated previous findings which have 

demonstrated some active sub-networks contained 

regulatory interactions supplant by new interactions 

and changed their degrees during different 

conditions [32]. 

Our analysis has led to the identification of both 

well-established and novel genes involved in this 

type of cancer. Our result has led to the 

identification of 27 important genes putatively 

involved in prostate cancer. Additionally, we have 

identified 19 of 27 genes that are bottleneck and 

changed their interaction during cancer progression. 

Although the functional role of 12 of 19 genes were 

well known as critical genes for prostate cancer, the 

remaining 7 genes (USP9X, SF1, BCR, HEXA, 

TNFRSF25, GPI and OLFM1) were new candidates 

that might have critical roles in prostate cancer 

based on topological significance and regulatory 

changes during cancer progression (Table 1). We 

have identified these genes associated with other 

cancer types such as breast, leukemia, bladder and 

lung (Table 1 for more details). We have also shown 

that in addition to the 4 well known Y chromosome 

gene (BPY2, SRY, UTY and EIF1AY), 4 other Y 

chromosome genes such as RPS4Y1, AMELY, 

XKRY2 and DDX3Y have rewired and thus 

predicted these to have important roles in prostate 

cancer. 

 

Conclusion 
In this paper, we have presented an accurate 

network-based approach for the analysis of 

transcriptome data. The analysis of prostate state 

specific co-expression networks has revealed that for 

16 of our candidate genes, there were experimental 

evidences regarding to their role in prostate cancer. 

Additionally, we have found that about 85% of 

our candidate genes to be linked to various cancers, 

so they would be used as key factors for future 

research in the field of cancer studies. 

The low numbers of predictions and high 

degree of overlap with previously known events 

have demonstrated the high efficiency of our 

approach. In addition, the low number of predicted 

gene sets, has made it easy for designing follow up 

experiments to validate results.  

For the genome-wide investigations, this would 

be a fundamental challenge for future development 

of the translational medical informatics, yielding 

new potential drug target candidates [33]. 
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