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ABSTRACT 

Background and Objectives: There is increasing emergence of multidrug resistant Pseudomonas aeruginosa (MDRPA) 
strains and drug resistance is positively-correlated with biofilm-forming ability. Since about 10% of P. aeruginosa genome 
is controlled by quorum sensing (QS), alteration in its antibiotic susceptibility by targeting QS was the focus of the present 
study. 
Materials and Methods: One day biofilms of PAO1 and three urinary tract infection MDRPA isolates (PA2, PA8 and PA18) 
were formed in 96-well microtiter plate. Biofilms were exposed to concentration gradient of ciprofloxacin and gentamicin to 
obtain Minimum Biofilm Eradication Concentration (MBEC) by direct enumeration method. Susceptibility of 24 h biofilms 
was evaluated by treatment with ciprofloxacin and gentamicin per se and in combination with lactonase. The effect was also 
examined on 72 h biofilms by Scanning Electron Microscopy.  
Results: Lactonase treatment did not have any effect on growth of the selected strains but 73.42, 69.1, 77.34 and 72.5% 
reduction of biofilm was observed after lactonase (1 unit) treatment, respectively. Antibiotics in combination with lactonase 
(0.3 units) resulted in an increased susceptibility of the biofilm forms by > 3.3, 4, 5 and 1.5 folds of MBEC, for ciprofloxacin 
and > 6.67, 12.5, 6 and > 2.5 folds, for gentamicin respectively, which could be due to the disruption of biofilm by lactonase 
treatment as shown by scanning electron microscopy. Also there was significant reduction (p < 0.001) in virulence factor 
production by the strains. 
Conclusion: Lactonase treatment increased antibiotic susceptibility of the biofilms of MDRPA isolates underscoring the 
potential of quorum quenching in antimicrobial therapeutics. 

Keywords: Multidrug resistance, Pseudomonas aeruginosa, AHL Lactonase, Biofilm, Antibiotic Susceptibility, antimicrobial 
therapeutics 

 INTRODUCTION

Pseudomonas aeruginosa is a leading opportunistic 
nosocomial pathogen associated with significant 
morbidity and mortality due to cystic fibrosis, bacter-
emia, endocarditis, osteomylitis including cranial nerve 
palsies, gastrointestinal upsets, burns, and ventilator-
associated pneumonia among intubated patients (1-4). 

This organism is problematic because of impressive 
genetically encoded mechanisms of intrinsic resistance 
and the potential to mutate and gain resistance to 
current antibiotics (5) which primarily corresponds its 
biofilm forming ability (1). Most notably, fluoroquinol-
ones influence emergence of multidrug resistant  strains 
(6-8). Aminoglycosides also have been documented 
ineffective even in combination with other antibiotics 
due to newly evolving resistant strains (9-12). Therefore, 
ciprofloxacin (fluoroquinolone) and gentamicin 
(aminoglycoside) have been selected for investigation 
in the present study.

With the wide application of in vivo artificial devices 
such as contact lens, synthetic valves and artificial 
joints, P. aeruginosa gain access into the body and form 
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biofilm. The established biofilms provides permeabi-
lity barrier for antibiotics (13), making the treatment of 
P. aeruginosa infections intractable. Quorum sensing 
(QS) is known to play a pivotal role in the virulence of 
P. aeruginosa (5). Its QS system is composed of the 
LasR/I and the RhlR/I signal systems, which produce 
two typical autoinducers: N-(3-oxo-dodecanoyl)-
L-homoserine lactone (OdDHL) and N-butyryl-L-
homoserine lactone (BHL), respectively. DNA chip 
analysis has indicated that P. aeruginosa genome 
has over 300 genes under the control of QS system, 
including genes related to important virulence factors 
and biofilm formation (14) but there are equivocal reports 
about antibiotic resistance being regulated by QS. 

The aim of the current study was to test the hypothesis 
that targeting the dissemination of QS molecules by 
enzymatic degradation may affect antibiotic susceptibi-
lity of  P. aeruginosa strains.

MATERIALS AND METHODS

Strains, media and plasmids. All bacterial strains 
and plasmids used in this work along with growth 
conditions are listed in Table 1. Eight urinary tract 
infection (UTI) and ten sepsis isolates of Pseudomonas 
aeruginosa isolated from clinical specimens in hospital 
diagnostic laboratories were subjected to preliminary 
confirmatory tests using Difco™ Pseudomonas Isolation 
Agar followed by Kligler Iron Agar and Kovac’s oxidase 
test. The strains were maintained in Luria Bertani (LB) 
medium, but 2% peptone was used for virulence assays.

Selection of clinical isolates of P. aeruginosa. 
For biofilm forming ability, P. aeruginosa (106 cfu/ml) 

was seeded into wells of 96-well microtiter plate 
containing 100µl sterile LB. Un-inoculated LB was 
taken as control (CW). The plate was incubated 
at 37ºC for 24 h and growth (G) was determined 
spectrophotometrically at OD600nm. Wells were 
vigorously washed four times with PBS (pH 7.2), 
crystal violet (1%) was added and the plate was 
incubated for 10 min. Again the wells were washed 
and dried thoroughly. 95% ethanol was added to 
each well and was kept for 10-15 min. The solution 
from each well was pipetted to fresh wells, biofilm 
formation (AB) was measured spectrophotometrically 
at OD575nm and specific biofilm forming index (SBF) 
was calculated using the formula AB-CW/G. The 
degree of biofilm production was classified in three 
categories: weak (SBF ≤ 0.5), moderate (0.5 > SBF ≤ 1), 
and strong (SBF > 1) (19).

MDRPA isolates were screened for lactone 
production by AHL plate bioassay using A. tumefaciens 
NT1 indicator strain. Briefly, lactones were extracted 
from overnight cultures with acidified ethyl acetate 
using 0.01% glacial acetate (2) and were concentrated 
1000 times. AB agar plate was overlaid with AB 
medium containing 0.5% mannitol, X-gal (40 µg/ml), 
10% inoculum of A. tumefaciens NT1 (pDCI41E33) 
reporter strain (OD600nm 1.8), 50 µg/ml kanamycin and 
0.75% agar. Wells were punched aseptically and the 
extracted lactones were loaded. Plates were incubated 
for 24-48 h and presence of lactone was indicated by 
blue zones around the wells (15).

Kirby-Bauer disc diffusion method was used 
following NCCLS guidelines for the selection of 
MDRPA isolates (resistant to ≥ 3 different classes 
of antibiotics) (20). Different antibiotics used were 

Bacterial strains Relevant characteristics/ genotype Growth conditions Reference

Agrobacterium tumefaciens NT1(pDCI41E33) 
(Indicator strain)

traG: lacZ traR in pDSK519; Kmr 

autoinducer reporter plasmid
Kanamycin (50 µg/ml) at 

30°C, AB medium (15)

E. coli DH5α
deoR, endA1 gyrA96, hsdR17(rK– mK+), 
recA1, relA1, supE44, thi-1, ∆(lacZYA-

argFV169), Ø80lacZ∆M15, F–
LB medium, 37°C (16)

• P. aeruginosa  PAO1
• PA2,PA8,PA11,PA18, G1,G9,G10 and G13
• 2663, 3633, 3751, 3849, 3878, 3882, 4250, 
4287, 4299 and 4303.

Wild type strain
Clinical urinary tract infection isolates
Clinical isolates from sepsis patients

LB medium, 37°C (17)
This study

Plasmids used

pMAL-t-aiiA
Expression vector containing lactonase 
gene (aiiA) from Bacillus thuringiensis 

4A3 
(18)

Table 1. Characteristics of bacterial strains/plasmids.
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aminoglycosides [amikacin (30 µg), gentamicin (10 
µg), kanamycin (10 µg), streptomycin (10 µg), 
tobramycin (10 µg)], fluoroquinolone [ciprofloxacin 
(5 µg)], β-lactams [ampicillin (10 µg)] and polyketide 
[tetracycline (10 µg)]. 

Heterologous expression of aiiA in E. coli DH5α 
and lactonase preparation. Lactonase gene (aiiA) 
fused to maltose binding protein (MBP) was cloned 
in expression vector pMAL-c2x (gift from Dr. Walter 
Fast, University of Texas, Austin) and E. coli DH5α 
(12.5 kV/cm, 200 Ω) transformants were selected on 
ampicillin (50 µg/ml) LB agar plates (16). Expression 
and production of lactonase was done by method of 
Thomas et al. (18). 

Lactonase activity. Lactonase activity was calculat-
ed as substrate (µM) degraded/min/µg of lactonase. 
Residual lactone extracted after incubation of 3-oxo-
C12 HSL (Fluka, USA) and lactonase at 37°C for 5, 
10 and 15 min was added to 96 well plate containing 
100 µl of 1:10 diluted overnight grown culture of 
A. tumefaciens NT1 in AB medium supplemented 
with 0.5% mannitol, 50µg/ml kanamycin and 40 µg/
ml X-gal (15) and incubated for 24 h at 37°C. OD 
was taken at 490 nm (21) and residual lactone was 
estimated from the standard curve of 3-oxo-C12-HSL 
(0.01 µM-10 µM).

Biofilm assay. A static biofilm assay was perform-
ed with selected MDR strains of P. aeruginosa in 
96 well polystyrene microtiter plates. 24 h biofilm 
was treated in the absence (control) and presence of 
lactonase gradient (0-1 Unit). After 6 h of treatment 
at 37°C, excess broth was removed and used to 
enumerate planktonic growth on LB agar, and the 
wells were washed four times with sterile PBS. 150µl 
of PBS was added to all the wells and the microtiter 
plate with lid was placed in chilled water bath. 
Sonicator tip was dipped in water-bath and sonicated 
for 10 sec at 40% power to loosen the biofilm and 
bacterial cells in biofilms (cfu/ml) were enumerated 
on LB agar.

Effect of lactonase on antibiotic resistance of 
clinical isolates of P. aeruginosa. Minimum biofilm 
eradication concentration (MBEC) of gentamicin and 
ciprofloxacin was estimated on 24 h biofilms formed 
by the selected P. aeruginosa strains by giving 
treatment at 0-5 mg/ml and 0-3 mg/ml, respectively. 

Concentration of antibiotic at which no viable cell-
counts in biofilms were obtained was taken as 
MBEC. To study the effect of lactonase on antibiotic 
susceptibility of the selected P. aeruginosa isolates, 
antibiotic treatment was given in absence (control) 
and presence of lactonase (0.3 Units) for 6 h at 37°C 
followed by viable counting of biofilm forms as 
explained above. 

Microscopic analysis. Scanning electron microsco-
pic analysis of the effect of lactonase and gentamicin 
and the effect of both in combination on PAO1 biofilm 
was performed. For biofilm formation, cell-suspension 
(106 cfu/ml) from overnight grown culture at 37°C, 
180 rpm was made in AB medium supplemented with 
0.3 mM glucose and was used to form 24 and 72 h 
biofilm on cover-slips [in four sets: untreated control, 
lactonase (0.3 units) and antibiotic treatment per se and 
in combination] (22). Then the respective treatment 
for 8 h at 37°C was given to the established biofilm. 
Cover-slips were vigorously washed 8-10 times with 
sterile PBS (pH 7.2, 50 mM) and fixed with 2.5% 
glutaraldehyde for 3 h. The samples were dehydrated 
using ethanol gradient, for 15 min each. The samples 
were mounted onto aluminum stubs, sputter-coated 
with gold-palladium (1.8 kV and 6 mA for 60 s) and 
desiccated. The electron micrographs were analyzed 
by digital scanning electron microscope JSM 6100 
(JEOL).

Effect of lactonase on the production of virulence 
factors of P. aeruginosa. Selected strains of P. 
aeruginosa were grown in 2% bactopeptone in 
presence and absence (control) of lactonase (0.3 Unit) 
in triplicates. After 16 h incubation at 37°C, 180 rpm; 
the cell density was recorded at OD600nm and cell free 
supernatant (CFS) was obtained by centrifugation 
at 12,000 g for 15 min, 4°C for the estimation of 
virulence factors.

Pyochelin was estimated in 1.0 ml of CFS by 
adding 1 ml each of 0.5 N HCl, nitrite molybdate 
reagent and 1 N NaOH. Final volume was made to 
5 ml with distilled water and the absorbance was 
read at 510 nm (23). Protease activity was checked 
on 0.1 ml of azocasein (10 mg/ml) dissolved in 50 
mM PBS (pH 7.5) (Sigma, USA) at 37°C for 1 h. 
Yellow colored (azo group) hydrolyzed end-product 
was spectrophotometrically recorded at 405 nm 
after centrifugation (12,000 g, 2 min) and results 
were expressed as OD405 nm/h growth unit (24). 
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Elastolytic activity was measured on elastin–congo 
red (ECR). Optical density was taken at 490 nm and 
elastase activity was expressed as absorbance at 490 
nm/mg of ECR/h (25). For pyocyanin estimation, 
pyocyanin was extracted from CFS with 5:1 v/v of 
chloroform. The chloroform phase was removed and 
extracted with 0.2 N HCl. Absorbance was taken at 
490 nm. Rhamnolipid production was estimated in 
1.0 ml CFS by adding 1N H2SO4. Absorbance was 
taken at 490 nm (26). 

Results were statistically analyzed by applying the 
student’s t-test for calculating p- values. 

RESULTS

All clinical isolates were observed to be Gram-
negative motile rods. Although all the isolates showed 
growth on Pseudomonas isolation agar, only PAO1, 
PA2, PA8, PA11 and PA18 produced pyocyanin after 
18 h, however, other isolates produced pyocyanin 
pigment after 48 h of incubation at 37°C. On KIA 
medium, no acid production in slant and butt 
indicated that the isolates fermented neither dextrose 
nor lactose. Also, all the strains were observed to 
be oxidase positive; therefore, all the P. aeruginosa 
clinical isolates and PAO1 wild-type strain was 

subjected to screening for biofilm formation, lactone 
production and antibiotic resistance.

Selection of clinical isolates of P. aeruginosa. 
All the clinical isolates were observed to produce 
lactones, however, the production was higher among 
UTI isolates as indicated by the intensity of blue 
zones around the wells (data not shown) but wide 
variation in biofilm forming abilities was observed 
(Fig. 1). PAO1 along with PA2, PA8 and PA18 UTI 
isolates exhibited the strong biofilm forming ability 
(SBF > 1); PA11, G1, G9, G10 and G13 UTI isolates 
had the moderate (SBF > 0.5) and all the sepsis 
isolates showed the weak biofilm forming ability 
(SBF ≤ 0.5). 

The results of antibiotic disc diffusion assay 
showed multi-drug resistance among three urinary 
tract infection (UTI) strains (PA2, PA8, and PA18) 
and six sepsis isolates (2635, 3633, 3751, 3882, 4299 
and 4303) (Fig 2A). PAO1, PA2, PA8, PA18, 3633 
and 4299 showed 100% antibiotic resistance against 
the set of antibiotics used. Beside wide variation in 
antibiotic resistance levels of the isolates, the whole 
spectrum of commonly administered antibiotics also 
showed variable (53-95%) and high percentage (> 50%) 
of strain resistance (Fig. 2B).  Majority of the strains 
(95%) showed resistance to ampicillin followed by 
aminoglycosides (71%). Among aminoglycosides, 
frequency of resistance to antibiotics followed the 
order: kanamycin (90%) > streptomycin and amikacin 
(74%) > tobramycin (63%) > gentamicin (53%). 
58% strains were resistant to ciprofloxacin and 53% 
against tetracycline (Fig. 2B).

Since PAO1, PA2, PA8 and PA18 strains exhibited 
strong lactone production; biofilm formation and 
antibiotic resistance, these were selected for the further 
investigation. Also, the AHL molecules produced by 
these selected P. aeruginosa strains were observed to 
be completely degraded by AiiA lactonase (Fig. 3).

Effect of lactonase on biofilm formation. 
Lactonase (1 unit) treatment significantly (p < 
0.01) reduced biofilm formation by 73.5, 68.8, 76.8 
and 70.7% in PAO1, PA2, PA8 and PA18 strains, 
respectively (Table 2a) and the effect was found to be 
concentration dependent. There was an increase in the 
planktonic cell count in the medium surrounding the 
treated biofilm (Table 2b) which increased with the 
increase in lactonase concentration (0-1 units). The 
highest transformation of biofilm forms to planktonic 
forms (71.2%) due to lactonase (1Unit) treatment was 

Fig. 1. Specific biofilm forming index of P. aeruginosa 
PAO1 strain and clinical isolates ± standard deviations.

Clinical isolates of P. aeruginosa
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(Fig. 2A) Percent antibiotic resistance by different P. aeruginosa strains: 1) 
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4303. (Fig. 2B) Percent strain resistance to different antibiotics 
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observed for PA2 strain and the least was observed for 
PAO1 strain of P. aeruginosa (63.42%) (Table 2b).

Effect of lactonase on Minimum Bactericidal 
Eradication Concentration. 24 h biofilms of 
selected MDR strains of P. aeruginosa showed 
different levels of reduction in MBECs (Fig. 3a-3d) 
against ciprofloxacin and gentamicin when treated 
in the presence of 0.3 units of lactonase. MBECs 
of both ciprofloxacin and gentamicin could not be 
achieved even at 5000 µg/ml, in case of PAO1 strain 
but with lactonase treatment, MBEC for both the 
antibiotics was achieved at 1500 µg/ml and 750 µg/
ml, respectively (Fig. 4a). Lactonase treatment thus 
potentiates the antibiotic efficiency because biofilm 
eradication could be achieved at sub-MBEC levels 
for both gentamicin and ciprofloxacin. 

MBEC of ciprofloxacin and gentamicin against 
MDR PA2 isolate of P. aeruginosa was 2000 and 
4000 µg/ml, respectively, which reduced to 500 µg/
ml and 300 µg/ml in presence of lactonase resulting 

in 4 and 12.5 folds reduction in MBECs, respectively 
(Fig. 4b). 

Gentamicin showed higher MBEC against all the 
four strains of P. aeruginosa. For PA8 strain, MBEC 
for ciprofloxacin and gentamicin was 2000 µg/ml and 
5000 µg/ml, which is approximately 100 times the 
permissible dosage prescribed for human subjects. 
Lactonase treatment reduced the MBEC values by 5 
and 6 folds, respectively (Fig. 4c). PA18 strain also 
showed high resistance against both ciprofloxacin 
(4000 µg/ml) and gentamicin ( > 5000 µg/ml), 
however, lactonase treatment resulted in reduction of 
MBEC levels by 1.5 and  > 2.5 folds, respectively 
(Fig. 4d).

Microscopic examination of electron micrographs 
showed multiple cells in contact with one another and 
irreversibly attached to substratum, with no pili i.e. 
motility was ceased in attached cells (Fig. 5a) in 24 
h biofilm of PA2 isolate. At some fields, cell-clusters 
had initiated progressive layering. Mushroom and 
pillar-like structures were visualized in 72 h biofilm 

Lactonase (Units)
% reduction in log10 cfu/ml counts of biofilm after lactonase treatment ± SD

PAO1 PA2 PA8 PA18
0 0 ± 0.065 0 ± 0.97 0 ± 0.47 0 ± 0.17

0.05 2.7 ± 1.01 4.16 ± 0.74 4.59 ± 0.92 7.73 ± 1.3

0.1 25.7 ± 0.17 9.36 ± 0.14 13.8 ± 0.61 24.79 ± 0.8

0.2 38.87 ± 0.27 21.6 ± 0.63 23.55 ± 0.84 34.1 ± 0.62

0.3 49.84 ± 0.09 52.27 ± 0.62 46.6 ± 0.16 47 ± 0.51

0.4 51.25 ± 0.18 53.62 ± 0.81 48.9 ± 0.71 49.3 ± 0.93

0.5 56.52 ± 0.65 56.38 ± 1.09 51.08 ± 0.64 52.99 ± 0.65

0.6 58.24 ± 0.09 57.51 ± 0.72 53.34 ± 0.53 54.67 ± 0.42

0.7 61.53 ± 0.29 58.266 ± 0.65 55.11 ± 0.19 57.96 ± 0.84
0.8 65.12 ± 0.83 63.03 ± 0.82 66.95 ± 0.71 61.97 ± 0.91
0.9 68.14 ± 1.56 69.2 ± 0.37 71.13 ± 0.19 70.32 ± 0.21
1.0 73.42 ± 0.79 69.1 ± 0.61 77.34 ± 0.92 72.5 ± 0.19

Table 2a . Effect of lactonase on biofilm formation of P. aeruginosa isolates 

Table 2b.  Effect of lactonase on a) biofilm formation; b) planktonic forms of P. aeruginosa PAO1 strain and three UTI 
clinical isolates.

Units of lactonase
% increase in log10 cfu/ml counts of planktonic cells after lactonase treatment ± SD

PAO1 PA2 PA8 PA18

0 0 ± 0.065 0 ± 0.065 0 ± 0.065 0 ± 0.065

0.2 8.87 ± 0.17 10.1 ± 0.29 5.8 ± 1.27 9.87 ± 0.79

0.4 20.25 ± 1.18 25.2 ± 0.28 19.26 ± 0.18 25.25 ± 0.48

0.6 38.24 ± 1.09 42.14 ± 0.39 28.27 ± 0.09 36.24 ± 0.49
0.8 45.12 ± 0.73 55.16 ± 0.3 35.32 ± 0.83 42.12 ± 1.13
1 63.42 ± 0.29 71.2 ± 0.7 69.41 ± 0.79 65.42 ± 0.13
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Fig.3. Effect of lactonase on lactones producted by P. aeruginosa PAO1 strain 
and three UTI clinical isolates 
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Fig. 3. Effect of lactonase on lactones producted by P. aeruginosa PAO1 strain and three UTI clinical isolates.
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Figs. 4a-d. Effect of lactonase treatment on antibiotic resistance of P. aeruginosa 
strains a) PAO1 wild-type b) PA2 c) PA8 d) PA18   
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20

Fig. 5 (a-f). SEM of biofilm formed by PA2 isolate of P. aeruginosa on glass 
surface using Scanning Electron Microscope (Model JSM6100-JEOL). Fig. a) 24 
h biofilm; b, c) 72 h biofilm; d) gentamicin (100 g/ml) treated 72 h biofilm; e) 
lactonase (0.3 units) treated 72 h biofilm; f) gentamicin (100 g/ml) and lactonase 
(0.3 units) treated 72 h biofilm 
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Fig. 5 (a-f). SEM of biofilm formed by PA2 isolate of P. aeruginosa on glass surface using Scanning Electron Microscope 
(Model JSM6100-JEOL). Fig. a) 24 h biofilm; b, c) 72 h biofilm; d) gentamicin (100 μg/ml) treated 72 h biofilm; e) lactonase 
(0.3 units) treated 72 h biofilm; f) gentamicin (100 μg/ml) and lactonase (0.3 units) treated 72 h biofilm
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(Fig. 5b, 5c) which persisted in gentamicin (sub-
MBEC) treated 72 h biofilm but it resulted in altered 
cell morphology i.e. the cells turned spherical  (Fig. 
5d). Clustering and mushroom-like structures were 
absent when treatment was given with lactonase per 
se and in combination with gentamicin, respectively 
(Fig. 5e, 5f). 

Also, there was an significant decrease (p < 0.001) 
in the virulence factors after lactonase (0.3 U) 
treatment. Pyocyanin was reduced in range of 85-
93%, protease activity by 86-95%, elastase activity 
by 69-91% and pyochelin secretion by 40-90% along 
with rhamnolipids production in the range of 67-94% 
in different MDR strains of P. aeruginosa (Fig. 6). 

DISCUSSION

Intriguing successful reports of QS inhibitors like 
quorum quenching (QQ) enzymes and synthetic 
chemicals in controlling virulence have underscored 
the validity of QQ strategy against numerous human 
and plant pathogens. There is very little data on its 
application in combating drug resistance. With the 
widespread use of extended-spectrum antibiotics, 
clinical evolution of MDRPA strains is rising (27-

30) which contributes to the persistence of biofilm 
infections that necessitates early multidisciplinary 
control interventions. 

To analyze the effect of lactonase on antibiotic 
susceptibility of clinical isolates of P. aeruginosa, 
the sampling was focused on UTI and sepsis isolates 
because high rates of mortality (70%) are due to 
UTI, burn wounds, sepsis and resultant endocarditis 
(3, 4). The clinical isolates were assayed for lactone 
production, biofilm formation and multidrug resistan-
ce prior to selection for further analytical studies 
because clinical isolates could be QS mutants which 
do not produce AHL auto-inducers and have reduced 
expression of virulence traits (31). During selection, 
it was observed that UTI isolates were strong biofilm 
and lactone producers vis-à-vis sepsis isolates. This 
striking feature couldn’t be explained because both 
adherent and invasive forms i.e. UTI and sepsis 
forms, respectively, are strong biofilm formers (19). 
Also there is no comparative analysis yet reported for 
the variable physiological responses by isolates from 
different body sites. But the higher lactone production 
and SBF index of UTI isolates could provide no 
advantage in multidrug resistance as only three UTI 
(PA2, PA8 and PA18) and six sepsis isolates (2635,  
3633, 3751, 3882, 4299 and 4303) were MDRs along 
with PAO1 strain. Since, PAO1, PA2, PA8 and PA18 
fulfilled all the selection parameters of antibiotic 
resistance, biofilm and lactone production, these were 
selected for further investigations. 

In an experiment on lactonase effect on biofilms, 
lactonase was observed to eradicate 24 h biofilms in 
concentration dependent manner and was independent 
of the biofilm species. Since biofilms are 100-1,000 
times recalcitrant to antibiotics than their planktonic 
counterparts (2) and reach an accumulation plateau 
by 24 h (32-34), antibiotic susceptibility in this work 
was investigated on 24 h biofilms.  Although all the 
biofilms exhibited higher but variable resistance 
to gentamicin vis-à-vis ciprofloxacin but lactonase 
treated biofilms exhibited enhanced susceptibility to 
both the antibiotics irrespective of the biofilm species. 
The higher resistance to gentamicin could be because 
of delayed transportation of gentamicin across the P. 
aeruginosa biofilm due to more and tighter binding 
sites (35, 36) which reduces gentamicin activity 
due to enzymatic degradation during the course of 
penetration. Also, P. aeruginosa biofilms have been 
reported to display higher resistance to gentamicin vis-
à-vis E. coli and Klebsiella biofilms (36). Although 

Fig. 6. Effect of lactonase on virulence factors of P. 
aeruginosa PAO1 strain and three selected UTI clinical 
isolates (PA2, PA8 and PA18.)

17

 
(Fig. 2A) Percent antibiotic resistance by different P. aeruginosa strains: 1) 
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11) 3633, 12) 3751, 13) 3849, 14) 3878, 15) 3882, 16) 4250, 17) 4287, 18) 4299, 19) 
4303. (Fig. 2B) Percent strain resistance to different antibiotics 
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the role of quorum sensing in antimicrobial resistance 
is not yet clear, this work resolves the role of quorum 
sensing in antibiotic resistance of P. aeruginosa and 
is confluent with the few of previous studies showing 
antibiotic resistance due to QS regulated SdiA protein 
in E. coli (37), QS-multi-drug efflux symports in P. 
aeruginosa (38), and AI-2 QS system in Streptococcus 
anginosus (39) but contrary to that of Butler et al. (40) 
who stated that resistance is directly correlated with 
density of cells. For further analysis, microscopical 
examination was performed.

Electron micrographs showed ample microcolonies 
and typical mushroom and pillar-like structures in 
24 h and 72 h biofilm, respectively. The microscopic 
examination of untreated and gentamicin treated 72 h 
biofilm showed similar density of bacterial cells but 
gentamicin treatment caused marked morphological 
alterations accompanied by rounding of cells. Such 
morphological alterations of bacterial cells could be 
due to impairment in synthesis of certain enzymes 
involved in cell-wall formation as aminoglycosides 
don’t influence the cell wall composition directly (41, 
42). Also 72 h biofilm treated with lactonase per se 
and in combination with gentamicin showed abundant 
scattered cells with rounded cells in the latter. It 
showed that lactonase enzyme had the significant 
role in biofilm eradication vis-à-vis gentamicin 
because number of scattered cells was similar in both 
the samples. These results underscores the potential 
of lactonase in eradicating the established mature 
biofilms as compared to previous works that showed 
efficiency of QS inhibitors, lactonase and acylase 
enzymes in inhibiting biofilm formation when were 
allowed to act during inception (32, 43, 44). Thus, 
manipulating QS pathway of bacterial pathogens may 
provide an important approach in control of biofilm-
associated virulence and development of new anti-
bacterial therapeutics. 

Furthermore, lactonase treatment significantly 
reduced (p < 0.001) the production of pyocyanin, 
pyochelin, protease and elastolytic activity which 
are controlled by las QS system and rhamnolipids 
production by rhl QS system (17). Thus, AiiA 
lactonase quenches all the major lactones (C4-HSL 
by rhl system alongwith 3-oxo-C12-HSLs by las) 
produced by P. aeruginosa strains that regulate 
virulence factor expression. 

The present study shows promising potential of 
enzymatic quorum quenching to combat not only the 
virulence but also uprooting the multidrug resistance 

menace due to emerging antibiotic resistant P. 
aeruginosa strains. Thus, this area deserves further 
investigation for application of lactonase in alternate 
antimicrobial therapy (45-49).
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