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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

Generally, human resources play an important role in manufacturing 

systems as they can affect the work environment. One of the most 

important factors impressing on worker performance is there being an 

interactional interest between workers in workshops. In this paper, we 

deal with this new concept in cellular manufacturing systems (CMS). 

Besides the existence of interactional interest, workers could be able 

to work with machines in their cells. In an ideal situation, all workers 

could be able to work with all machines in their cells, while there 

would be an interactional interest between each pair of them in the 

cells. Two matrices named “Task matrix” and “Interest matrix” are 

used to model the proposed problem. By minimizing the voids of these 

two matrices in a diagonal form simultaneously, we seek the ideal 

situation above. Because of nonhemogeneus matrices, a bi-objective 

mathematical model is developed. The ε-constraint method is applied 

as an optimization tool to solve the bi-objective model. Finally some 

numerical examples are solved to exhibit the capability of the 

presented problem. 
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11..  IInnttrroodduuccttiioonn

  

Cellular manufacturing is a practical aspect of 

grouping technology (GT) philosophy by Mitrifanov 

(1966), in where similar parts and dissimilar machines 

are grouped into cells to exploit the cost-effectiveness 

of mass production and flexibility of job shop 

manufacturing to succeed in the recent competitive 

market (Mahdavi et al. 2009). Some advantages of 

cellular manufacturing are reported in the literature as: 

better quality and production control, increase in 

system flexibility, reduction in setup time, throughput 

time, work-in-process inventories, and material 

handling costs (Wemmerlov and Hyer 1989; Heragu 
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1994). Design of cellular manufacturing systems 

(CMS) is interpreted as the cell formation problem.  

In the last three decades of research, many solution 

methods have mainly used zero–one machine 

component incidence matrix as the input data for the 

cell formation problem, such as hierarchical methods, 

non-hierarchical methods, production flow analysis, 

genetic algorithms, simulated annealing, neural 

networks, mathematical models, meta-heuristic 

algorithms, etc. (Paydar and Saidi-Mehrabad 2013). 

Comprehensive summaries and taxonomies can be 

found in Mansouri et al. (2000), Yin and Yasuda 

(2006), Ghosh et al. (2010 a, b) and Papaioannou and 

Wilson (2010). Some works on the cell formation 

problem can be reviewed as the following:  

Mahdavi et al. (2009) developed a mathematical model 

based on cell utilization concept in a CMS. An efficient 

algorithm based on genetic algorithm was designed to 
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solve the mathematical model. Wu et al. (2009) 

proposed a hybrid heuristic algorithm employing both 

the Boltzmann function from the simulated annealing 

and the mutation operator from the genetic algorithm to 

explore the unvisited solution region and expedite the 

solution searching process for the cell formation 

problem, so that grouping efficacy was maximized. 

Mahdavi et al (2010a) addressed a mathematical model 

for the joint problem of the cell formation problem and 

the machine layout. Their objective was to minimize 

the total cost of inter- and intra-cell (forward and 

backward) movements and the investment cost of 

machines. This model also considered the minimum 

utilization level of each cell to achieve the higher 

performance of cell utilization.  

Noktehdan et al. (2010) proposed a grouping version of 

differential evolution algorithm and its hybridized 

version with a local search algorithm to solve 

benchmarked instances of cell formation problem 

posing as a grouping problem. Díaz et al. (2010) 

proposed a greedy randomized adaptive search 

procedure (GRASP) heuristic to obtain lower bounds 

for the optimal solution of the cell formation problem. 

Their method consists of two phases. In the first phase, 

an initial partition of machines into machine-cells or 

parts into part families is obtained, while in the second 

phase, the assignment of parts to machine cells or 

machines to part-families is considered. Paydar et al. 

(2010) formulated the cell formation problem as a 

single depot multiple travelling salesman problem 

(SDmTSP). Li et al. (2010) proposed an ant colony 

optimization metaheuristic (ACO-CF) to solve the 

machine-part cell formation problem.  

Arkat et al. (2011) presented a multi-objective 

programming model with the aim of minimizing the 

number of exceptional elements and voids, 

simultaneously. They also developed a bi-objective 

genetic algorithm for large-scale problems. Egilmez et 

al. (2012) considered a nonlinear mathematical model 

to solve the stochastic CMS design problem. The 

problem was observed in both machine and labor-

intensive cells, where the operation times were 

probabilistic in addition to the uncertain customer 

demands. They assumed that processing times and 

customer demands were normally distributed. The 

objective was to design a CMS with product families 

that are formed with most similar products and 

minimum number of cells and machines for a specified 

risk level. Paydar and Saidi-Mehrabad (2013) 

presented a hybrid metaheuristic algorithm in which 

genetic algorithm and variable neighborhood search 

were combined. Using the grouping efficacy measure, 

they also compared the performance of the proposed 

algorithm on a set of 35 test problems from the 

literature. The results have shown that the proposed 

GA-VNS method outperforms the state-of-the-art 

algorithms.  

All of these researches consider the cell formation 

problem for a single time period with known and 

constant product mix and demand. The concept of 

dynamic cellular manufacturing systems (DCMS) was 

a new aspect of cellular manufacturing (CM), which 

was proposed by Rheault et al (1995) for the first time. 

In a dynamic environment, a multi-period planning 

horizon is considered where each period has different 

demand requirements. For a comprehensive review on 

DCMS studies, we refer the reader to Balakrishnan & 

Cheng (2007).  

Tavakkoli-Moghaddam et al. (2005) solved the cell 

formation problem in dynamic condition by using 

some traditional metaheuristic methods such as genetic 

algorithm (GA), simulated annealing (SA) and tabu 

search (TS). Safaei et al. (2008) developed an extended 

model of DCMS in where the objective was to 

minimize the sum of the machine constant and variable 

costs, inter- and intra-cell material handling, and 

reconfiguration costs. Then, an efficient hybrid meta-

heuristic based on mean field annealing (MFA) and 

simulated annealing (SA) so-called MFA–SA was used 

to solve the proposed model. Defersha and Chen 

(2008) addressed a dynamic cell formation problem 

incorporating several design factors such as cell 

reconfiguration, alternative routings, sequence of 

operations, duplicate machines, machine capacity, 

workload balancing, production cost as well as other 

realistic constraints.  

Ahkioon et al. (2009) developed a preliminary CM 

model that integrated several manufacturing attributes 

considering multi-period planning, dynamic system 

reconfiguration, and production planning and alternate 

routings. Safaei and Tavakkoli-Moghaddam (2009) 

extended the original model proposed by Safaei et al. 

(2008) with a new contribution on the outsourcing by 

considering the carrying inventory, backorder, partial 

subcontracting and production planning in a dynamic 

environment. Khaksar-Haghani et al. (2011) developed 

Such an integrated DCMS model with an extensive 

coverage of important design features, which had not 

been proposed before, and incorporated several 

manufacturing attributes including alternative process 

routings, operation sequence, processing time, 

production volume of parts, purchasing machines, 

duplicate machines, machine depot, machine capacity, 

lot splitting, material flow conservation equations, 

inflation coefficient, cell workload balancing, budget 

constraints for cell construction and machine 

procurement, varying number of formed cells, worker 

capacity constraint, holding inventories and 

backorders, outsourcing part-operations, warehouse 

capacity, and cell reconfiguration.  

With increased global competition and shorter product 

life cycles, there is a shift to demands for mid-volume 

and mid-variety product mixes (Ahkioon et al. 2009). 

Thus, not only product demand but also product mix 

can be periodically variable. In the previous researches, 

even in DCMS, a CM is designed to perform best for a 

specific product mix. Product mix variations affect the 

structure of the machine-part incidence matrix, so the 
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performance of the CM will change as well. It is 

desirable to modify the cellular manufacturing system 

to meet the new processing requirements effectively. 

However, for all practical purposes (heavy machines) 

such a modification is not feasible (Seifoddini and 

Djassemi 1996). Therefore, it is necessary to primarily 

configure manufacturing cells just by presence of 

workers and machines (working teams). Then by 

appearing the received product mix in each time 

period, part families can be assigned to the formed 

working teams. Figure 1 shows the flowchart of the 

proposed two-phase approach toward cell 

configuration in presence of product mix variation.  

This paper focuses on developing new criteria to 

configure manufacturing cells just by presence of 

workers and machines in order to overcome product 

mix variation difficulties, besides presenting a human 

resource point of view.  

Worker is a self-aware component in industrial 

systems. Environmental elements can intensively affect 

the performance of workers. Workshops should be 

transformed to a friendly environment instead of a 

strict working one.  

In most of the researches on CM, workers are not 

considered or just assumed as a working element like 

parts, machines, tools and etc., without any emotion 

and personality (Min and Shin 1993, Parkin and Li 

1997, Li 2003, Mahdavi et al. 2010b, Mahdavi et al. 

2012, Rafiei and Ghodsi 2013). Some researchers have 

considered human aspects of workers in manufacturing 

systems. Askin and Huang (2001) formulated an 

integer programming model for an aggregate worker 

assignment and training problem for use in converting 

a functionally organized manufacturing environment 

into a CM arrangement. Suresh and Slomp (2001) also 

provided a cross-training model and linked team 

formation to the cell formation problem. Bidanda et al 

(2005) studied an overview and evaluation of the 

diverse range of human issues involved in CM based 

on an extensive literature review. They enumerated 

eight different and important human issues in cellular 

manufacturing as: worker assignment strategies, skill 

identification, training, communication, autonomy, 

reward/compensation systems, teamwork, and conflict 

management.  

Othman et al. (2012) considered a workforce planning 

(WP) model including some human aspects such as 

skills, training, and workers’ personalities and 

motivation. They presented a multi-objective non-

linear programming model to minimize the hiring, 

firing, training, and overtime costs and minimize the 

number of fired most productive workers. The purpose 

was to determine the number of workers for each 

worker type, the number of workers trained, and the 

number of overtime hours.  

The reminder of the paper is organized as the 

following. In section 2, the proposed problem and 

assumptions are described in detail. In section 3, the 

mathematical notations and proposed bi-objective 

mathematical model are presented. In section 4, the 

exact ε-constraint method, as a solution method for bi-

objective combinatorial problems, has been described. 

In section 5, some numerical examples are generated 

randomly in medium scale to show the performance of 

the proposed bi-objective mathematical model. Finally 

we conclude this paper in section 6. 

 

 
Fig. 1. Flow chart of the proposed method toward 

cell formation with product mix variation 

 
2. Problem Description 

In this paper the relationship between workers and 

machines is represented by a binary MW   matrix 

called task matrix, where W  is the number of workers 

and M  is the number of machines. The task matrix 

shows the capability of workers in work with various 

machines. Moreover, the relations between workers are 

represented by a binary WW   matrix called interest 

matrix. The interest matrix shows which pair of 

workers have interactional interest. 
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Table 1 shows an instance of task matrix for 7 workers 

and 5 machines. For example, worker 4 can work with 

machines 3, 4 and 5. Table 2 presents an interest matrix 

for 7 proposed workers. Because of interactional 

consideration for interests, interest matrix becomes an 

upper-triangular matrix. For example, workers 4 and 6 

have an interactional interest, but workers 4 and 5 

don’t. Making the task and interest matrix is done by 

filling in a questionnaire by workers about their experts 

and relations with the others.  

 
Tab. 1. An instance of task matrix 

 Machines 

W
o

rk
er

s 

 1 2 3 4 5 

1 1 1 0 0 1 

2 1 1 1 0 0 

3 1 1 0 1 1 

4 0 0 1 1 1 

5 0 0 0 1 1 

6 0 1 1 1 1 

7 1 0 1 1 0 

 
Tab. 2. An instance of interest matrix 

 Workers 

W
o

rk
er

s 

 1 2 3 4 5 6 7 

1 1 1 1 1 0 0 1 

2  1 0 0 1 0 0 

3   1 0 1 1 0 

4    1 0 1 1 

5     1 1 0 

6      1 1 

7       1 

 
In an ideal situation and in each cell, all of workers 

both could be able to work with all of their machines 

and have interactional interest between each pair of 

themselves. The first objective (
1

Z ) is related to the 

number of voids corresponding to the task matrix and 

the second one (
2

Z ) is related to the number of voids 

corresponding to the interest matrix.  

By clustering the workers and machines into the cell as 

a diagonal form, the voids of both matrices can be 

calculated. Tables 3 and 4 represent the assignment of 

workers and machines to the cells for the previous 

example with the objective functions 2
1
Z  and 

3
2
Z .  

Minimizing the voids of task matrix causes workers 

can be capable to work with all machines in their cells, 

leading the following outcomes:  

 Reduce in inter-cell movements of workers 

between manufacturing cells, which is a time 

consuming phenomenon.  

 Independence of manufacturing cells because of 

no need for workers from other manufacturing 

cells. 

 Increase in reliability of manufacturing cells in 

result of their independence. Because in an 

uncalled for worker absence, his/her left jobs 

could be continued by other coworkers.  
 

Also minimizing the voids of interest matrix causes all 

workers in each cell have interactional interest with all 

coworkers, in where we will expect the following 

outcomes in long time horizon:  
 

 Making a friendly working environment in each 

manufacturing cell. 

 Increase in worker’s cooperation and coordination 

in each manufacturing cell. 

 Exchange of experiments between workers of 

each manufacturing cell and self-training between 

them during the time horizon.  

 Increase in synergy of manufacturing cells, and 

finally increase in the system efficiency. 

At the end of this section some of the summarized 

hypotheses of this paper are listed as follows: 

 Our attention is restricted to configuration of 

working teams without part family grouping.  

 All workers and machines are unique, so terms 

“worker type” and “machine type” are not used. 

 Workers’ interests and skills are assumed to be 

unchanged during time periods, so interest and 

task matrices are constant. 

 
Tab. 3. A diagonal form for worker-machine 

assignment 

 Machines 

W
o

rk
er

s 

 1 2 3 4 5 

1 1 1    

2 1 1    

3 1 1    

4   1 1 1 

5   0 1 1 

6   1 1 1 

7   1 1 0 

 
Tab. 4. A diagonal form for worker-worker 

assignment 

 Workers 

W
o

rk
er

s 

 1 2 3 4 5 6 7 

1 1 1 1     

2  1 0     

3   1     

4    1 0 1 1 

5     1 1 0 

6      1 1 

7       1 
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3. Problem Formulation 
3-1. Indices 

W : Number of workers 

M  : Number of machines 

K  : Number of cells 

i  : Index of workers ),...,2,1( Wi   

j  : Index of machines ),...,2,1( Mj   

k  : Index of cells )...,2,1( Kk 
 

 

3-2. Parameters  

ij
a =1 if worker i can work on machine j ; 0 otherwise 

ii
b  =1 if worker i and i have interactional interest; 0 

otherwise 

W
LB : Lower bound for workers to be assigned to each 

cell 

M
LB : Lower bound for machines to be assigned to 

each cell 

 

3-3. Decision Variables 

ik
X : 1 if worker i  is assigned to cell k ; 0 otherwise 

jk
Y : 1 if machine j is assigned to cell k ; 0 otherwise 

 

In this section, a bi-objective mathematical model is 

developed, which the first objective function computes 

the total number of voids corresponding to task matrix 

and the second objective function computes the total 

number of voids corresponding to interest matrix. The 

nonlinear programming model is proposed below. 

 

3-4. Mathematical Model 

Min 
  


K

k

W

i

M

j

ijjkik
aYXZ

1 1 1

1
)1(  (1-1) 

Min 




 

 
K

k

W

i

W

ii

iikiik
bXXZ

1

1

1 1

2
)1(  

(1-2) 

 

Subject to:  

1
1




K

k

ik
X

 

;i

 
(2) 

1
1




K

k

jk
Y

 

;j

 
(3) 

W

W

i

ik
LBX 

1
 

;k

 
(4) 





M

j

Mjk
LBY

1
 

;k

 
(5) 


 


K

k

M

j

ijjkik
aYX

1 1

1

 

;i

 
(6) 

 1,0, 
jkik

YX

 

.,, kji

 
(7) 

 
The first objective function corresponds to the total 

number of cases in where a worker cannot work with a 

machine, and the second objective function represents 

the total number of cases in where a pair of workers 

has no interactional interest. Constraint (2) ensures that 

each worker is assigned to only one cell. Constraint (3) 

guarantees that each worker is assigned to only one 

cell. Constraint (4) enforces the lower bound on the 

number of workers to be assigned to each cell. 

Constraint (5) enforces the lower bound on the number 

of machines to be assigned to each cell. Constraint (6) 

ensures that each worker be able to work with at least 

one machine on his/ her cell. Constraint (7) specifies 

that decision variables are binary.  

 
3-5. Linearization of the Proposed Model 

Here, we linearize the objective functions and 

constraint (6) of the mathematical model proposed in 

section 3.The nonlinear terms are multiplication of 

binary variables which can be linearized using the 

auxiliary binary variables 
ijk

H and
kii

G  . The validity of 

each linearization is established by lemmas. 
 

Lemma1. First nonlinear part of the objective function 

and constraint (6) can be linearized with
jkikijk

YXH  , 

under the following set of constraints:  
 

05.1 
jkikijk

YXH  ;,, kji  (8) 

05.1 
jkikijk

YXH  .,, kji  (9) 

 

Proof1. Consider the following two cases:  

Case1. 1
jkik

YX , .,, kji  

Such a situation arises when 1
jkik

YX . So, 

constraint (8) implies 5.0
ijk

H , ensuring that 1
ijk

H .  

Case2. 0
jkik

YX , .,, kji  

Such a situation arises under one of the following three 

subcases:  
 

(a) 1
ik

X  and 0
jk

Y ;,, kji  

(b) 0
ik

X and 1
jk

Y ;,, kji  

(c) 0
ik

X and 0
jk

Y .,, kji  

In all of these subcases, we have 0
ijk

H , because 

constraint (9) implies 1 05.1 orH
ijk
 , to ensure 

that 0
ijk

H .  

Since
ijk

H  does not have a strictly positive cost 

coefficient, the minimizing objective function does not 

ensure that 0
ijk

H . Thus, constraint (9) should be 

added to the mathematical model.  

Lemma2. Second nonlinear part of the objective 

function can be linearized with
kiikkii

XXG   , under 

the following set of constraints:  
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05.1   kiikkii
XXG  ,,, kii  ;ii   (10) 

05.1   kiikkii
XXG  ,,, kii  .ii   (11) 

 

Proof2. The proof is similar to proof1.  

 
3-6. Linearized Model 

Now, we present the linear mathematical model as 

follows:  

Min 
  


K

k

W

i

M

j

ijijk
aHxfZ

1 1 1

1
)1()(  (12-1) 

Min 




 

 
K

k

W

i

W

ii

iikii
bGxgZ

1

1

1 1

2
)1()(  (12-2) 

 

Subject to: 

(2) – (5), (8)-(11) and    


 


K

k

M

j

ijkij
Ha

1 1

1  ;i  (13) 

 1,0,,, kiiijkjkik
GHYX  ,,, kii  .ii   (14) 

 
4. Solution Method 

Bi-objective combinatorial optimization (BOCO) 

problems are a special case of the multi-objective 

optimization problems (MOPs). There has been variety 

range of methods tackling with the MOPs in the 

literature. Collette and Siarry (2003) have classified 

these methods into five sets: scalar methods, interactive 

methods, fuzzy methods, methods using 

metaheuristics, decision aid methods. Rezaei-Sadrabadi 

and Sadjadi (2009) believe MOPs can be divided into 

four different categories as: scalarization methods, 

utility functions, Pareto solution set approaches, and 

interactive methods.  

General BOCO problems are formulated as: 

  

Min ))(),(()( xgxfxh    

such that Xx , 
(15) 

 

where X  is the set of feasible solutions, or the solution 

space. The reader is referred to Ehrgott and Gandibleux 

(2002) for a review of the literature on MOPs. Among 

the methods to find the Pareto front of MOPs, weighted 

sum scalarization is the most popular according to 

Ehrgott and Gandibleux (2002). This method solves 

different single objective sub problems generated by a 

linear scalarization of the objectives. By varying the 

weights of this linear function, all supported non-

dominated points can be found. Besides weighting sum 

algorithms, the ε-constraint method is the best known 

approach for solving MOPs, according to Ehrgott and 

Gandibleux (2002). This method generates single 

objective sub problems,  called  ε-constraint  problems,  

by  transforming  all  but  one  objectives  into 

constraints. The upper bounds of these constraints are 

given by the ε-vector and, by varying it; the exact 

Pareto front can theoretically be generated.  In  

practice,  because  of  the  high  number  of sub 

problems  and  the  difficulty  to  establish  an  efficient  

variation  scheme  for  the  ε-vector,  this approach  has 

mostly  been  integrated within  heuristic  and  

interactive  schemes.  It can however generate the exact 

Pareto front in particular situations.  

 

4-1. The Exact -Constraint Method for BOCO 

problems  

The ε-constraint is probably the best known technique 

to solve multi-objective discrete optimization 

problems. It guarantees the exact set of the efficient 

solutions. It solves ε-constraint problems )(
k

P  

obtained by transforming one of the objectives into a 

constraint. This method was introduced by Haimes et 

al. (1971), and an extensive discussion can be found in 

Chankong and Haimes (1983). For the bi-objective 

case, the problems )(
21

P and )(
12
P  are:  

 

Min )(xf  

Such that Xx  

2
)( xg  

)(
21

P  (16) 

 

Min )(xg  

Such that Xx  

1)( xf . 

)(
12
P  (17) 

 
Theorem3. x is an efficient solution of a BOCO 

problem if and only if
2

 such that x  solves 

)(
21

P or 
1
  such that x solves )(

12
P .  

Throrem4. If x  solves )(
21

P or )(
12
P and if the 

solution is unique, then, x  is an efficient solution of a 

BOCO problem.  

Theorems 1 and 2 have been proved for general multi-

objective problems (see Chankong and Haimes 1983; 

Miettinen1999) and are therefore valid for the BOCO 

problems. These theorems mean that efficient solutions 

can always be found by solving ε-constraint problems, 

as long as
2

 is such that )(
21

P is feasible or 1
  is such 

that )(
12
P  is feasible. Let the objective space be 

defined by  1 2 1 2( , ) : ( ), ( ),Z Z Z Z f x Z g x x X    
 

and  1 2 1 1 2 2( , ) : min , minI I I I IZ Z Z Z Z Z Z    
being the 

ideal points and 1 2( , ) :N N NZ Z Z   1 1 2 2min : ,N IZ Z Z Z   

 2 2 1 1min :N IZ Z Z Z   
being the nadir points defining 
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the lower and upper bounds on the value of efficient 

solutions, respectively. 

Algorithm 1 below finds the Pareto front of BOCO 

problems with integer objective values through a 

sequence of ε-constraint problems. In the algorithm,
j

  

is decreased by a constant value   (here set to 1). As 

explained later,   may sometimes be larger to 

strengthen the ε-constraint method.  

Algorithm1.Exact Pareto front of BOCO problems 

with integer objective values. 

 
1. Set 2,1  ji  or 1,2  ji .  

2. Compute the ideal and nadir points.  

3. Set ),( N

j

I

i
ZZF  and )1(  N

jj
Z .  

4. While
I

jj
Z do  

a. Solve )(
ji

P  by branch-and-cut and add 

the optimal solution ),( 

ji
ZZ  to F .  

b. Set  

jj
Z .  

5. Remove dominated points from F  if required.  

 
5. Computational Results 

In this section four numerical examples are 

presented to illustrate the proposed bi-objective model 

using branch-and-bound method by the Lingo 9 

software package on an Intel® Core (TM) i52.4 GHz 

Personal Computer with 4 GB RAM, and windows 7 

Professional Operating System.  

Input data for task and interest matrices are shown in 

Tables 5-8. The minimum size of each cell for workers 

and machines is assumed to be 1. After performing 

Algorithm 1, computational results and Pareto solution 

set obtained, are presented in Table 9. W, M and K 

represent the number of workers, machines and cells, 

respectively. CPU time for each example is calculated 

by summation of CPU times where Lingo software 

package is executed for various iterations. In -

constraint method the number of iterations for each 

example is more than points in Pareto solution set. 

Also Figure 2 presents a schematic for Pareto frontier 

of the examples.  

For each point in Pareto solution set, there is a specific 

assignment of workers and machines to cells. Due to 

the large volume of computational results, we restrict 

our attention to Example 2. The Pareto optimal 

solutions are found to be:  
 

1. The first Pareto point is 0
1
Z

 
and 10

2
Z  

with the assignment as shown in Table10.  

2. The second Pareto point is 1
1
Z

 
and 

6
2
Z  with the assignment as shown in Table11. 

3. The third Pareto point is 2
1
Z  and 4

2
Z  

with the assignment as shown in Table12.  

4. The forth Pareto point is 3
1
Z  and 3

2
Z  

with the assignment as shown in Table13.  

5. The final Pareto point is 7
1
Z  and 2

2
Z  

with the assignment as shown in Table14. 

 

One of drawbacks of -constraint method is generating 

dominated points in some of iterations. Figure 3 shows 

the primal solutions generated form steps (1)-(4) of 

Algorithm 1, and then according to step (5), dominated 

points are removed in Figure 4.  

Every point in Pareto solution set can be applied by the 

decision maker (DM). In other words Pareto based 

multi-objective solution approaches provide a set of 

efficient solutions in which DM has an opportunity to 

choose his preferred solution among the efficient ones.  

As discussed in section 4, the ε-constraint method is an 

exact approach to solve the bi-objective problems and 

in some cases, finds the efficient Pareto solution set. In 

this method   plays an important role in convergence 

of the obtained Pareto set to the optimal Pareto set and 

more   decreases, more the Pareto set converges at 

the optimal Pareto one.  

In this paper, two objective functions have a discrete 

solution space and integer values because of their non- 

fractional variable coefficients (all variable coefficients 

are one), so we are confident about setting 1  leads 

to the optimal Pareto solution set, because the upper 

bound of the second function decreases one by one, 

and thus all the solution space points can be reached. 

Instead, setting 1  causes more iteration for ε-

constraint method and on the other hand most of 

iterations lead a dominated point. So for large scale 

examples, a balance between Pareto front with high 

quality and low iteration must be designed. 

 
Tab. 5. Input data for example No. 1 (Left: Task matrix, Right: Interest matrix) 

 

 Worker 

W
o

rk
er

 

1 0 1 1 0 0 

0 1 0 0 1 1 

1 0 1 0 1 0 

1 0 0 1 0 1 

0 1 1 0 1 0 

0 1 0 1 0 1 
 

 Machine 

W
o

rk
er

 

1 0 0 1 1 0 

0 0 0 1 1 1 

1 1 0 1 0 0 

1 0 1 0 0 1 

0 1 1 0 1 0 

0 1 1 0 0 1 
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(a). Example No.1  

(b). Example No.2 

 
(c). Example No.3 

 
(d). Example No.4 

Fig. 2. Obtained Pareto solution set by -constraint method for the examples 

 

 
Fig. 3. The primal solutions for Example 2 

 
Fig. 4. The final Pareto frontier for Example 2 

 

Tab. 6. Input data for example No. 2 (Left: Task matrix, Right: Interest matrix) 

 Worker 

W
o

rk
er

 

1 0 0 1 0 0 0 0 1 

0 1 0 1 0 0 1 1 0 

0 0 1 0 0 0 1 0 0 

1 1 0 1 0 1 0 0 0 

0 0 0 0 1 0 0 1 1 

0 0 0 1 0 1 0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 0 0 1 1 

1 0 0 0 1 0 0 1 1  

 Machine 

W
o

rk
er

 

1 1 1 0 1 0 0 1 1 

1 0 1 1 0 0 0 1 0 

0 1 1 0 1 1 1 1 1 

1 1 0 1 0 1 0 1 0 

1 0 1 0 0 1 1 0 0 

0 1 1 0 0 0 0 0 0 

0 0 1 0 1 1 1 0 1 

1 0 1 0 1 1 0 1 0 

1 1 1 1 0 0 1 0 0  
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Tab. 7. Input data for example No. 3 (Left: Task matrix, Right: Interest matrix) 

 Worker 

W
o

rk
er

 

1 1 0 0 1 0 0 1 0 0 0 0 

1 1 1 0 0 0 0 0 1 1 1 0 

0 1 1 0 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 1 0 1 

1 0 0 0 1 0 0 0 0 0 1 1 

0 0 0 0 0 1 0 0 1 1 0 1 

0 0 0 0 0 0 1 0 0 1 0 1 

1 0 0 0 0 0 0 1 1 0 0 0 

0 1 0 0 0 1 0 1 1 0 1 0 

0 1 0 1 0 1 1 0 0 1 0 0 

0 1 1 0 1 0 0 0 1 0 1 0 

0 0 0 1 1 1 1 0 0 0 0 1  

 Machine 

W
o

rk
er

 

1 0 0 1 0 1 1 0 1 0 0 1 

1 0 1 0 1 1 0 0 0 1 0 0 

0 0 0 0 1 0 1 1 1 1 1 0 

1 1 1 0 0 1 1 1 0 0 0 0 

0 1 1 1 0 0 1 1 0 0 1 0 

1 1 1 1 0 1 0 0 0 1 1 1 

0 0 1 1 1 0 0 1 1 1 1 1 

1 1 1 0 1 0 0 1 0 1 1 0 

0 1 0 1 1 1 0 0 0 0 0 0 

1 1 1 1 0 1 1 1 1 0 0 0 

1 1 1 1 1 0 1 0 1 0 1 0 

1 0 1 1 0 1 1 0 1 0 0 0  

 
Tab. 8. Input data for example No. 4 (Left: Task matrix, Right: Interest matrix) 

 Worker 
W

o
rk

er
 

1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 

0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 

0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 

1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 

1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 

0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 

0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 

1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 

1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 

1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 

1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 

0 0 1 1 0 0 1 0 0 1 0 1 1 1 0 

1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 

1 0 1 0 0 0 1 1 0 0 1 0 0 0 1  

 Machine 

W
o

rk
er

 

1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 

1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 

0 1 1 0 0 1 0 1 1 1 0 0 0 0 1 

1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 

1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 

0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 

0 1 0 1 0 1 0 0 0 0 0 1 1 1 0 

1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 

1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 

0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 

0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 

1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 

1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 

1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 

1 0 0 1 0 0 1 0 1 0 0 1 0 0 0  

 

Tab. 9. Obtained numerical results for -constraint method 

No. W M K Constraints Decision variables CPU time (sec) 
Pareto solution set 

Z1 Z2 

1 6 6 2 313 170 7 4 3 

       5 2 
         

2 9 9 3 1008 542 458 0 10 

       1 6 
       2 4 

       3 3 

       7 2 
         

3 12 12 4 2351 1250 6,316 0 6 

       1 5 
       2 4 

       5 3 

         

4 15 15 5 4558 2402 9,409 0 6 

       1 5 

       2 4 
       3 2 

       6 1 
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To illustrate setting 1  decreases the quality of 

Pareto solution set, we execute the ε-constraint method 

this time with 2  for Example 2 again. After 

removing the dominated points, the Pareto solution set 

is obtained with point set of )2,7(),4,2(),6,1(),11,0( . 

These points are shown in Figure 5. As we can see, just 

point set of  )2,7(),4,2(),6,1(  are common in two 

Pareto solution sets. Point (0, 11) is dominated by point 

(0, 10) and also the Pareto archive in Figure 5 is 

sparser than what in Figure 4, because of absence of 

point (3, 3). Thus, it can be concluded that the ε-

constraint method with lower amounts of   leads to 

more efficient Pareto solution set, and for our problem 

with discrete solution space and integer variable 

coefficients, setting 1  causes the optimal Pareto 

frontier. 

 

 
Fig. 5. Pareto points for Example 2 with 2  

 
Tab. 10. Machine-worker arrangement corresponding to Pareto point (0, 10) for example No. 2 

 
Machine 

3 1 2 4 8 5 6 7 9 

W
o

rk
er

 

1 1 1 1 0 1 1 0 0 1 

2 1 1 0 1 1 0 0 0 0 

5 1 1 0 0 0 0 1 1 0 

6 1 0 1 0 0 0 0 0 0 

8 1 1 0 0 1 1 1 0 0 

9 1 1 1 1 0 0 0 1 0 

4 0 1 1 1 1 0 1 0 0 

3 1 0 1 0 1 1 1 1 1 

7 1 0 0 0 0 1 1 1 1 
 

 
Worker 

1 2 5 6 8 9 4 3 7 
W

o
rk

er
 

1 1 0 0 0 0 1 1 0 0 

2 0 1 0 0 1 0 1 0 1 

5 0 0 1 0 1 1 0 0 0 

6 0 0 0 1 0 0 1 0 0 

8 0 1 1 0 1 1 0 0 0 

9 1 0 1 0 1 1 0 0 0 

4 1 1 0 1 0 0 1 0 0 

3 0 0 0 0 0 0 0 1 1 

7 0 1 0 0 0 0 0 1 1 
 

 
Tab. 11. Machine-worker arrangement corresponding to Pareto point (1, 6) for example No. 2 

 
Machine 

1 2 4 8 5 6 7 9 3 

W
o

rk
er

 

2 1 0 1 1 0 0 0 0 1 

4 1 1 1 1 0 1 0 0 0 

3 0 1 0 1 1 1 1 1 1 

7 0 0 0 0 1 1 1 1 1 

1 1 1 0 1 1 0 0 1 1 

5 1 0 0 0 0 1 1 0 1 

6 0 1 0 0 0 0 0 0 1 

8 1 0 0 1 1 1 0 0 1 

9 1 1 1 0 0 0 1 0 1 
 

 
Worker 

2 4 3 7 1 5 6 8 9 

W
o

rk
er

 

2 1 1 0 1 0 0 0 1 0 

4 1 1 0 0 1 0 1 0 0 

3 0 0 1 1 0 0 0 0 0 

7 1 0 1 1 0 0 0 0 0 

1 0 1 0 0 1 0 0 0 1 

5 0 0 0 0 0 1 0 1 1 

6 0 1 0 0 0 0 1 0 0 

8 1 0 0 0 0 1 0 1 1 

9 0 0 0 0 1 1 0 1 1 
 

 
Tab. 12. Machine-worker arrangement corresponding to Pareto point (2, 4) for example No. 2 

 
Machine 

5 6 7 9 1 2 4 8 3 

W
o

rk
er

 

3 1 1 1 1 0 1 0 1 1 

7 1 1 1 1 0 0 0 0 1 

1 1 0 0 1 1 1 0 1 1 

2 0 0 0 0 1 0 1 1 1 

4 0 1 0 0 1 1 1 1 0 

5 0 1 1 0 1 0 0 0 1 

6 0 0 0 0 0 1 0 0 1 

8 1 1 0 0 1 0 0 1 1 

9 0 0 1 0 1 1 1 0 1 
 

 
Worker 

3 7 1 2 4 5 6 8 9 

W
o

rk
er

 

3 1 1 0 0 0 0 0 0 0 

7 1 1 0 1 0 0 0 0 0 

1 0 0 1 0 1 0 0 0 1 

2 0 1 0 1 1 0 0 1 0 

4 0 0 1 1 1 0 1 0 0 

5 0 0 0 0 0 1 0 1 1 

6 0 0 0 0 1 0 1 0 0 

8 0 0 0 1 0 1 0 1 1 

9 0 0 1 0 0 1 0 1 1 
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Tab. 13. Machine-worker arrangement corresponding to Pareto point (3, 3) for example No. 2 

 
Machine 

2 8 1 4 3 5 6 7 9 

W
o

rk
er

 

1 1 1 1 0 1 1 0 0 1 

4 1 1 1 1 0 0 1 0 0 

6 1 0 0 0 1 0 0 0 0 

2 0 1 1 1 1 0 0 0 0 

5 0 0 1 0 1 0 1 1 0 

8 0 1 1 0 1 1 1 0 0 

9 1 0 1 1 1 0 0 1 0 

3 1 1 0 0 1 1 1 1 1 

7 0 0 0 0 1 1 1 1 1 
 

 
Worker 

1 4 6 2 5 8 9 3 7 

W
o

rk
er

 

1 1 1 0 0 0 0 1 0 0 

4 1 1 1 1 0 0 0 0 0 

6 0 1 1 0 0 0 0 0 0 

2 0 1 0 1 0 1 0 0 1 

5 0 0 0 0 1 1 1 0 0 

8 0 0 0 1 1 1 1 0 0 

9 1 0 0 0 1 1 1 0 0 

3 0 0 0 0 0 0 0 1 1 

7 0 0 0 1 0 0 0 1 1 
 

 

Tab. 14. Machine-worker arrangement corresponding to Pareto point (7, 2) for example No. 2 

 
Machine 

4 5 6 9 1 3 7 2 8 

W
o

rk
er

 

2 1 0 0 0 1 1 0 0 1 

3 0 1 1 1 0 1 1 1 1 

7 0 1 1 1 0 1 1 0 0 

5 0 0 1 0 1 1 1 0 0 

8 0 1 1 0 1 1 0 0 1 

9 1 0 0 0 1 1 1 1 0 

1 0 1 0 1 1 1 0 1 1 

4 1 0 1 0 1 0 0 1 1 

6 0 0 0 0 0 1 0 1 0 
 

 
Worker 

2 3 7 5 8 9 1 4 6 

W
o

rk
er

 

2 1 0 1 0 1 0 0 1 0 

3 0 1 1 0 0 0 0 0 0 

7 1 1 1 0 0 0 0 0 0 

5 0 0 0 1 1 1 0 0 0 

8 1 0 0 1 1 1 0 0 0 

9 0 0 0 1 1 1 1 0 0 

1 0 0 0 0 0 1 1 1 0 

4 1 0 0 0 0 0 1 1 1 

6 0 0 0 0 0 0 0 1 1 
 

 

6. Conclusions 

In this paper, we investigated a new concept of 

there being an interactional interest between workers in 

a manufacturing cell besides the ability to work with 

all machines in their cells, and presented a bi-objective 

mathematical model to carry out this new point of view 

in CMS. This bi-objective mathematical model tried to 

decrease voids of both task and interest matrices in 

each cell, simultaneously. To find the optimal Pareto 

frontier, the ε-constraint method was applied for some 

randomly generated examples. The ε-constraint method 

is a repetitive algorithm and sometimes causes part of 

CPU time is consumed to generate dominated points, 

so this method is not efficient for large scale examples. 

Hence as the future related works, implementation of 

alternative solution approaches is much needed. 

Recently some of extensions of the ε-constraint, such 

as the augmented ε-constraint method and also multi-

objective evolutionary algorithms (MOEA) are 

efficiently alternative approaches to handle ε-constraint 

difficulties. 
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