
Arch
ive

 of
 SID

A Local Branching Approach for the Set Covering
Problem

M. Yaghini*, M.R. Sarmadi & M. Momeni

Masoud Yaghini, Assistant Professor, School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
Mohammadreza Sarmadi, MSc., School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
Mohsen Momeni, MSc., School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

KKEEYYWWOORRDDSS ABSTRACT

The set covering problem (SCP) is a well-known combinatorial
optimization problem. This paper investigates development of a local
branching-based solution approach for the SCP. This solution
strategy is exact in nature, though it is designed to improve the
heuristic behavior of the mixed integer programming solver. The
algorithm parameters are tuned by design of experiments approach.
The proposed method is tested on the several standard instances. The
results show that the algorithm outperforms the best heuristic
approaches found in the literature.

 © 2014 IUST Publication, IJIEPR, Vol. 25, No. 2, All Rights Reserved.

11.. IInnttrroodduuccttiioonn

The set covering problem (SCP) is a classical
combinatorial optimization problem that is central in a
variety of scheduling, routing, and location
applications. The SCP is a main model for locomotive
scheduling in rail transportation, where a given set of
trains has to be covered by a minimum-cost set of
locomotives that each train should be covered by at
least one locomotive.
Let A ()ija be a 0-1 m n matrix with M = {1, 2, …,
m} and N = {1, 2, …, n} denoting, respectively, the
sets of rows and columns of A. Let c ()jc be n-vector
of costs associated with the columns of A. We say that
a column Nj  covers a row Mi  if 1.ija  The problem
is to find a minimum cost column subset S N such
that each row Mi  is covered by at least one

**

Corresponding author: Masoud Yaghini
 Email: yaghini@iust.ac.ir
 Paper first received Nov. 25, 2012, and in accepted form May
 29, 2013.

column S.j 

Let ()jx x be the column vector of
variables 1jx  if S,j 0jx  otherwise. The classic
mathematical formulation for the SCP is as follows:

 ()= j j
j N

Minimize z x c x


 (1)

 Subject to

1ij j
j N

a x i M


   (2)

 0, 1 jx j N   (3)

Objective function (1) calculates the cost. Constraint
(2) ensures that each row is covered by at least one
column. Constraint (3) ensures the binary nature of
decision variables [1].
The set covering problem is known to be NP-hard [2].
It has been considered in the literature as a basic
formulation for many real-world optimization

Heuristics, set covering
 problem,
Local branching algorithm,
Design of experiments

JJuunnee 22001144,, VVoolluummee 2255,, NNuummbbeerr 22
pppp.. 9955--110022

hhttttpp::////IIJJIIEEPPRR..iiuusstt..aacc..iirr//

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh

 pISSN: 2008-4889

www.SID.ir

Arch
ive

 of
 SID

M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set … 96

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

problems, therefore it is well-known for its numerous
applications. Many algorithms have been developed to
solve this problem. The literature covers exact,
heuristic and metaheuristic approaches to solve the
SCP.
Exact algorithms are mostly based on brand-and-bound
and branch-and-cut [3, 4]. In recent years some works
are presented in this issue such as Avella et al. [5].
Bjӧrklund et al. [6] presented a column generation
method that effectively exploits the structure of the
formulations. The method can be used to find optimal
or near-optimal schedules for networks with arbitrary
topology and realistic size. They formulated the two
problems using set covering formulations and they
derived the column generation method. Hemazroa et al.
[7] solved an assignment problem by an algorithm
combining the column generation technique and a
branch-and-cut scheme. Galiniera and Hertz [8]
proposed three exact algorithms for solving the large
set covering problem. Two of them determine minimal
covers, while the third one produces minimum covers.
Heuristic versions of these algorithms are also
proposed and analyzed.
Some heuristic-based methods are used in the
literature. Fisher and Rinnooy Kan [9] pointed that
greedy methods are an important class of one-pass
constructive heuristics for the SCP, used to rapidly
generate a feasible solution after a single sweep
through the problem data. Chvátal [10] proposed a
widespread constructive heuristic for the SCP which is
called Chvátal method. At each step, it examines the
unselected columns and selects the one that reduces the
total cost by the greatest amount in proportion to the
number of rows covered by the column, until all rows
have been covered.
The Chvátal method has been extensively used to
produce feasible solutions as a part of more advanced
algorithms. Examples of such uses include: the primal-
dual approach of Balas and Ho [11], the recursive
variant of Avis [12], the approximation algorithms of
Baker [13], and the six greedy approaches investigated
by Vasko and Wilson [14, 15]. Ablanedo-Rosas and
Rego [1] introduced a number of normalization rules
and demonstrated the rules superiority to the classical
Chvátal rule, especially when solving large scale and
real-world instances. To challenge very large-scale
SCP instances, arising from crew scheduling in the
Italian railway, Caprara et al. [16] designed a
Lagrangian based heuristic algorithm, named CFT,
which is one of the most effective techniques for the
general SCP. Ceria et al. [17] suggested a Lagrangian-
based heuristic for solving large-scale set-covering
problems arising from crew-scheduling at the Italian
Railways.
Umetani and Yagiura [18] compared different
relaxation heuristics for the SCP. Yagiura et al. [19]
proposed a 3-flip neighborhood local search which has
the three characteristics. Naji-Azimi et al. [20]
proposed a new heuristic algorithm to solve the SCP

problem. The method is based on the electromagnetism
metaheuristic approach which, after generating a pool
of solutions to create the initial population, applies a
fixed number of local search and movement iterations.
Caprara et al. [21] compared different exact and
heuristic algorithms and provided a complete survey of
the existing literature.
The other type of solution method is metaheuristic used
for the SCP. The metaheuristics for the SCP includes
genetic algorithm [22], simulated annealing algorithm
[23], tabu search algorithm [24], and ant colony
optimization [25, 26, 27]. Indirect genetic algorithms
and parallel genetic algorithms are two variants of the
well-known genetic metaheuristic approach, proposed
simultaneously by Aickelin [28], Solar et al. [29] for
the SCP.
The randomized priority search approach for general
and the unicost SCP was proposed by Lan et al. [30]
for both the. The unicost set covering problem is to
determine the smallest possible subset of columns that
also covers sets. If all costs associated with the
columns set to 1, the general SCP problem will be
converted to the unicost problem. By considering a
candidate list, they construct an initial solution with a
random selection between the best candidate and a
member of the candidate list. A new metaheuristic
approach called “randomized gravitational emulation
search algorithm” for solving large size set covering
problems has been designed by Raja Balachandar and
Kannan [31].
In previous researches in the literature, the exact
algorithm guarantees to find the optimal solution, but
for large-scale problem, limited memory and
computing time are two fundamental problems that
lead them to become unusable. To cover this problem,
most researchers use heuristic and hybrid algorithms to
solve the optimization problem. According to the
problem characteristics, solving the SCP problem with
some algorithms are not efficient enough and the
obtained solutions are poor.
In this paper for the local branching algorithm is
developed for the SCP. The design of experiments
(DOE) approach is used to adjust its parameters. The
results are compared with the currently published
method in the literature. The experimental results show
the efficiency and effectiveness of the proposed
algorithm.
The remainder of this paper is organized as follows.
Section 2 represents the proposed local branching
method. In Section 3, parameter tuning using DOE is
described. In Sections 4 the experimental results of the
algorithm are discussed. Conclusions are presented in
Section 5.

2. The Proposed Local Branching Algorithm

for the SCP
The local branching [32] is a heuristic technique

that solves mixed-integer programming problems.
Though the method is exact in nature, it becomes a

www.SID.ir

Arch
ive

 of
 SID

97 M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

heuristic by redefining some control parameters. It has
been designed to provide heuristic solutions of high
quality, using an MIP solver. The proposed method is
described based on the local branching algorithm for
the SCP.
Let us consider a general 0–1 mixed-integer program

  

() min c
. : Ax=b

x 0, 1

x 0

T

j

j

p x
s t

j Ø
j





   

  

where the set of variables is partitioned into (β, δ),
being β the set of binary variables. Given a feasible
solution x of (P) and a positive integer parameter k,
the k−OPT neighborhood N(x , k) of x is the set of
feasible solutions of (P) satisfying the additional local
branching constraint (constraint (4)).

: 1 : 0
(,) (1)

j j

j j
j x j x

x x x x k
    

      (4)

In order to describe the constraint (4), the numerical
example is applied; lets us to consider current x as

(1,1,0,0)x  .Then constraint (5), which is the local
branching constraint, is constructed as following.

1 2 3 4(,) (1) (1)x x x x x x k        (5)

Given the incumbent solution x , the solution space can
be partitioned by constraint (6).

(,) (left branch) or (,) 1 (right branch)x x k x x k     (6)

The idea is that neighborhood N(x , k) of left branch
should be sufficiently small to be optimized within a
short computing time but still large enough to contain
better solution. The value of parameter k should be
justified in parameter tuning section. The whole
method then alternates strategic phases where the
additional local branching constraint are used to define
promising solution regions, with tactical phases where
these regions are explored through a classical
branching scheme on the variables, using an MIP
solver to do it.
The methodology is converted into a heuristic by
adding several parameters. Two parameters are used to
put a time limit to the total solving computation time
and also to each left branch node solving computation
time, respectively. The algorithm starts with a feasible
solution 1x of (P).
The left branching constraint 1(,)x x k  is added to
the model and creating a left branch sub-problem that
is solved with an MIP solver. If a better solution 2x is
found, then it becomes the new incumbent. The process
backtracks to the father node, the constraint

1(,)x x k  is replaced by 1(,) 1x x k   , and a new
left branch node is created by adding the cut

2(,)x x k  to the model.
If the solution 1x is not improved within the node time
limit, the size of the neighborhood N(1x , k) (i.e., the
right hand side of constraint (4)) is reduced. This can
be considered an intensification step. A diversification
mechanism acts when the MIP solver reports
infeasibility or when it is unable to find a feasible
solution.
The diversification consists of enlarging the
neighborhood of the reference solution x , by
increasing the right hand side of constraint (4).

// The pseudocode for the local branching algorithm
Read data
 // Variables initialization
Initialize k, maxDiv, nodeTimeLimit, totalTimeLimit;
Let bestSoFar = UB = TL = +∞;
Let elapsedTime =nodeNumber =divCounter = nodeObjective= 0;
Let diversify = false;
Let firstFeasible = true;
Let rhs = k;
Create model;
Solve zero node (TL, UB, firstFeasible);
If (nodeStatus != Optimal) {
 Calculate (,)x x ;
 While (divCounter <= maxDiv & elapsedTime <= totalTimeLimit {
 Add the local branching constraint (,)x x k  ;
 TL = min(TL, totalTimeLimit - elapsedTime);
 Solve model (TL, UB, firstFeasible);
 nodeNumber++;
 elapsedTime = currentTime - startTime;
 TL = nodeTimeLimit;
 Check node status;
 }
 TL = totalTimeLimit - elapsedTime;
 firstFeasible = false;
 Solve model (TL, UB, firstFeasible);
}
Output bestSoFar;
End.

Fig. 1. The pseudocode for local branching

algorithm

The local branching algorithm pseudocode is shown in
Figure 1. In this pseudocode, k, maxDiv,
nodeTimeLimit, totalTimeLimit, bestSoFar, and
nodeObjective are neighborhood size, the maximum
number of diversifications, time limit for each tactical
branching exploration, overall time limit, best solution,
and node objective value, respectively.
In the first part of this pseudocode, variables are
initialized. The method consists of a main while loop
which is iterated until either the total time limit or the
maximum number of diversifications is exceeded. At
each iteration, a MIP problem is solved that receives on
input three parameters: the local time limit TL, the
upper bound UB used to interrupt the optimization as
soon the best lower bound becomes greater or equal to
UB, and the binary parameter firstFeasible to be set to
true for aborting the computation when the first

www.SID.ir

Arch
ive

 of
 SID

M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set … 98

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

feasible solution is found. MIP solver returns on output
the optimal/best solution along the final optimization.
After that node status is checked by using Check node
status method. diversify indicating whether the next
required diversification or not.
Four different states may occur after each call to MIP
solver:

1. Optimal: the current MIP has been solved to
proven optimality. In this state, the last local
branching constraint is reversed
into (,) 1x x rhs   , the reference solution x of
value UB is updated, the rhs set to value of k and
the algorithm is iterated.
2. Infeasible: the current MIP is proven to have no
feasible solution of cost strictly less than UB, so the
last local branching constraint is reversed
into (,) 1x x rhs   , The rhs and diversify set to
rhs+k/2 and true, respectively. A diversification is
implemented depending on the current value of
diversify. If diversify equals to true, TL and UB set
to +∞ and the first feasible solution will be
returned.
3. Feasible: a solution of cost strictly less than the
upper bound UB has been found, but the MIP solver
was not capable of proving its optimality for the
current problem (due to the imposed time limit or to
the requirement of aborting the execution after the
first feasible solution is found).
In order to cut off the current reference solution x ,
the last local branching constraint (,)x x rhs  is
replaced by the constraint (,) 1x x  (unless this
constraint has been already introduced at step 4, in
which case the last local branching constraint is
simply deleted). The reference solution x of value
UB is updated. The diversify variable set to false
and value of k put into rhs variable.
4. Unknown: no feasible solution of cost strictly less
than UB has been found within the node time limit,
but there is no guarantee that such a solution does
not exist. In this state if diversify equals to true the
last local branching constraint (,)x x rhs  is
replaced by (,) 1x x  in order to escape from the
current solution, and the upper bound UB and TL
set to +∞ and rhs=rhs+k/2 and the first feasible
solution will be returned, else if diversify equals to
false the constraint (,)x x rhs  is deleted and
rhs=rhs-k/2 [32].

3. Parameter Tuning using DOE Approach

In this section, selecting problems and parameters
tuning of the local branching algorithm are discussed.
The parameters of the proposed algorithm are tuned
using Design of Experiments (DOE) approach and
Design Expert software.

An experiment can be described as series of tests in
which purposeful changes are made to the input
variables of a system so that we may observe and
identify the reasons for changes in the output response.
DOE refers to the process of planning the experiment
so that appropriate data that can be analyzed by
statistical methods will be collected, resulting in valid
and objective conclusions.
The three basic principles of DOE are replication,
randomization, and blocking. By replication, we mean
a repetition of the basic experiment. Two important
properties of replication are it allows the experimenter
to obtain an estimate of the experimental error and if
the sample mean is used to estimate the effect of a
factor in the experiment, permits the experimenter to
obtain a more precise estimate of this effect.
Randomization is that both the allocation of the
experimental material and the order in which the
individual runs or trials of the experiment are to be
performed are randomly determined and makes this
assumption valid.
Blocking is a design technique used to improve the
precision with which comparisons among the factors of
interest are made. Often blocking is used to reduce or
eliminate the variability transmitted from nuisance
factors [33].
The important parameters in DOE approach are
response variable, factor, level, treatment and effect.
The response variable is the measured variable of
interest. In the analysis of metaheuristics, the typically
measures are the objective value quality and CPU time
[34].
A factor is an independent variable manipulated in an
experiment because it is thought to affect one or more
of the response variables. The various values at which
the factor is set are known as its levels. In
metaheuristic performance analysis, the factors include
both the metaheuristic tuning parameters and the most
important problem characteristics.
A treatment is a specific combination of factor levels.
The particular treatments will depend on the particular
experiment design and on the ranges over which
factors are varied. An effect is a change in the response
variable due to a change in one or more factors. Design
of experiments is a tool can be used to determine
important parameters and interactions between them.
Four stages of DOE consist of screening and diagnosis
of important factors, modeling, optimization and
assessment. This methodology is called sequential
experimentation which is used to set the parameters in
the DOE approach and is used in this paper for local
branching algorithm [35].
Experiments are conducted on eight problems with
different sizes. In the local branching algorithm,
solution quality and CPU time are considered as the
response variables.
Factors, levels, and the final parameters for solving
problems are shown in Table 1. These parameters are
fixed to solve the test instances.

www.SID.ir

Arch
ive

 of
 SID

99 M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

Tab. 1. Level factorial design for local branching
algorithm

Level

Factor Low High
Final

parameter
nodeTimeLimit 50 150 100
totalTimeLimit 400 1000 800
maxDiv 3 15 5
k 15 70 20

4. Experimental Results
The local branching algorithm is tested on a set of

87 set covering problems available from the OR
Library. There are fourteen sets of benchmark
instances called sets 4, 5, 6, A, B, C, D, E, NRE, NRF,
NRG, NRH, CLR, CYC and RAIL. Each of sets 4 and
5 has 10 instances, each of sets 6, A to E, and NRE to
NRH has five instances, set CLR has four instances, set
CYC has six instances and RAIL has seven instances.
The characteristics of these instances such as name,
number of rows, number of columns, density (the
percentage of nonzero entries in the SCP matrix), and
cost range are given in Table 2.

Tab. 2. Characteristics of the test instances
Instance

No. of
Rows

No. of
Columns

Density
(%) Cost Range

Set 4 200 1000 2 [1, 100]
Set 5 200 2000 2 [1, 100]
Set 6 200 1000 5 [1, 100]
Set A 300 3000 2 [1, 100]
Set B 300 3000 5 [1, 100]
Set C 400 4000 2 [1, 100]
Set D 400 4000 5 [1, 100]
E.1 560 500 20 [1, 1]
E.2 430 500 20 [1, 1]
E.3 50 500 20 [1, 1]
E.4 50 500 20 [1, 1]
E.5 514 500 20 [1, 1]

Set NRE 500 5000 10 [1, 100]
Set NRF 500 5000 20 [1, 100]
Set NRG 1000 10000 2 [1, 100]
Set NRH 1000 10000 5 [1, 100]
CLR.10 511 210 12 [1, 1]
CLR.11 1023 330 12 [1, 1]
CLR.12 2047 495 12 [1, 1]
CLR.13 4095 715 12 [1, 1]
CYC.06 240 192 2 [1, 1]
CYC.07 672 448 0.89 [1, 1]
CYC.08 1792 1024 0.39 [1, 1]
CYC.09 4608 2304 0.17 [1, 1]
CYC.10 11520 5120 0.07 [1, 1]
CYC.11 28160 11264 0.03 [1, 1]
Rail 507 507 63009 1.3 [1, 2]
Rail 516 516 47311 1.3 [1, 2]
Rail 582 582 55515 1.2 [1, 2]

Rail 2536 2536 1081841 0.4 [1, 2]
Rail 2586 2586 920683 0.34 [1, 2]
Rail 4284 4284 1092610 0.24 [1, 2]
Rail 4872 4872 968672 0.2 [1, 2]

To evaluate the performance of the hybrid algorithm,
the proposed algorithm is compared with the best
solution found in the literature in Table 3. The
surrogate constraint normalization rules [1], 3-flip
neighborhood local search [19], and Lagrangian-based
heuristic [17] are selected to compare with the
proposed local branching algorithm. The Java

programming language and CPLEX 11 software as an
MIP solver are used to implement the proposed
algorithm. The program was run on a personal
computer with core 2 CPU at 2.66 GHz, 4 GBs of RAM,
and operating under Microsoft Windows Vista. The
PROB columns indicate the name of the instances.
Column SCNR stands for surrogate constraint
normalization rules, 3-Flip NB column refers to the 3-
flip neighborhood local search and L-Heuristic column
corresponds to the Lagrangian-based heuristic
method. Obj. Value in LOCB columns refer to the
solution found by our proposed local branching
algorithm and the CPU Time column indicates the
execution time for finding the solution in seconds. The
best solution that achieved by the selected methods is
bolded. IMPROVE column displays the improvement
percentage of the proposed algorithm relative to the
best solution. As a solution quality, for each test
problem the percentage of improvement from the
best solution is calculated by Equation (7).

(-) 100

Obtained solution Best solutionIMPROVE
Best solution found by other methods

  (7)

Tab. 3. Comparing results

PR
O

B

SC
N

R

3-

Fl
ip

 N
B

L

-H
eu

ri
st

ic

 L O C B
O

bj
. V

al
ue

C
PU

 T
im

e

IM

PR
O

V
E

 (%
)

4.1

461

429

N.A.

429

<1

0.00%
4.2

564

512

N.A.

512

<1

0.00%

4.3

559

516

N.A.

516

<1

0.00%
4.4

541

494

N.A.

494

<1

0.00%

4.5

573

512

N.A.

512

<1

0.00%
4.6

586

560

N.A.

560

<1

0.00%

4.7

461

430

N.A.

430

<1

0.00%
4.8

538

492

N.A.

492

1

0.00%

4.9

731

641

N.A.

641

<1

0.00%
4.1

545

514

N.A.

514

<1

0.00%

5.1

288

253

N.A.

253

<1

0.00%
5.2

340

302

N.A.

302

<1

0.00%

5.3

245

226

N.A.

226

<1

0.00%
5.4

264

242

N.A.

242

1

0.00%

5.5

232

211

N.A.

211

<1

0.00%
5.6

244

213

N.A.

213

<1

0.00%

5.7

311

293

N.A.

293

<1

0.00%
5.8

313

288

N.A.

288

<1

0.00%

5.9

307

279

N.A.

279

<1

0.00%
5.1

286

265

N.A.

265

<1

0.00%

6.1

159

138

N.A.

138

<1

0.00%
6.2

171

146

N.A.

146

<1

0.00%

6.3

158

145

N.A.

145

<1

0.00%
6.4

148

131

N.A.

131

<1

0.00%

6.5

191

161

N.A.

161

<1

0.00%
A.1

279

253

N.A.

253

2

0.00%

A.2

278

252

N.A.

252

1

0.00%
A.3

262

232

N.A.

232

1

0.00%

A.4

234

234

N.A.

234

<1

0.00%
A.5

236

236

N.A.

236

<1

0.00%

B.1

75

69

N.A.

69

<1

0.00%
B.2

84

76

N.A.

76

2

0.00%

B.3

85

80

N.A.

80

<1

0.00%
B.4

89

79

N.A.

79

4

0.00%

B.5

79

72

N.A.

72

1

0.00%
C.1

253

227

N.A.

227

1

0.00%

C.2

250

219

N.A.

219

2

0.00%
C.3

271

243

N.A.

243

2

0.00%

C.4

255

219

N.A.

219

1

0.00%
C.5 231 215 N.A. 215 1 0.00%

www.SID.ir

Arch
ive

 of
 SID

M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set … 100

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

Tab. 3 (continued)

PROB SCNR 3-Flip
NB

 L-Heuristic
LOCB

Obj. Value
CPU
Time

IMPROVE
(%)

D.1

69

60

N.A.

60

2

0.00%
D.2

71

66

N.A.

66

8

0.00%

D.3

81

72

N.A.

72

3

0.00%
D.4

67

62

N.A.

62

9

0.00%

D.5

70

61

N.A.

61

1

0.00%
E.1

5

N.A.

N.A.

5

1

0.00%

E.2

5

N.A.

N.A.

5

<1

0.00%
E.3

5

N.A.

N.A.

5

15

0.00%

E.4

5

N.A.

N.A.

5

<1

0.00%
E.5

5

N.A.

N.A.

5

<1

0.00%

NRE.1

30

29

N.A.

29

40

0.00%

NRE.2

34

30

N.A.

30

214

0.00%
NRE.3

30

27

N.A.

27

55

0.00%

NRE.4

33

28

N.A.

28

72

0.00%
NRE.5

32

28

N.A.

28

34

0.00%

NRF.1

16

14

N.A.

14

58

0.00%
NRF.2

16

15

N.A.

15

51

0.00%

NRF.3

16

14

N.A.

14

10

0.00%

NRF.4

16

14

N.A.

14

50

0.00%
NRF.5

15

13

N.A.

13

73

0.00%

NRG.1

199

176

176

176

33

0.00%
NRG.2

171

154

155

154

800

0.00%

NRG.3

185

166

167

166

800

0.00%
NRG.4

186

168

170

168

800

0.00%

NRG.5

192

168

169

168

800

0.00%
NRH.1

72

63

64

63

800

0.00%

NRH.2

73

63

64

63

800

0.00%
NRH.3

66

59

60

59

800

0.00%

NRH.4

67

58

59

58

800

0.00%
NRH.5

61

55

55

55

800

0.00%

CLR.10

29

N.A.

N.A.

25

22

-13.79%
CLR.11

28

N.A.

N.A.

23

102

-17.86%

CLR.12

28

N.A.

N.A.

26

800

-7.14%
CLR.13

32

N.A.

N.A.

26

800

-18.75%

CYC.06

N.A.

N.A.

N.A.

60

100

0.00%

CYC.07

N.A.

N.A.

N.A.

144

690

0.00%

CYC.08

N.A.

N.A.

N.A.

352

650

0.00%
CYC.09

N.A.

N.A.

N.A.

816

800

0.00%

CYC.10

N.A.

N.A.

N.A.

1916

800

0.00%
CYC.11

N.A.

N.A.

N.A.

4268

800

0.00%

RAIL
507

197

174

174

174

800

0.00%

RAIL
516

194

182

182

182

800

0.00%

RAIL
582

236

211

211

211

800

0.00%

RAIL
2536

770

691

692

691

800

0.00%

RAIL
2586

1064

945

936.1

936

800

0.00%

RAIL
4284

1215

1064

1070

1066

800

0.19%

RAIL
4872 1698 1528 1534 1530 800 0.13%

In Lagrangian-based heuristic the standard problem are
categorized and the fixed time limit is set for each
category. For the small problems, time limit is set in
3000 seconds and for the medium and large problems,
time limit is set in 10,000 seconds. In 3-flip
neighborhood local search, Time limits of the
algorithms set to 180 seconds for types E–H, 600
seconds for RAIL 507, 516 and 582, and 18,000 s for
RAIL 2536–4872.
The average of IMPROVE column for the proposed
local branching algorithm is -0.66 percent. The results
show the efficiency and effectiveness of the proposed
algorithm. Figure 2 shows the best objective value of
the local branching algorithm in each branching node
for CYC.09 problem.

Fig. 2. Convergence of LOCB best objective value

for CYC.09

5. Conclusions

This paper presented the local branching algorithm
for solving the set covering problem. The validity and
efficiency of the proposed method are put into test over
a series of computational experiments on fourteen sets
of standard test problems. To adjust the best parameter
values in the proposed algorithm, design of
experiments method is used to find the most
appropriate parameters. The experimental results show
the efficiency and effectiveness of the proposed
algorithm. The average percentage of improvement for
the proposed algorithm in compare with the best
solution in the literature is -0.66 percent. The outcome
is the local branching method clearly outperforms other
heuristics in the literature, finding the best solution
until now for most of the instances with a reasonable
computational effort. These results are very
encouraging, and suggest that combining mathematical
programming and metaheuristic techniques is a worth
pursuing research direction. The application of this
formulation and solution method in real problems as a
case study is suggested for future researches.

References

[1] Ablanedo-Rosas, J.H., Rego, C., “Surrogate
Constraint Normalization for the Set Covering
Problem”, European Journal of Operational Research,
Vol. 205, 2010, pp. 540–551.

[2] Garey, M.R., Johnson, D.S., Computers and

Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, San Francisco, 1979.

[3] Balas, E., Carrera, M.C., “A Dynamic Subgradient-

Based Branch-and-Bound Procedure for Set
Covering”, Operations Research, Vol. 44, 1996, pp.
875–890.

[4] Fisher, M., Kedia, P., “Optimal Solution of Set

Covering/Partitioning Problems Using Dual
Heuristics”, Management Science, Vol. 36, 1990, pp.
674–688.

[5] Avella, P., Boccia, M., Vasilyev, I., “Computational

www.SID.ir

Arch
ive

 of
 SID

101 M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

Experience with General Cutting Planes for the Set
Covering Problem”, Operations Research Letters,
Vol. 37, 2009, pp. 16–20.

[6] Bjӧ rklund, P., Värbrand, P., Yuan, D., “A Column

Generation Method for Spatial TDMA Scheduling in
ad Hoc Networks” Ad Hoc Networks, Vol. 2, 2004,
pp. 405–418.

[7] Hemazroa, T.D., Jaumardb, B., Marcotte, O., “A

Column Generation and Branch-and-Cut Algorithm
for the Channel Assignment Problem”, Computers &
Operations Research, Vol. 35, 2008, pp. 1204–1226.

[8] Galinier, P., Hertz, A., “Solution Techniques for the

Large Set Covering Problem”, Discrete Applied
Mathematics, Vol. 155, 2007, pp. 312–326.

[9] Fisher, M.L., Rinnooy Kan, A.H.G., “The Design,

Analysis and Implementation of Heuristics”,
Management Science, Vol. 34, 1988, pp. 263–265.

[10] Chvátal, V., “A greedy Heuristic for the Set Covering
Problem”, Mathematics of Operations Research, Vol.
4, 1979, pp. 233–235.

[11] Balas, E., Ho, A., “Set covering algorithms using
cutting planes, heuristics, and subgradient
optimization: a computational study”, Mathematical
Programming, Vol. 12, 1980, pp. 37–60.

[12] Avis, D., “A Note on Some Computationally Difficult
Set Covering Problems”, Mathematical Programming,
Vol. 18, 1980, pp. 138–145.

[13] Baker, E.K., “Efficient Heuristic Algorithms for the
Weighted Set Covering Problem”, Computers &
Operations Research, Vol. 8, 1981, pp. 303–310.

[14] Vasko, F.J., Wilson, G.R., “Using a Facility Location
Algorithm to Solve Large Set Covering Problems”,
Operations Research Letters, Vol. 3, 1984, pp. 85–90.

[15] Vasko, F.J., Wilson, G.R., “An Efficient Heuristic for
Large Set Covering Problems”, Naval Research
Logistics Quarterly, Vol. 31, 1984, pp. 163–171.

[16] Caprara, A., Fischetti, M., Toth, P., “A Heuristic

Method for the Set Covering Problem”, Operations
Research, Vol. 47, 1999, pp. 730–743.

[17] Ceria, S., Nobili, P., Sassano, A., “Lagrangian-Based
Heuristic for Large-Scale Set Covering Problems”,
Mathematical Programming, Vol. 81, 1998, pp. 215–
228.

[18] Umetani, S., Yagiura, M., “Relaxation Heuristics for
the Set Covering Problem”, Journal of the Operations
Research Society of Japan, Vol. 50, 2007, pp. 350–
375.

[19] Yagiura, M., Kishida, M., Ibaraki, T., “A 3-Flip
Neighborhood Local Search for the Set Covering
Problem”, European Journal of Operational
Research, Vol. 172, 2006, pp. 472–499.

[20] Naji-Azimi, Z., Toth, P., Galli, L., “An
Electromagnetism Metaheuristic for the Unicost Set
Covering Problem”, European Journal of Operational
Research, Vol. 205, 2010, pp. 290–300.

[21] Caprara, A., Fischetti, M., Toth, P., “Algorithms for
the Set Covering Problem”, Annals of Operations
Research, Vol. 98, 2000, pp. 353–371.

[22] Beasley, J.E., Chu, P.C., “A Genetic Algorithm for the
Set Covering Problem”, European Journal of
Operational Research, Vol. 94, 1996, pp. 392–404.

[23] Brusco, M.J., Jacobs, L.W., Thompson, G.M., “A
Morphing Procedure to Supplement a Simulated
Annealing Heuristic for Cost- and Coverage-
Correlated Set-Covering Problems”, Annals of
Operations Research, Vol. 86, 1999, pp. 611–627.

[24] Caserta, M., Tabu search-based metaheuristic
algorithm for large-scale set covering problems. In:
Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr,
W.J., Hartl, R.F., Reimann, M. (eds.), Metaheuristics:
Progress in Complex Systems Optimization. New
York, Springer, 2007, pp. 43–63.

[25] Lessing, L., Dumitrescu, I., Stützle, T. “A
Comparison Between ACO Algorithms for the Set
Covering Problem”, Lecture Notes in Computer
Science, Vol. 3172, 2004, pp.1–12.

[26] Ren, Z., Feng, Z., Zhang, Z., “New Ideas for Applying
Ant Colony Optimization to the Set Covering
Problem”, Computers & Industrial Engineering, Vol.
58, 2010, pp. 774–784.

[27] Gouwanda, D., Ponnambalam, S.G., “Evolutionary
Search Techniques to Solve Set Covering Problems”,
Proceedings of World Academy of Science,
Engineering and Technology, Vol. 29, 2008, pp. 20–
25.

[28] Aickelin, U., “An Indirect Genetic Algorithm for Set
Covering Problems”, Journal of the Operational
Research Society, Vol. 53, 2002, pp. 1118–1126.

[29] Solar, M., Parada, V., Urrutia, R., “A Parallel Genetic
Algorithm to Solve the Set Covering Problem”,
Computers & Operations Research, Vol. 29, 2002, pp.
1221–1235.

[30] Lan, G., DePuy, G.W., Whitehouse, G.E., “An
Effective and Simple Heuristic for the Set Covering
Problem”, European Journal of Operational Research,
Vol. 176, 2007, pp. 1387–1403.

[31] Raja Balachandar, S., Kannan, K., “A Meta-Heuristic
Algorithm for Set Covering Problem Based on
Gravity”, International Journal of Computational and

www.SID.ir

http://econpapers.repec.org/article/eeeejores/
http://econpapers.repec.org/article/eeeejores/

Arch
ive

 of
 SID

M. Yaghini, M.R. Sarmadi & M. Momeni A Local Branching Approach for the Set … 102

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001144,, VVooll.. 2255,, NNoo.. 22

Mathematical Sciences, Vol. 4, 2010, pp. 223–228.

[32] Fischetti, M., Lodi, A., “Local Branching”,
Mathematical Programming, Vol. 98, 2003, pp. 23–
47.

[33] Montgomery, D.C., Design and Analysis of
Experiments, John Wiley & Sons, 2009.

[34] Adenso-Díaz, B., Laguna, M., “Fine-Tuning of
Algorithms using Fractional Experimental Designs
and Local Search”, Operations Research, Vol. 54,
2006, pp. 99–114.

[35] Ridge, E., Design of Experiments for the Tuning of
Optimization Algorithms. PhD thesis, Department of
Computer Science, University of York, United
Kingdom, 2007.

www.SID.ir

