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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

The set covering problem (SCP) is a well-known combinatorial 
optimization problem. This paper investigates development of a local 
branching-based solution approach for the SCP. This solution 
strategy is exact in nature, though it is designed to improve the 
heuristic behavior of the mixed integer programming solver. The 
algorithm parameters are tuned by design of experiments approach. 
The proposed method is tested on the several standard instances. The 
results show that the algorithm outperforms the best heuristic 
approaches found in the literature. 
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11..  IInnttrroodduuccttiioonn  

The set covering problem (SCP) is a classical 
combinatorial optimization problem that is central in a 
variety of scheduling, routing, and location 
applications. The SCP is a main model for locomotive 
scheduling in rail transportation, where a given set of 
trains has to be covered by a minimum-cost set of 
locomotives that each train should be covered by at 
least one locomotive. 
Let A ( )ija be a 0-1 m n matrix with M = {1, 2, …, 
m} and N = {1, 2, …, n} denoting, respectively, the 
sets of rows and columns of A. Let c ( )jc be n-vector 
of costs associated with the columns of A. We say that 
a column Nj  covers a row Mi  if 1.ija  The problem 
is to find a minimum cost column subset S N such 
that each row Mi  is covered by at least one 
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column S.j 
 

Let ( )jx x be the column vector of 
variables 1jx  if S,j 0jx  otherwise. The classic 
mathematical formulation for the SCP is as follows: 

 

 ( )= j j
j N

Minimize z x c x


  (1) 

 Subject to   

1ij j
j N

a x i M


    (2) 

 0, 1         jx j N    (3) 

 
Objective function (1) calculates the cost. Constraint 
(2) ensures that each row is covered by at least one 
column. Constraint (3) ensures the binary nature of 
decision variables [1]. 
The set covering problem is known to be NP-hard [2]. 
It has been considered in the literature as a basic 
formulation for many real-world optimization 
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problems, therefore it is well-known for its numerous 
applications. Many algorithms have been developed to 
solve this problem. The literature covers exact, 
heuristic and metaheuristic approaches to solve the 
SCP.  
Exact algorithms are mostly based on brand-and-bound 
and branch-and-cut [3, 4]. In recent years some works 
are presented in this issue such as Avella et al. [5]. 
Bjӧrklund et al. [6] presented a column generation 
method that effectively exploits the structure of the 
formulations. The method can be used to find optimal 
or near-optimal schedules for networks with arbitrary 
topology and realistic size. They formulated the two 
problems using set covering formulations and they 
derived the column generation method. Hemazroa et al. 
[7] solved an assignment problem by an algorithm 
combining the column generation technique and a 
branch-and-cut scheme. Galiniera and Hertz [8] 
proposed three exact algorithms for solving the large 
set covering problem. Two of them determine minimal 
covers, while the third one produces minimum covers. 
Heuristic versions of these algorithms are also 
proposed and analyzed. 
Some heuristic-based methods are used in the 
literature. Fisher and Rinnooy Kan [9] pointed that 
greedy methods are an important class of one-pass 
constructive heuristics for the SCP, used to rapidly 
generate a feasible solution after a single sweep 
through the problem data. Chvátal [10] proposed a 
widespread constructive heuristic for the SCP which is 
called Chvátal method. At each step, it examines the 
unselected columns and selects the one that reduces the 
total cost by the greatest amount in proportion to the 
number of rows covered by the column, until all rows 
have been covered.  
The Chvátal method has been extensively used to 
produce feasible solutions as a part of more advanced 
algorithms. Examples of such uses include: the primal-
dual approach of Balas and Ho [11], the recursive 
variant of Avis [12], the approximation algorithms of 
Baker [13], and the six greedy approaches investigated 
by Vasko and Wilson [14, 15]. Ablanedo-Rosas and 
Rego [1] introduced a number of normalization rules 
and demonstrated the rules superiority to the classical 
Chvátal rule, especially when solving large scale and 
real-world instances. To challenge very large-scale 
SCP instances, arising from crew scheduling in the 
Italian railway, Caprara et al. [16] designed a 
Lagrangian based heuristic algorithm, named CFT, 
which is one of the most effective techniques for the 
general SCP. Ceria et al. [17] suggested a Lagrangian-
based heuristic for solving large-scale set-covering 
problems arising from crew-scheduling at the Italian 
Railways.  
Umetani and Yagiura [18] compared different 
relaxation heuristics for the SCP. Yagiura et al. [19] 
proposed a 3-flip neighborhood local search which has 
the three characteristics. Naji-Azimi et al. [20] 
proposed a new heuristic algorithm to solve the SCP 

problem. The method is based on the electromagnetism 
metaheuristic approach which, after generating a pool 
of solutions to create the initial population, applies a 
fixed number of local search and movement iterations. 
Caprara et al. [21] compared different exact and 
heuristic algorithms and provided a complete survey of 
the existing literature. 
The other type of solution method is metaheuristic used 
for the SCP. The metaheuristics for the SCP includes 
genetic algorithm [22], simulated annealing algorithm 
[23], tabu search algorithm [24], and ant colony 
optimization [25, 26, 27]. Indirect genetic algorithms 
and parallel genetic algorithms are two variants of the 
well-known genetic metaheuristic approach, proposed 
simultaneously by Aickelin [28], Solar et al. [29] for 
the SCP.  
The randomized priority search approach for general 
and the unicost SCP was proposed by Lan et al. [30] 
for both the. The unicost set covering problem is to 
determine the smallest possible subset of columns that 
also covers sets. If all costs associated with the 
columns set to 1, the general SCP problem will be 
converted to the unicost problem. By considering a 
candidate list, they construct an initial solution with a 
random selection between the best candidate and a 
member of the candidate list. A new metaheuristic 
approach called “randomized gravitational emulation 
search algorithm” for solving large size set covering 
problems has been designed by Raja Balachandar and 
Kannan [31].  
In previous researches in the literature, the exact 
algorithm guarantees to find the optimal solution, but 
for large-scale problem, limited memory and 
computing time are two fundamental problems that 
lead them to become unusable. To cover this problem, 
most researchers use heuristic and hybrid algorithms to 
solve the optimization problem. According to the 
problem characteristics, solving the SCP problem with 
some algorithms are not efficient enough and the 
obtained solutions are poor.  
In this paper for the local branching algorithm is 
developed for the SCP. The design of experiments 
(DOE) approach is used to adjust its parameters. The 
results are compared with the currently published 
method in the literature. The experimental results show 
the efficiency and effectiveness of the proposed 
algorithm. 
The remainder of this paper is organized as follows. 
Section 2 represents the proposed local branching 
method. In Section 3, parameter tuning using DOE is 
described. In Sections 4 the experimental results of the 
algorithm are discussed. Conclusions are presented in 
Section 5. 

 
2. The Proposed Local Branching Algorithm 

for the SCP 
The local branching [32] is a heuristic technique 

that solves mixed-integer programming problems. 
Though the method is exact in nature, it becomes a 
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heuristic by redefining some control parameters. It has 
been designed to provide heuristic solutions of high 
quality, using an MIP solver. The proposed method is 
described based on the local branching algorithm for 
the SCP. 
Let us consider a general 0–1 mixed-integer program  

  

( ) min  c
. :  Ax=b

x 0, 1

x 0

T

j

j

p x
s t

j Ø
j





   

  

 

where the set of variables is partitioned into (β, δ), 
being β the set of binary variables. Given a feasible 
solution x  of (P) and a positive integer parameter k, 
the k−OPT neighborhood N( x , k) of x  is the set of 
feasible solutions of (P) satisfying the additional local 
branching constraint (constraint (4)). 
 

: 1 : 0
( ,  ) (1 )

j j

j j
j x j x

x x x x k
    

       (4) 

 
In order to describe the constraint (4), the numerical 
example is applied; lets us to consider current x as 

(1,1,0,0)x  .Then constraint (5), which is the local 
branching constraint, is constructed as following. 
 

1 2 3 4( ,  ) (1 ) (1 )x x x x x x k         (5) 
 
Given the incumbent solution x , the solution space can 
be partitioned by constraint (6). 
 

( ,  )  (left branch) or ( ,  ) 1 (right branch)x x k x x k      (6) 

 
The idea is that neighborhood N( x , k) of left branch 
should be sufficiently small to be optimized within a 
short computing time but still large enough to contain 
better solution. The value of parameter k should be 
justified in parameter tuning section. The whole 
method then alternates strategic phases where the 
additional local branching constraint are used to define 
promising solution regions, with tactical phases where 
these regions are explored through a classical 
branching scheme on the variables, using an MIP 
solver to do it.  
The methodology is converted into a heuristic by 
adding several parameters. Two parameters are used to 
put a time limit to the total solving computation time 
and also to each left branch node solving computation 
time, respectively. The algorithm starts with a feasible 
solution 1x  of (P).  
The left branching constraint 1( ,  )x x k   is added to 
the model and creating a left branch sub-problem that 
is solved with an MIP solver. If a better solution 2x  is 
found, then it becomes the new incumbent. The process 
backtracks to the father node, the constraint 

1( ,  )x x k   is replaced by 1( ,  ) 1x x k   , and a new 
left branch node is created by adding the cut 

2( ,  )x x k   to the model.  
If the solution 1x  is not improved within the node time 
limit, the size of the neighborhood N( 1x , k) (i.e., the 
right hand side of constraint (4)) is reduced. This can 
be considered an intensification step. A diversification 
mechanism acts when the MIP solver reports 
infeasibility or when it is unable to find a feasible 
solution.  
The diversification consists of enlarging the 
neighborhood of the reference solution x , by 
increasing the right hand side of constraint (4). 
 

 

// The pseudocode for the local branching algorithm 
Read data 
 // Variables initialization 
Initialize k, maxDiv, nodeTimeLimit, totalTimeLimit; 
Let bestSoFar = UB = TL = +∞; 
Let elapsedTime =nodeNumber =divCounter = nodeObjective= 0; 
Let diversify = false; 
Let firstFeasible = true;  
Let rhs = k; 
Create model; 
Solve zero node (TL, UB, firstFeasible); 
If (nodeStatus != Optimal)    { 
            Calculate ( ,  )x x ; 
            While (divCounter <= maxDiv & elapsedTime <= totalTimeLimit    { 
                Add the local branching constraint ( ,  )x x k  ; 
                TL = min(TL, totalTimeLimit - elapsedTime); 
                Solve model (TL, UB, firstFeasible); 
                nodeNumber++; 
                elapsedTime = currentTime - startTime; 
                TL = nodeTimeLimit; 
             Check node status; 
           } 
            TL = totalTimeLimit - elapsedTime; 
            firstFeasible = false; 
            Solve model (TL, UB, firstFeasible); 
} 
Output bestSoFar; 
End. 

 
Fig. 1. The pseudocode for local branching 

algorithm 
 
The local branching algorithm pseudocode is shown in 
Figure 1. In this pseudocode, k, maxDiv, 
nodeTimeLimit, totalTimeLimit, bestSoFar, and 
nodeObjective are neighborhood size, the maximum 
number of diversifications, time limit for each tactical 
branching exploration, overall time limit, best solution, 
and node objective value, respectively.  
In the first part of this pseudocode, variables are 
initialized. The method consists of a main while loop 
which is iterated until either the total time limit or the 
maximum number of diversifications is exceeded. At 
each iteration, a MIP problem is solved that receives on 
input three parameters: the local time limit TL, the 
upper bound UB used to interrupt the optimization as 
soon the best lower bound becomes greater or equal to 
UB, and the binary parameter firstFeasible to be set to 
true for aborting the computation when the first 
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feasible solution is found. MIP solver returns on output 
the optimal/best solution along the final optimization. 
After that node status is checked by using Check node 
status method. diversify indicating whether the next 
required diversification or not.  
Four different states may occur after each call to MIP 
solver: 
 

1. Optimal: the current MIP has been solved to 
proven optimality. In this state, the last local 
branching constraint is reversed 
into ( ,  ) 1x x rhs   , the reference solution x  of 
value UB is updated, the rhs set to value of k and 
the algorithm is iterated. 
2. Infeasible: the current MIP is proven to have no 
feasible solution of cost strictly less than UB, so the 
last local branching constraint is reversed 
into ( ,  ) 1x x rhs   , The rhs and diversify set to 
rhs+k/2 and true, respectively. A diversification is 
implemented depending on the current value of 
diversify. If diversify equals to true, TL and UB set 
to +∞ and the first feasible solution will be 
returned. 
3. Feasible: a solution of cost strictly less than the 
upper bound UB has been found, but the MIP solver 
was not capable of proving its optimality for the 
current problem (due to the imposed time limit or to 
the requirement of aborting the execution after the 
first feasible solution is found).  
In order to cut off the current reference solution x , 
the last local branching constraint ( ,  )x x rhs   is 
replaced by the constraint ( ,  ) 1x x   (unless this 
constraint has been already introduced at step 4, in 
which case the last local branching constraint is 
simply deleted). The reference solution x  of value 
UB is updated. The diversify variable set to false 
and value of k put into rhs variable. 
4. Unknown: no feasible solution of cost strictly less 
than UB has been found within the node time limit, 
but there is no guarantee that such a solution does 
not exist. In this state if diversify equals to true the 
last local branching constraint ( ,  )x x rhs  is 
replaced by ( ,  ) 1x x  in order to escape from the 
current solution, and the upper bound UB and TL 
set to +∞ and rhs=rhs+k/2 and the first feasible 
solution will be returned, else if diversify equals to 
false the constraint ( ,  )x x rhs  is deleted and 
rhs=rhs-k/2 [32]. 

 
3. Parameter Tuning using DOE Approach 

In this section, selecting problems and parameters 
tuning of the local branching algorithm are discussed. 
The parameters of the proposed algorithm are tuned 
using Design of Experiments (DOE) approach and 
Design Expert software.  

An experiment can be described as series of tests in 
which purposeful changes are made to the input 
variables of a system so that we may observe and 
identify the reasons for changes in the output response. 
DOE refers to the process of planning the experiment 
so that appropriate data that can be analyzed by 
statistical methods will be collected, resulting in valid 
and objective conclusions.  
The three basic principles of DOE are replication, 
randomization, and blocking. By replication, we mean 
a repetition of the basic experiment. Two important 
properties of replication are it allows the experimenter 
to obtain an estimate of the experimental error and if 
the sample mean is used to estimate the effect of a 
factor in the experiment, permits the experimenter to 
obtain a more precise estimate of this effect. 
Randomization is that both the allocation of the 
experimental material and the order in which the 
individual runs or trials of the experiment are to be 
performed are randomly determined and makes this 
assumption valid.  
Blocking is a design technique used to improve the 
precision with which comparisons among the factors of 
interest are made. Often blocking is used to reduce or 
eliminate the variability transmitted from nuisance 
factors [33].  
The important parameters in DOE approach are 
response variable, factor, level, treatment and effect. 
The response variable is the measured variable of 
interest. In the analysis of metaheuristics, the typically 
measures are the objective value quality and CPU time 
[34].  
A factor is an independent variable manipulated in an 
experiment because it is thought to affect one or more 
of the response variables. The various values at which 
the factor is set are known as its levels. In 
metaheuristic performance analysis, the factors include 
both the metaheuristic tuning parameters and the most 
important problem characteristics.  
A treatment is a specific combination of factor levels. 
The particular treatments will depend on the particular 
experiment design and on the ranges over which 
factors are varied. An effect is a change in the response 
variable due to a change in one or more factors. Design 
of experiments is a tool can be used to determine 
important parameters and interactions between them. 
Four stages of DOE consist of screening and diagnosis 
of important factors, modeling, optimization and 
assessment. This methodology is called sequential 
experimentation which is used to set the parameters in 
the DOE approach and is used in this paper for local 
branching algorithm [35]. 
Experiments are conducted on eight problems with 
different sizes. In the local branching algorithm, 
solution quality and CPU time are considered as the 
response variables.  
Factors, levels, and the final parameters for solving 
problems are shown in Table 1. These parameters are 
fixed to solve the test instances. 
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Tab. 1. Level factorial design for local branching 
algorithm 

   
Level   

Factor Low  High  
Final 

parameter 
nodeTimeLimit  50  150  100 
totalTimeLimit  400  1000  800 
maxDiv  3  15  5 
k   15  70  20 
 

4. Experimental Results 
The local branching algorithm is tested on a set of 

87 set covering problems available from the OR 
Library. There are fourteen sets of benchmark 
instances called sets 4, 5, 6, A, B, C, D, E, NRE, NRF, 
NRG, NRH, CLR, CYC and RAIL. Each of sets 4 and 
5 has 10 instances, each of sets 6, A to E, and NRE to 
NRH has five instances, set CLR has four instances, set 
CYC has six instances and RAIL has seven instances. 
The characteristics of these instances such as name, 
number of rows, number of columns, density (the 
percentage of nonzero entries in the SCP matrix), and 
cost range are given in Table 2. 

 

Tab. 2. Characteristics of the test instances 
Instance  

No. of 
Rows  

No. of 
Columns  

Density 
(%)  Cost Range 

Set 4  200  1000  2  [1, 100] 
Set 5  200  2000  2  [1, 100] 
Set 6  200  1000  5  [1, 100] 
Set A  300  3000  2  [1, 100] 
Set B  300  3000  5  [1, 100] 
Set C  400  4000  2  [1, 100] 
Set D  400  4000  5  [1, 100] 
E.1  560  500  20  [1, 1] 
E.2  430  500  20  [1, 1] 
E.3  50  500  20  [1, 1] 
E.4  50  500  20  [1, 1] 
E.5  514  500  20  [1, 1] 

Set NRE  500  5000  10  [1, 100] 
Set NRF  500  5000  20  [1, 100] 
Set NRG  1000  10000  2  [1, 100] 
Set NRH  1000  10000  5  [1, 100] 
CLR.10  511  210  12  [1, 1] 
CLR.11  1023  330  12  [1, 1] 
CLR.12  2047  495  12  [1, 1] 
CLR.13  4095  715  12  [1, 1] 
CYC.06  240  192  2  [1, 1] 
CYC.07  672  448  0.89  [1, 1] 
CYC.08  1792  1024  0.39  [1, 1] 
CYC.09  4608  2304  0.17  [1, 1] 
CYC.10  11520  5120  0.07  [1, 1] 
CYC.11  28160  11264  0.03  [1, 1] 
Rail 507  507  63009  1.3  [1, 2] 
Rail 516  516  47311  1.3  [1, 2] 
Rail 582  582  55515  1.2  [1, 2] 

Rail 2536  2536  1081841  0.4  [1, 2] 
Rail 2586  2586  920683  0.34  [1, 2] 
Rail 4284  4284  1092610  0.24  [1, 2] 
Rail 4872  4872  968672  0.2  [1, 2] 

 
To evaluate the performance of the hybrid algorithm, 
the proposed algorithm is compared with the best 
solution found in the literature in Table 3. The 
surrogate constraint normalization rules [1], 3-flip 
neighborhood local search [19], and Lagrangian-based 
heuristic [17] are selected to compare with the 
proposed local branching algorithm. The Java 

programming language and CPLEX 11 software as an 
MIP solver are used to implement the proposed 
algorithm. The program was run on a personal 
computer with core 2 CPU at 2.66 GHz, 4 GBs of RAM, 
and operating under Microsoft Windows Vista. The 
PROB columns indicate the name of the instances. 
Column SCNR stands for surrogate constraint 
normalization rules, 3-Flip NB column refers to the 3-
flip neighborhood local search and L-Heuristic column 
corresponds to the Lagrangian-based heuristic 
method. Obj. Value in LOCB columns refer to the 
solution found by our proposed local branching 
algorithm and the CPU Time column indicates the 
execution time for finding the solution in seconds. The 
best solution that achieved by the selected methods is 
bolded. IMPROVE column displays the improvement 
percentage of the proposed algorithm relative to the 
best solution. As a solution quality, for each test 
problem the percentage of improvement from the 
best solution is calculated by Equation (7). 
 

( -  ) 100
     

Obtained solution Best solutionIMPROVE
Best solution found by other methods

   (7) 
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265 

 
N.A. 

 
265 

 
<1 

 
0.00% 

6.1 
 

159 
 

138 
 

N.A. 
 

138 
 

<1 
 

0.00% 
6.2 

 
171 

 
146 

 
N.A. 

 
146 

 
<1 

 
0.00% 

6.3 
 

158 
 

145 
 

N.A. 
 

145 
 

<1 
 

0.00% 
6.4 

 
148 

 
131 

 
N.A. 

 
131 

 
<1 

 
0.00% 

6.5 
 

191 
 

161 
 

N.A. 
 

161 
 

<1 
 

0.00% 
A.1 

 
279 

 
253 

 
N.A. 

 
253 

 
2 

 
0.00% 

A.2 
 

278 
 

252 
 

N.A. 
 

252 
 

1 
 

0.00% 
A.3 

 
262 

 
232 

 
N.A. 

 
232 

 
1 

 
0.00% 

A.4 
 

234 
 

234 
 

N.A. 
 

234 
 

<1 
 

0.00% 
A.5 

 
236 

 
236 

 
N.A. 

 
236 

 
<1 

 
0.00% 

B.1 
 

75 
 

69 
 

N.A. 
 

69 
 

<1 
 

0.00% 
B.2 

 
84 

 
76 

 
N.A. 

 
76 

 
2 

 
0.00% 

B.3 
 

85 
 

80 
 

N.A. 
 

80 
 

<1 
 

0.00% 
B.4 

 
89 

 
79 

 
N.A. 

 
79 

 
4 

 
0.00% 

B.5 
 

79 
 

72 
 

N.A. 
 

72 
 

1 
 

0.00% 
C.1 

 
253 

 
227 

 
N.A. 

 
227 

 
1 

 
0.00% 

C.2 
 

250 
 

219 
 

N.A. 
 

219 
 

2 
 

0.00% 
C.3 

 
271 

 
243 

 
N.A. 

 
243 

 
2 

 
0.00% 

C.4 
 

255 
 

219 
 

N.A. 
 

219 
 

1 
 

0.00% 
C.5   231   215   N.A.   215   1   0.00% 
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Tab. 3 (continued) 

PROB  SCNR  3-Flip 
NB 

 L-Heuristic  
LOCB 

 
  

    

Obj. Value   
CPU 
Time 

 

IMPROVE 
(%) 

D.1 
 

69 
 

60 
 

N.A. 
 

60 
 

2 
 

0.00% 
D.2 

 
71 

 
66 

 
N.A. 

 
66 

 
8 

 
0.00% 

D.3 
 

81 
 

72 
 

N.A. 
 

72 
 

3 
 

0.00% 
D.4 

 
67 

 
62 

 
N.A. 

 
62 

 
9 

 
0.00% 

D.5 
 

70 
 

61 
 

N.A. 
 

61 
 

1 
 

0.00% 
E.1 

 
5 

 
N.A. 

 
N.A. 

 
5 

 
1 

 
0.00% 

E.2 
 

5 
 

N.A. 
 

N.A. 
 

5 
 

<1 
 

0.00% 
E.3 

 
5 

 
N.A. 

 
N.A. 

 
5 

 
15 

 
0.00% 

E.4 
 

5 
 

N.A. 
 

N.A. 
 

5 
 

<1 
 

0.00% 
E.5 

 
5 

 
N.A. 

 
N.A. 

 
5 

 
<1 

 
0.00% 

NRE.1 
 

30 
 

29 
 

N.A. 
 

29 
 

40 
 

0.00% 

NRE.2 
 

34 
 

30 
 

N.A. 
 

30 
 

214 
 

0.00% 
NRE.3 

 
30 

 
27 

 
N.A. 

 
27 

 
55 

 
0.00% 

NRE.4 
 

33 
 

28 
 

N.A. 
 

28 
 

72 
 

0.00% 
NRE.5 

 
32 

 
28 

 
N.A. 

 
28 

 
34 

 
0.00% 

NRF.1 
 

16 
 

14 
 

N.A. 
 

14 
 

58 
 

0.00% 
NRF.2 

 
16 

 
15 

 
N.A. 

 
15 

 
51 

 
0.00% 

NRF.3 
 

16 
 

14 
 

N.A. 
 

14 
 

10 
 

0.00% 

NRF.4 
 

16 
 

14 
 

N.A. 
 

14 
 

50 
 

0.00% 
NRF.5 

 
15 

 
13 

 
N.A. 

 
13 

 
73 

 
0.00% 

NRG.1 
 

199 
 

176 
 

176 
 

176 
 

33 
 

0.00% 
NRG.2 

 
171 

 
154 

 
155 

 
154 

 
800 

 
0.00% 

NRG.3 
 

185 
 

166 
 

167 
 

166 
 

800 
 

0.00% 
NRG.4 

 
186 

 
168 

 
170 

 
168 

 
800 

 
0.00% 

NRG.5 
 

192 
 

168 
 

169 
 

168 
 

800 
 

0.00% 
NRH.1 

 
72 

 
63 

 
64 

 
63 

 
800 

 
0.00% 

NRH.2 
 

73 
 

63 
 

64 
 

63 
 

800 
 

0.00% 
NRH.3 

 
66 

 
59 

 
60 

 
59 

 
800 

 
0.00% 

NRH.4 
 

67 
 

58 
 

59 
 

58 
 

800 
 

0.00% 
NRH.5 

 
61 

 
55 

 
55 

 
55 

 
800 

 
0.00% 

CLR.10 
 

29 
 

N.A. 
 

N.A. 
 

25 
 

22 
 

-13.79% 
CLR.11 

 
28 

 
N.A. 

 
N.A. 

 
23 

 
102 

 
-17.86% 

CLR.12 
 

28 
 

N.A. 
 

N.A. 
 

26 
 

800 
 

-7.14% 
CLR.13 

 
32 

 
N.A. 

 
N.A. 

 
26 

 
800 

 
-18.75% 

CYC.06 
 

N.A. 
 

N.A. 
 

N.A. 
 

60 
 

100 
 

0.00% 

CYC.07 
 

N.A. 
 

N.A. 
 

N.A. 
 

144 
 

690 
 

0.00% 

CYC.08 
 

N.A. 
 

N.A. 
 

N.A. 
 

352 
 

650 
 

0.00% 
CYC.09 

 
N.A. 

 
N.A. 

 
N.A. 

 
816 

 
800 

 
0.00% 

CYC.10 
 

N.A. 
 

N.A. 
 

N.A. 
 

1916 
 

800 
 

0.00% 
CYC.11 

 
N.A. 

 
N.A. 

 
N.A. 

 
4268 

 
800 

 
0.00% 

RAIL 
507 

 
197 

 
174 

 
174 

 
174 

 
800 

 
0.00% 

RAIL 
516 

 
194 

 
182 

 
182 

 
182 

 
800 

 
0.00% 

RAIL 
582 

 
236 

 
211 

 
211 

 
211 

 
800 

 
0.00% 

RAIL 
2536 

 
770 

 
691 

 
692 

 
691 

 
800 

 
0.00% 

RAIL 
2586 

 
1064 

 
945 

 
936.1 

 
936 

 
800 

 
0.00% 

RAIL 
4284 

 
1215 

 
1064 

 
1070 

 
1066 

 
800 

 
0.19% 

RAIL 
4872   1698   1528   1534   1530   800   0.13% 

 
In Lagrangian-based heuristic the standard problem are 
categorized and the fixed time limit is set for each 
category. For the small problems, time limit is set in 
3000 seconds and for the medium and large problems, 
time limit is set in 10,000 seconds. In 3-flip 
neighborhood local search, Time limits of the 
algorithms set to 180 seconds for types E–H, 600 
seconds for RAIL 507, 516 and 582, and 18,000 s for 
RAIL 2536–4872.  
The average of IMPROVE column for the proposed 
local branching algorithm is -0.66 percent. The results 
show the efficiency and effectiveness of the proposed 
algorithm. Figure 2 shows the best objective value of 
the local branching algorithm in each branching node 
for CYC.09 problem. 

 
Fig. 2. Convergence of LOCB best objective value 

for CYC.09 

 
5. Conclusions 

This paper presented the local branching algorithm 
for solving the set covering problem. The validity and 
efficiency of the proposed method are put into test over 
a series of computational experiments on fourteen sets 
of standard test problems. To adjust the best parameter 
values in the proposed algorithm, design of 
experiments method is used to find the most 
appropriate parameters. The experimental results show 
the efficiency and effectiveness of the proposed 
algorithm. The average percentage of improvement for 
the proposed algorithm in compare with the best 
solution in the literature is -0.66 percent. The outcome 
is the local branching method clearly outperforms other 
heuristics in the literature, finding the best solution 
until now for most of the instances with a reasonable 
computational effort. These results are very 
encouraging, and suggest that combining mathematical 
programming and metaheuristic techniques is a worth 
pursuing research direction. The application of this 
formulation and solution method in real problems as a 
case study is suggested for future researches. 
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