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Attempt to evaluate soil fertility was and still is one of the most challenging 

public importance. Soil nutrients are the key factors in soil fertility. For this 

reason, when constructing soil fertility potential, many researchers prefer to 

investigate soil nutrient status or use and assessment of qualitative research 

methods. Quantifying soil fertility is challenging since various factors such as 

numerous physical and chemical characteristics of soil might affect it. The proper 

selection of factors that may more accurately describe soil fertility is another 

issue. So, in this study, we developed a regional soil fertility index (SFI) based on 

different soil nutrients for quantifying soil fertility. After receiving fertility, a 

comparative study of machine learning techniques was carried out to construct its 

distribution map, using digital soil mapping (DSM). The spatial distribution of the 

SFI map showed that 55% of the studied area had poor fertility, 27.25% had 

moderately fertile soils, and only a tiny area had fertile soils. The results indicated 

that heavy soil texture and high calcium carbonate content were the most limiting 

factor and phosphorus and zinc were the most limiting nutrients across the studied 

area. Comparing machine learning techniques yielded the finding that the Random 

forest model has the best performance for predicting SFI (R2= 0.86) compared 

with the Decision tree (R2= 0.53) and Multi-linear regression (R2= 0.35). 

Therefore, specific soil fertility management practices and training farmers on the 

proper use of soil fertility management practices are recommended. 
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1. Introduction 

Soil properties vary spatially across landscapes due to intrinsic and extrinsic human activities 

(Iticha and Takele, 2019). This variability causes differences within the main soil 

characteristics and along with it, differences in soil fertility. According to Pant et al. (2019), 

the most basic decision-making tool for a particular land-use system is soil fertility, which 

helps to establish appropriate management strategies for farmers, extension agents, and 

policymakers.  

Therefore, to plan for sustainability, it is essential to understand the proper way to evaluate 

soil fertility status and map its spatial distribution across the landscape (Khadka et al., 2019). 

Attempts to evaluate soil properties and their fertility were inherent for the primary 

agricultural civilizations and still are of great public importance; therefore, several 

generations of scientists focused their efforts thereon. The results of these efforts showed that 

there are direct and indirect ways of evaluating soil fertility. 

Direct evaluation includes several numbers of processes using field and laboratory 

diagnostics and indirect evaluation consists of developing and applying a variety of 

mathematical models (Saglam and Dengiz, 2014). So, many studies are applied towards 

determining soil fertility status and suggested various approaches that concern this main 

objective: 

Evaluation of soil properties that involved assessing soil fertility and mapping their spatial 

variability using geostatic interpolation techniques (Nguemezi et al., 2020; Iticha and Takele, 

2019; Panday et al., 2018; Sirsat et al., 2018). Recently, Panday et al. (2018) used kriging as 

an ArcGIS geostatistical tool to interpolate measurements of those variables, and multiple 

digital map layers were developed based on each soil's chemical properties. They 

demonstrated how these maps help farmers evaluate the current status of their agricultural 

soils, make decisions about their management more easily and effectively, and ensure 

sustainable productivity. 

Furthermore, using innovative computer-based methods such as GIS and GPS techniques 

for creating maps that store, analyze, and show spatial soil fertility variability (AlBudeiri and 

Aloosy, 2019; Babalola et al., 2019; Arif et al., 2017; Prado et al., 2012). 

In various studies, SFI determination with the use of feature selection and machine 

learning techniques to extract the most important soil properties that affect it has been 

considered (Cao et al., 2021; Haryuni et al., 2020; Merumba et al., 2020; Nguemezi et al., 

2020; Mokarram et al., 2018; Awasthi and Bansal, 2017). Similarly, using the ordered 

weighted averaging (OWA) and therefore the analytical hierarchy process (AHP) method 

(Fayyaz et al., 2021; Chen et al., 209; Zabihi et al., 2019). Pant et al. (2019) used machine 

learning algorithms and the Rough Set method to classify SFI levels and determine the 

accuracy of this method. 

It has been highlighted across all research that quantifying soil fertility potential is 

challenging since a variety of factors might affect its quantification. As, numerous physical 

and chemical characteristics of the soil. So, the proper selection of factors that may more 

accurately describe soil fertility is another issue (Moral et al., 2012). 

Nowadays, modern computer techniques like digital soil mapping and remote sensing have 

become the preferred choice for crop monitoring, crop yield forecasting, and soil fertility 

assessment (Hounkpatin et al., 2022; Subramanian et al., 2022; Weissa et al., 2020; Kumar et 

al., 2021; Bagheri Bodaghabadi et al., 2019). Additionally, it is a non-destructive, economical, 

and quick technique for crop growth simulation (Seo et al., 2019). Therefore, this study was 

conducted with the main objective of mapping the spatial distribution of soil fertility with 

DSM by using auxiliary variables and the most reliable machine-learning model, within the 
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region. The study was also conducted to accomplish these objectives: assessing the fertility 

status by developing an SFI model at the regional level and comparing three machine learning 

techniques for its spatial prediction. 

 

2. Materials and Methods 

2.1. Description of the Study Area 

The study area is located in the Honam watershed in the south of Alashtar city, which is one 

of the most important agricultural areas in the Karkheh River basin of Iran and covers a total 

area of 4000 hectares. This area consists of two landforms the Piedmont Plain and a valley. 

Wheat fields are the most commonly used type of land in the study area. The average annual 

temperature is 8.8 °C, and the average annual rainfall is 554 mm. The soil moisture and 

temperature regimes are xeric and mesic, respectively, and the soils of the studied area were 

classified into three main soil great group including Haploxerepts, Calcixerepts and 

Xerofluvents (Soil Survey Staff, 2014). Figure 1 depicts the location of the study area as well 

as the locations of the surface soil sampling sites. 

 

Fig.1. Location of Honam watershed in Lorestan Province, Iran (A),  

surface soil sampling sites in the study area (B) 

 

2.2. Soil sampling and laboratory analysis 

181 surface soil samples (0–30 cm depth) were taken during the field investigation phase 

utilizing stratified random sampling, which was supported by the expertise of soil scientists 

and cartographic products (mainly digital elevation models). The latter was used to investigate 

the interactions between soil and landscape and to encourage sampling in various landforms. 

A portable GPS was used to map out the locations of each soil sampling site. The soil's 

nutrient concentrations, including total nitrogen (Nelson & Sommers, 1996), available 
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phosphorus (Olsen, 1954), available potassium (Jackson, 1973), organic carbon (Walkley and 

Black, 1934), available copper, iron, manganese, and zinc (DTPA method, Lindsay & 

Norvell, 1978), were measured after the soil sample was transferred to the lab, air dried, and 

the fine components were passed through a 2 mm sieve. Similar to that, titrimetric and 

hydrometer techniques were used to measure the soil's CaCO3 content and particle size 

distribution (Soil Survey Staff, 1992). Using a pH and EC measuring glass electrode, the 

samples' soil pH and electrical conductivity were tested at a soil/water ratio of 1:2.5 (Jackson, 

1973). 

 

2.3. Statistical analysis and determination of soil fertility status 

Using SPSS software, a descriptive study of the minimum, maximum, mean, and standard 

deviation of the soil nutrient content was carried out. In this work, we used the SFI model to 

assess the soil's fertility state (Tunçay et al., 2021). This model, which uses a parametric 

method for each soil type to determine soil fertility using SFI classes, is one of the best fits. 

Each soil is evaluated based on factor ratings ranging between 10 and 100 using a rating value 

for each soil parameter (Table 1). The factor rank's least favorable value is 10 and its most 

beneficial value is 100 (Tunçay et al., 2021). The threshold levels of some soil nutrients have 

been modified according to the state of this nutrient in the Iranian agricultural soils, extracted 

and published from 315,000 data related to 50,000 soil types, which were carried out to 

develop a soil fertility database and assess the fertility of the nation's agricultural land by 

Shahbazi and Besharati (2013).  

SFI is calculated using the value of each factor rating as follows:  

SFI = [Rmax *√A /100* B /100*…….] (1) 

Where SFI: soil fertility index, Rmax: maximum ratio: (A + B+….)/n, A, B …: rating 

value for each indicator, and n: number of indicators (Tunçay et al, 2021). 

Table 1. Factor rating of each soil parameter  

(some of the soil parameter's factor rating was taken from Tunçay et al, 2021) 

 
Indicators Indicator rating 

soil physical 

and chemical 

characteristics* 

Unit 100 80 50 20 10 

A-Ntotal % >0.32 0.32–0.17 0.09–0.17 0.09–0.045 <0.045 

B-Pav mgkg-1 >20 15-20 10-15 5-10 5 

C-Kav mgkg-1 110-288 288-975 51-110 >975 <51 

D-Mn av mgkg-1 14–50 4–14 50–170 >170 <4 

E-Zn av mgkg-1 >1 0.75-1 0.5-0.75 0.25-0.5 <0.25 

F-Fe av mgkg-1 >7.5 5-7.5 2.5-5 …….. …… 

G-Cu av mgkg-1 >1 0.25-1 <0.25 …… …… 

H-Caco3 % 5-15 15-25 25-40 40-60 >60 

I-Salt or EC % or dSm-1 0–0.15 or 0–2 0.15–0.30 or 2–4 0.30–0.50or 4–6 0.50–0.65 or 6–8 >0.65 or >8 

J-pH - 6.5–7.5 7.5–8.5 5.5–6.5 4.5–5.5 <4.5–>8.5 

K-SOM % >3 2–3 1–2 0.5–1 0–0.5 

L-Texture - CL, SCL, SiCL, 
vfSL, L, SiL,  

Si, <%50 C 

>%50 C, SC, 

SiC 
SL, fSL S, LS 

* Ntotal, Pav, Kav, Mnav, Znav, Feav, and Cuav are total nitrogen, available phosphorus, available potassium, 

available manganese, available zinc, available iron, and available copper, respectively. In addition, EC and SOM 

are the conductivity and organic matter of the soil, and the soil texture symbols are CL: clay loam, SCL: sandy 

clay loam, vfSL: very fine sandy loam, L: loam, C: clay, SL: sandy loam, fSL: fine sandy loam, S: sand, LS: 

loamy sand, SiCL: silty clay loam, SiL: silty loam, Si: silty, SC: sandy clay, SiC: silty clay. 
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An example of how to calculate this index for the characteristics of one of the study points 

is given in Table 2. 

Table 2. An example of SFI index calculation for one of the study points  

Indicators A B C D E F G H I J K L 

Soil 
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Actual values 0.111 5.4 390 21.6 0.48 13.8 2.12 34 0.9 7.4 1.11 SIC 

Calculated 

factor rating 

(According to 

table 1) 

27.87 15.27 80 100 50 100 100 50 91 100 47.07 50 

Rmax=(27.87+15.27+80+100+50+100+100+50+91+100+47.07+50)/12=67.60 

SFI = [67.60 *√27.87 /100* 15.27 /100*…….]=67.60*0.047=3.22 

 

2.4. Acquisition of Environmental covariates 

A stack of environmental variables database for predictive modeling was created using a 

variety of geospatial datasets associated with soil formation. Several digital terrain attributes, 

such as elevation, valley depth, curvature, slope, aspect, SAGA wetness index, topographic 

wetness index, plan curvature, and local curvature, were extracted and computed through a 

30*30 m grid cell resolution of a digital elevation model (DEM) derived from NASA's Shuttle 

Radar Topography Mission (SRTM DEM), which is freely available on the USGS Earth 

Explorer (https://earthexplorer.usgs). 

The spectral bands of Sentinel-2 images were used to develop a set of spectrum indices 

related to yield, parent material, and soil. To avoid losing important local variations of the 

study area by using coarse spatial resolution products, we have focused our research on these 

image data, providing a fantastic opportunity for incorporating extensive datasets with high 

spatial resolution data. But, due to the large data volumes, deriving spectral indices requires 

large amounts of data storage, high computational power, and the ability to distribute 

algorithms. Since its inception, the functionality of Google Earth Engine (GEE) has been 

freely and publicly available to everyone (https://earthengine.google.com). GEE is a cloud-

based platform that offers high-performance computing services and a lot of multi-source 

satellite data, making satellite imagery computing a relatively fast and flexible process (Xie et 

al., 2019; Gorelick et al., 2017).  

Satellite data were obtained from February to July 2019 (following the trend of one-year 

NDVI) to better identify the growing patterns of the study area over a year (due to different 

agricultural management practices), and the mean pixel value of spectral bands with less than 

20% cloud coverage was used for remote sensing-based covariance. Together with these 

topographic variables and remote sensing images, to evaluate parent soil materials and other 

soil-forming factors, we use geomorphological maps built based on a hierarchical 

geomorphological approach defined by Zink (1989). According to this approach, 

geomorphological units are divided into four levels: landscape, landform, lithology, and 

geomorphological surface (Zink, 1989). There are 19 geomorphological units in this research 

area (Ebrahimi et al., 2022). More information on the most crucial auxiliary variables 

collected from sentinel spectral data of the study region can be found in Table 3. 
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Table 3. Important auxiliary variables derived from sentinel spectral data of the study area 

Index Formula Description References 

Vegetation indices 

NDVI NIR− Red /NIR+ Red Crop monitoring and empirical studies Rouse et al., 1973 

SAVI (1+L) (NIR− Red / NIR+ Red +L) 
Improving the sensitivity of NDVI to soil 

backgrounds 
Huete, 1994 

OSAVI NIR- Red/NIR+ Red+ X 
Calculation of the aboveground biomass, leaf 

nitrogen content, and chlorophyll content 
Rahim et al., 2016 

MSAVI 
0.5{2·N IR + 1− √ (2·NIR + 1)  

2 − 8 (NIR − Red) 
Reduction of bare soil influence on SAVI Qi et al.,1994 

Parent material and soil indices 

Carbonate index R/G Carbonate response 
Amen and 

Blaszczynski, 2001 

Clay index SWIR 1/SWIR 2 Clay response Hengl, 2007 

Coloration Index (R-G)/(R+G) Soil color Ray et al., 2004 

 

2.5. Geospatial data set preparation 

Preparing a dataset of environmental covariates combined with soil data was done in this way: 

1-converting polygon maps to raster, 2-resampling all auxiliary variables to the same raster 

grid of 30 × 30 m, 3-filtering out missing pixels, 4-building a stack of all environmental 

covariates, 5- intersecting the raster stack with the soil point observation to create a final 

geospatial dataset for predictive modeling. 

 

2.6. Models used 

Three machine learning algorithms (i.e., Multi-linear Regression (MLR), Decision Trees 

(DT), and Random Forests (RF)) and a set of auxiliary variables (i.e., geomorphology, terrain 

attributes, and remote sensing data) are used to find a more appropriate model for predicting 

SFI. These machine-learning models are used because of their successful application in earlier 

studies and their relatively good accuracy, robustness, and ease of use (Hounkpatin et al., 

2022; Hu et al., 2020; Zeraatpisheh et al., 2019; Hengl et al., 2017; Bagheri Bodaghabadi et 

al., 2015). The entire model was developed using R software. 

Prediction of the SFI spatial distribution based on environmental variables as independent 

variables is generated by a linear regression equation in the MLR model. In this study, we 

used the lm function of the R software to analyze the MLR. In addition, to identify the most 

important independent variables in this regression model, we used stepwise regression, which 

is a popular data mining tool, which uses statistical significance to explain the causal effect of 

independent variables on the dependent variables. The R software step function is used for 

this purpose. The second applied model in this study was DT one of the most important and 

oldest machine learning algorithms that are easy to interpret and quick to learn (Quinlan, 

1986). In this study, we used the rpart function of the R software to analyze DT. The RF 

model as an extension of the regression tree model was the last model that is based on 

creating multiple classifications, or regression trees, and uses two levels of randomization for 

each tree in the forest. RF improves the accuracy of predictions and reduces model overfitting 

(Breiman, 2001). It can handle large amounts of both numerical and categorical data and is 

unaffected by missing data (Subramanian et al., 2022). The Random Forest package in the R 

environment is used to predict this model. To identify the most important environmental 

variables, the varimp function of this package was used. 
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2.7. SFI spatial prediction and validation  

In this study, the performance of different models was assessed using K-fold cross-validation 

(Kohavi, 1995). The data set is separated into K roughly equal sets using this procedure. These 

sets include one set specifically for validation. The target variable was then predicted using the 

model for the reserved data points after it had been calibrated using information from the K-1 

sets. Then, using this forecast, the prediction error is calculated. This procedure is carried out K 

times, with a different set being reserved for validation each time. In this manner, K estimates 

of the prediction error are obtained, one for each validation sample set (Yigini et al., 2018). 

With this method, data set calibration and validation depend less on a single random partition. 

All observations were used for calibration and validation by performing the training procedure k 

times, with each observation only being used once for validation. 

 

2.8. Evaluation of model performances 

The mean square error (RMSE), coefficient of determination (R2), and relative RMSE 

(%RMSE) were used to assess the efficacy of various estimation models. According to Park 

and Vlek (2002), the dimensionless % RMSE enables the comparison of the accuracy of 

variables of various types and volatility ranges.  

 (2) 

 (3) 

%RMSE = (RMSE/ Oavg)*100 (4) 

where Pi, Oi, Oavg, Pavg, n, and p are the observed and predicted values of the soil 

properties at the i-th point, the mean of the observed and estimated values at that point, the 

number of observations, and the total number of explanatory variables in the model, 

respectively (Rahman et al., 2020).  

To map the SFI in the study area, a more efficient model was finally used. Jenks (1967) 

developed the natural break method, which was used to assign different soil fertility classes 

more accurately. 

 

3. Results and Discussion 

Summary statistics of soil characteristics and also SFI index are presented in Table 4. In 

general, the results showed that 89% of samples have a pH of more than 7.5, 87% have an 

electrical conductivity of less than 1 dS m-1, 87% have organic carbon of more than 1%, 80% 

have available phosphorus less than 15 mg kg-1, and 74% have available potassium of more 

than 300 mg kg-1 soil. Also, 26, 14.3, and 84 percent of samples have available iron, 

manganese, and zinc, respectively, less than 7, 7, and 1 mg kg-1. 

Calcium carbonate levels exceeding 10% are present in 97 percent of soil samples, which 

shows that it has a significant influence on the soil properties of the study area. Additionally, 

the research area has a reasonably high clay percentage, which indicates a heavy to relatively 

heavy soil texture. With a range of 0.75 to 52.33, the SFI levels show a significant variety of 

fertility throughout the research area. 
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Table 4. Descriptive statistical summary of the soil characteristics and calculated SFI 

 
Range Minimum Maximum Mean Std. Deviation 

pH 1.04 6.94 7.98 7.61 0.15 

EC 1.96 0.36 2.32 0.77 0.35 

TNV 68.10 0.00 68.10 27.48 8.43 

Om 12.46 0.86 13.33 2.85 1.70 

Ntotal 0.72 0.05 0.77 0.16 0.09 

Pava 65.40 0.60 66.00 11.64 10.54 

Kava 1043.00 123.00 1166.00 370.28 127.12 

Cuava 1.80 0.90 2.70 1.79 0.35 

Znava 7.00 0.24 7.24 0.76 0.71 

Mnava 45.90 3.10 49.00 14.60 7.06 

Feava 29.70 2.10 31.80 10.78 5.14 

Clay 27.00 28.00 55.00 42.82 5.57 

SFI index 51.58 0.75 52.33 10.03 9.45 

 

3.1. Auxiliary data used in predictive models  

The results show that in machine learning models, some auxiliary data affect SFI predictions. 

In the MLR model based on the step function in the R software, the most important variable 

was the minimum curvature, lithology, clay index and MSAVI. The most important variables 

used in the DT model based on rpart function in R software were NDVI, OSAVI, MSAVI, 

clay index, elevation, longitudinal curvature, and carbonate index, respectively. MSAVI, 

NDVI, SAVI, carbonate index, color index, clay index, aspect and maximum curvature were 

the most important variables based on varimp function in the Random Forest package of R 

software. Figure 2 shows the result of varimp function for important environmental data of 

Random Forest model (Fig.2). 

 

Fig.2. Important environmental data of Random Forest model 

Archive of SID.ir

Archive of SID.ir



Spatial Modeling of a Soil Fertility Index Using …/ Ebrahimi Meymand et al. 373 

 

Our results demonstrated that spectral vegetation indices were useful predictors for 

mapping SFI in all used machine-learning models. This result is in line with other research 

that shows a significant correlation between these kinds of indices and crop yields (Dedeoğlu 

et al., 2020; Zhao et al., 2020; Thapa et al., 2019; Ferna et al., 2018; Xie et al., 2018). 

The findings also indicated that parent material and soil indices (carbonate and clay 

indices) are additional helpful predictors of SFI in the study area. This finding may be related 

to the study area's surface soils' high levels of calcium carbonate and heavy soil texture and 

their effects on the decline in soil fertility. Long-term relationships between soil fertility and 

soil texture exist because soil porosity influences water holding capacity and water flow, 

which therefore have an impact on soil fertility (Upadhyay and Raghubanshi, 2020). 

Elevation and curvature were other important variables that influenced soil fertility. The 

relationship between terrain attributes and soil properties and thus soil fertility has been 

described in many studies (Ayele et al., 2019, Kokulan et al., 2018). 

 

3.2. Accuracy of the prediction models 

The results of comparing applied machine learning algorithms based on the mentioned 

accuracy measures for choosing a better SFI predictive model are shown in Table 5. 

Table 5. Result of comparing applied machine learning algorithms 

Machine learning model RMSE R2 RMSE% 

RF 4.31 0.86 0.43 

DT 6.51 0.53 0.64 

MLR 7.57 0.35 0.75 

(SFI=15.2 - 218 min curvature - 0.95 lithology - 11.1 clay index +26.1 MSAVI)  

 

 Notably, MLR performed poorly compared to the non-linear machine learning algorithm. 

Compared to RF and DT, the MLR model displays marginally worse results. It is important to 

note that, as compared to the DT model, the RF model performed the best at predicting SFI. 

This is due to solving multivariable matching problems because RF has combined multiple 

trees to form a vote allocation mechanism (Subramanian et al., 2022). 

The good performance of RF is coherent with the previous studies (Hounkpatin et al., 

2022; Hu et al., 2020; Zeraatpisheh et al., 2019; Hengl et al., 2017). RF is advised by 

Kampichler et al. (2010) due to its performance, modeling simplicity, and interoperability. 

Although the DT model is less adaptable than the RF model, it performs better predictions 

than the MLR model. Numerous scholars have noted the MLR's shortcomings in dealing with 

non-linear correlations between the target and predictive factors, particularly in heterogeneous 

landscapes (Subramanian et al., 2022; Forkuor et al., 2017; Selige et al., 2006). Scatter plots 

of observed versus predicted SFI by using different machine learning techniques are shown in 

Figure 3. 

 

3.3. Spatial distribution of soil fertility 

The digital soil map of surface SFI distribution by using a random forest model of the study 

area is shown in Figure 4. According to Jenks's (1967) natural break method, only a very 

small region (17.76 percent) had fertile soil, 55 percent of the overall area had poor fertility 

and 27.25 percent had moderate fertility soil (Table 6).  

The fertility map reveals that the study area's northern and southernmost regions have the 

greatest concentrations of infertile soils. This is probably caused by the area's dense texture 
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and high calcium carbonate concentration. Additionally, the inadequate availability of plant 

nutrients like phosphorus and zinc in soils in low-fertility locations limits plant growth. 

(A) 

 

(B) 

 

(C)

 

Fig.3. Scatter plot of observed versus predicted SFI by 

using different machine learning techniques (A: Multi-

linear regression, B: decision tree, C: random forest). 

The 1:1 line (red) and, coefficient of determination 

(R2), are indicated in each figure. 

Note: R2 scores are divided into four categories: 

extremely good (>0.81), good (0.61-0.8), fair (0.41-

0.6), and poor (0.4) for estimations of soil parameters 

(Rossel et al., 2008). 
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Fig. 4. Distribution map of surface SFI based on random forest model 
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Table 6. Classification of surface SFI at five levels, according to the natural break method developed 

by Jenks (1967) 

 

SFI range Fertility class Area(hectare) Percentage 

21-34.8 I 95.23 2.51 

16-20 II 249.04 6.57 

12-15 III 329.06 8.68 

8-11 IV 1033.65 27.25 

2.66-7 V 2086.13 55.00 

 

4. Conclusions 

To map the spatial distribution of soil fertility, this study investigated the use of geographic 

information systems, digital soil mapping methods, spectral capabilities of Sentinel-2A 

imagery, and machine learning models, as well as laboratory-analyzed soil samples. Multiple 

linear regression, random forest, and decision tree were the three machine learning prediction 

models that were tested and compared. K-fold cross-validation was used to assess the 

effectiveness of each model. 

In all employed machine learning models, the key factors affecting the spatial distribution 

of soil fertility were identified, and it was found that spectral vegetation indices, which 

reference yield as well as parent material indices, were effective predictors for mapping SFI. 

The result of comparing applied machine learning algorithms shows the good performance 

of the RF model, due to the combination of multiple trees to form a vote allocation mechanism. 

The soil fertility map categorization results show that the research area's fertility level was 

generally low. The heavy soil texture, high calcium carbonate concentration, and low 

availability of plant nutrients like phosphorus and zinc were the most important contributors 

to lowering soil fertility status. Therefore, specific soil fertility management practices are 

recommended based on limiting nutrients in those fields having inadequate levels of plant 

nutrients together with training farmers on the proper use of the appropriate soil fertility 

management practice. 

It is advised that more studies be done to confirm the value of SFI in decision-making and 

implementation for various contexts and regions. Future research should also take into 

account how human activities, in addition to other physical and environmental aspects 

including soil parent material, and climatic, hydrological, and ecological elements, affect soil 

fertility status. 
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