Archive of SID.ir

Categories and
General Algebraic Structures
with Applications

G A S

α -projectable and laterally α -complete Archimedean lattice-ordered groups with weak unit via topology

Anthony W. Hager and Brian Wynne*

Dedicated to Themba Dube on the occasion of his 65th birthday

Abstract. Let **W** be the category of Archimedean lattice-ordered groups with weak order unit, **Comp** the category of compact Hausdorff spaces, and $\mathbf{W} \xrightarrow{Y} \mathbf{Comp}$ the Yosida functor, which represents a **W**-object A as consisting of extended real-valued functions $A \leq D(YA)$ and uniquely for various features. This yields topological mirrors for various algebraic (**W**-theoretic) properties providing close analysis of the latter. We apply this to the subclasses of α -projectable, and laterally α -complete objects, denoted $P(\alpha)$ and $L(\alpha)$, where α is a regular infinite cardinal or ∞ . Each **W**-object A has unique minimum essential extensions $A \leq p(\alpha)A \leq l(\alpha)A$ in the classes $P(\alpha)$ and $L(\alpha)$, respectively, and the spaces $Yp(\alpha)A$ and $Yl(\alpha)A$ are recognizable (for the most part); then we write down what $p(\alpha)A$ and $p(\alpha)A$ are as functions on these spaces. The operators $p(\alpha)$ and $p(\alpha)A$ are compared: we show that both preserve closure under all implicit functorial operations which are finitary. The cases of $p(\alpha)A$ is finite. But $p(\alpha)A$ for

Keywords: Lattice-ordered group, archimedean, projectable, laterally complete.

[2010]: 06D99, 08C05, 54C40.

Received: 8 October 2023, Accepted: 8 December 2023.

ISSN: Print 2345-5853 Online 2345-5861.

© Shahid Beheshti University

^{*} Corresponding author

infinite X, $p(\alpha)C(X)$ sometimes is, and sometimes is not, $C(Yp(\alpha)C(X))$.

1 Introduction and Preliminaries

We begin with basic definitions, etc., trying to make the Abstract quickly comprehensible. More detail is in the introductions to [23] and [24], of which this paper is a loose continuation. General references for ℓ -groups and vector lattices are [1], [4], [12], and [32].

Definition 1.1. In an ℓ -group A (always assumed Archimedean, thus Abelian): For $S \subseteq A$, $S^{\perp} \equiv \{a \in A \mid |a| \land |s| = 0 \forall s \in S\}$ is an *ideal* (convex

For $S \subseteq A$, $S^{\perp} \equiv \{a \in A \mid |a| \land |s| = 0 \ \forall s \in S\}$ is an *ideal* (convex sub- ℓ -group). Ideals $S^{\perp \perp}$ are called *polars*.

Let α be a regular infinite cardinal or the symbol ∞ ; we write $\omega \leq \alpha \leq \infty$. |S| is the cardinal of the set S, and $|S| < \infty$ means S is of any size.

An α -polar in A is an $S^{\perp \perp}$ for $|S| < \alpha$.

 $A \in P(\alpha)$ (A is α -projectable) means that each α -polar $S^{\perp \perp}$ is an ℓ -group direct summand, i.e., each $a \in A$ can be written uniquely $a = a_1 + a_2$ with $a_1 \in S^{\perp \perp}$ and $a_2 \in S^{\perp}$.

The following terms are used in the literature: if $A \in P(\omega)$ (resp., $P(\infty)$), A is called *projectable* (resp., *strongly projectable*). For vector lattices, the terminology "principal projection property" (resp., "projection property") is sometimes used.

 $A \in L(\alpha)$ (A is laterally α -complete) if each disjoint $S \subseteq A^+$ ("disjoint" means for all $s_1, s_2 \in S$, if $s_1 \neq s_2$, then $s_1 \wedge s_2 = 0$) with $|S| < \alpha$, the supremum $\bigvee \{s \mid s \in S\}$ exists in A. Note that any $A \in L(\omega)$ (since A is a lattice). [23, 3.2] shows that $L(\alpha) \subseteq P(\alpha)$ in **W**.

We turn to **W** and the Yosida Theorem, and now restrict our ℓ -groups to **W**: $(A, u_A) \in \mathbf{W}$ means A is an Archimedean ℓ -group (thus Abelian) and u_A is a distinguished weak unit (meaning $\{u_A\}^{\perp} = \{0\}$), positive unless $A = \{0\}$, where $u_A = 0$.

A **W**-homomorphism $(A, u_A) \xrightarrow{\varphi} (B, u_B)$ is an ℓ -group homomorphism with $\varphi(u_A) = u_B$. With these as morphisms, **W** is a category.

The "interval" $\mathbb{R} \cup \{\pm \infty\} = [-\infty, +\infty]$ is given the obvious topology and order. For a space X (always Tychonoff, frequently compact Hausdorff), D(X) is the set of continuous $X \xrightarrow{f} [-\infty, +\infty]$ for which $f^{-1}(\mathbb{R})$ is dense in X. This is a lattice containing the constant function with value 1 as a weak

unit, with addition partially defined by f+g=h meaning f(x)+g(x)=h(x) for every $x \in f^{-1}(\mathbb{R}) \cap g^{-1}(\mathbb{R}) \cap h^{-1}(\mathbb{R})$. A **W**-object in D(X) is an $A \in \mathbf{W}$ which is a sublattice, with the partial addition of D(X) fully defined on A, and with the constant function with value 1 contained in A and serving as the distinguished weak unit; we express all that succinctly by writing $A \leq D(X)$. For arbitrary $A, B \in \mathbf{W}$, $A \leq B$ means there is a **W**-embedding of A into B.

Let **Comp** denote the category of compact Hausdorff spaces and continuous maps.

The Yosida Representation 1.2. The functor Y.

- (a) (of objects) If $(A, u_A) \in \mathbf{W}$, there is a $YA \in \mathbf{Comp}$ and a W-isomorphism $(A, u_A) \xrightarrow{\eta_A} \eta_A(A) \leq D(YA)$ with $\eta_A(A)$ separating the points of YA. YA is unique up to homeomorphism for that data.
- (b) (of morphisms) If $(A, u_A) \xrightarrow{\varphi} (B, u_B)$ is a **W**-morphism, there is a unique continuous $YA \xleftarrow{Y\varphi} YB$ for which $\eta_B(\varphi(a)) = \eta_A(a) \circ Y\varphi$ for all $a \in A$. Moreover, φ is one-to-one if and only if $Y\varphi$ is onto. While φ onto implies $Y\varphi$ is one-to-one, the converse does not hold. ([40] exhibits $(A, u_A) \to D(YA)$, the rest is from [26].)

For example, consider $A=C(X)\equiv\{f\colon X\to\mathbb{R}\mid f\text{ is continuous}\}$ and $A^*=C^*(X)=\{f\in C(X)\mid f\text{ is bounded}\}$, where X is any Tychonoff space. Since the natural maps $A^*\to A\to D(YA)$ and $A^*\cong C(\beta X)\to D(\beta X)$ both separate points, it follows from the uniqueness of the Yosida representation that $YA=YA^*=\beta X$ (the Čech-Stone compactification of X).

We now view all **W**-objects (A, u_A) as being in their Yosida representation, and just write $A \leq D(YA)$ ($u_A = 1$ being understood when $A \neq \{0\}$). We work toward combining $P(\alpha), L(\alpha)$ with Yosida.

Theorem 1.3. ([24, 2.9]) In **W**, $P(\alpha)$ (resp., $L(\alpha)$) is a hull class, i.e., for each $A \in \mathbf{W}$, there is an extension $p(\alpha)A$ (resp., $l(\alpha)A$) minimum among essential extensions to $P(\alpha)$ -objects (resp., $L(\alpha)$ -objects), and it is unique up to **W**-isomorphism.

Referring to "essential" in Theorem 1.3, in any category a monic m is called *essential* if $f \circ m$ monic implies f monic. In \mathbf{W} , monic means one-to-one, and essential can be said several ways ([4]).

Lemma 1.4. ([26]) In **W**, the embedding $A \xrightarrow{\varphi} B$ is essential if and only if the surjection $YA \xleftarrow{Y\varphi} YB$ is irreducible (the image of a proper closed set is proper), and in that case we call $Y\varphi$ a cover.

Thus, for every $A \in \mathbf{W}$, the map $YA \stackrel{\sigma}{\leftarrow} Yp(\alpha)A$ is a cover.

There is a related theory of "covering properties", to a fragment of which we shall allude.

Definition 1.5. (a) If X is a space and $f \in D(X)$, then $\cos_X(f) = \{x \in X \mid f(x) \neq 0\}$. If $S \subseteq D(X)$, then let $\cos_X(S) = \bigcup \{\cos_X(f) \mid f \in S\}$ and, for $\omega \leq \alpha \leq \infty$, let $\alpha \cos_X(C(X)) = \{\cos_X(S) \mid S \subseteq C(X) \text{ and } |S| < \alpha\}$.

- (b) If $A \in \mathbf{W}$, $f \in A$, and $S \subseteq A$, then let $\cos(f) = \cos_{YA}(f)$ and $\cos(S) = \bigcup \{\cos(f) \mid f \in S\}$. And for $\omega \leq \alpha \leq \infty$, let $\alpha \cos(A) = \{\cos(S) \mid S \subseteq A \text{ and } |S| < \alpha\}$. Note the difference: if $U \in \alpha \cos_X(C(X))$, then $U \subseteq X$, but if $U \in \alpha \cos(C(X))$, then $U \subseteq YC(X) = \beta X$.
- (c) For $\omega \leq \alpha \leq \infty$, a space X is called α -disconnected if $\{U_i\}_{i\in I} \subseteq \omega \operatorname{coz}_X(C(X))$ and $|I| < \alpha$ imply that the closure of $\bigcup_{i\in I} U_i$ in X is open. $D(\alpha)$ denotes the class of such spaces. Then: $X \in D(\alpha)$ if and only if $\beta X \in D(\alpha)$; spaces in $D(\omega) = D(\omega_1)$ are called basically disconnected (BD), and spaces in $D(\infty)$ are called extremally disconnected (ED). Note that $X \in D(\alpha)$ implies X is zero-dimensional (ZD), meaning X has a base of clopen sets. (See [15] for some of this.)

It is known that $D(\alpha)$ is a "covering class" in **Comp**, which means that for every space $X \in \textbf{Comp}$ there is $X \stackrel{\sigma}{\leftarrow} d(\alpha)X$ minimum for covers of X by spaces in $D(\alpha)$ (See [19], [36], [39]).

One may suspect something like **W** versus **Comp** as: minimum essential extensions $A \xrightarrow{\varphi} B$ to **W**-objects with a property \mathcal{P} are associated (as $YA \xleftarrow{Y\varphi} YB$) to minimum covers with a property \mathcal{L} . There is a literature on that ([7], [34], inter alia). Here we have cases in points, which we turn to.

2 Yosida spaces of the $P(\alpha)$ and $L(\alpha)$ hulls

We explain now what $Yp(\alpha)A$ and $Yl(\alpha)A$ are, then show constructions of the $p(\alpha)A$ and $l(\alpha)A$ in the next section.

If X is a space and $S \subseteq X$, then we write $\chi(S)$ for the characteristic function of S on X. We note: If $U \in \text{clop}(YA)$, then $\chi(U) \in A$ (from the

"point-separating" in Theorem 1.2(a), and a little arithmetic). Recall that $\alpha \cos(A)$ consists of subsets of YA.

Theorem 2.1. ([23, 2.2 and 2.4]) $A \in P(\alpha)$ if and only if both of the following hold.

- (a) For every $U \in \alpha coz(A)$, \overline{U} is open.
- (b) For every $a \in A$ and every $U \in \text{clop}(YA)$, $a\chi(U) \in A$.

Remark 2.2. The condition in Theorem 2.1(a) can be called weakly $P(\alpha)$ ($wP(\alpha)$). $wP(\alpha)$ is also a hull class. $wP(\omega)$ is (defined and) shown to be a hull class in [22]. The extension to general α will be evident; the $wP(\alpha)$ hull operator is denoted $wp(\alpha)$. A is called local ($A \in Loc$) if $f \in D(YA)$ and f locally in A implies $f \in A$, where "locally in A" is in the topological sense of local as functions on YG. Loc is also a hull class, indeed an essential reflection, and the associated hull operator is "loc". That Y loc A = YA is not hard ([26]).

Lemma 2.3. Suppose YA is ZD. Then, A is local if and only if for every $a \in A$ and every $U \in \text{clop}(YA)$, one has $a\chi(U) \in A$ ([23]).

Thus, Theorem 2.1 says $P(\alpha) = wP(\alpha) \cap Loc$. Also, it's easy to see that $p(\alpha) = \log \circ wp(\alpha)$ (the case $\alpha = \omega$ is in [22]).

Corollary 2.4. (a) If $A \in P(\alpha)$, then YA is ZD.

- (b) ([23, 2.4]) For $\omega < \alpha$:
 - $-A \in wP(\alpha)$ if and only if $YA \in D(\alpha)$.
 - $-A \in P(\alpha)$ if and only if $YA \in D(\alpha)$ and $A \in Loc.$
- (c) For $\omega < \alpha$: If $A \in L(\alpha)$, then $YA \in D(\alpha)$ and $A \in Loc$.

Proof. (a) and (b) follow from Theorem 2.1(a).

(c) is just because $L(\alpha) \subseteq P(\alpha)$ (noted in Definition 1.1).

Corollary 2.5. $C(X) \in P(\alpha)$ if and only if $X \in D(\alpha)$.

Proof. C(X) is a ring, thus $C(X) \in Loc$ ([26]) and $X \in D(\alpha)$ if and only if $YC(X) = \beta X \in D(\alpha)$. For $\alpha = \omega$, use that $P(\alpha) = wP(\alpha) \cap Loc$. For $\alpha > \omega$, apply Corollary 2.4(b).

In Corollary 2.5, the cases $\alpha = \omega, \infty$ appear in [32, Section 43].

We require (now and later) some more information about spaces in $D(\alpha)$, and the following "over-class".

Definition 2.6. (Analogous to $D(\omega) \subseteq F$, where "F" denotes the class of F-spaces as in [15, Chapter 14]).

X is a $F(\alpha)$ -space $(X \in F(\alpha))$ just in case all disjoint $U, V \in \alpha \operatorname{coz}_X(C(X))$ are completely separated.

If X is any topological space with subspace S, then S is C^* -embedded in X if every $f \in C^*(S)$ extends to some $\overline{f} \in C^*(X)$.

Lemma 2.7. (a) $X \in F(\alpha)$ if and only if every $U \in \alpha \operatorname{coz}_X(C(X))$ is C^* -embedded.

- (b) $F = F(\omega) = F(\omega_1)$, and $F(\infty) = D(\infty)$.
- (c) If $X \in F(\alpha)$, then dense $U \in \omega \operatorname{coz}_X(C(X))$ are C^* -embedded (called "X is quasi-F"), and the last if and only if D(X) is a **W**-object.
- (d) $D(\alpha) \subseteq F(\alpha)$.

Proof. We prove (b)–(d) assuming that (a) holds, then prove (a). For (b), see [15].

For (c), note that if $U \in \omega \operatorname{coz}_X(C(X))$, then $U \in \alpha \operatorname{coz}_X(C(X))$. The term "quasi-F" is from [13], and the "iff" here is proved in [30].

For (d), if $U, V \in \alpha \operatorname{coz}_X(C(X))$ are disjoint, then \overline{U} and \overline{V} are open, so $\overline{U} \cap \overline{V} = \emptyset$, and $\chi(\overline{U})$ separates U and V.

Finally, to establish (a) we use the version of the Urysohn Extension Theorem in [15, 1.15 and 1.17]: a subspace S of a Tychonoff X is C^* -embedded in X if and only if disjoint zero-sets of S are completely separated in X. Suppose $S \in \alpha \operatorname{coz}_X(C(X))$ with $X \in F(\alpha)$ and Z_1, Z_2 are disjoint zero-sets of S. There are disjoint cozero-sets C_1, C_2 of S with $Z_i \subseteq C_i$ for $i \in \{1, 2\}$. A cozero-set in an α -cozero-set is an α -cozero-set, so C_1 and C_2 are completely separated in X.

Theorem 2.8. If $X \in D(\alpha)$, then $D(X) \in L(\alpha) \subseteq P(\alpha)$.

Proof. By Lemma 2.7, D(X) is a **W**-object.

Suppose $\{f_i\}_{i\in I} \subseteq D(X)^+$ is disjoint and $|I| < \alpha$. Each $\overline{\cos_X(f_i)}$ is open, and $U \equiv \bigcup_{i\in I} \overline{\cos_X(f_i)}$ is open. Let

$$S = \left(\bigcup_{i \in I} \overline{\operatorname{coz}_X(f_i)}\right) \cup (X - U).$$

Since $X \in F(\alpha)$, S is C^* -embedded (each by Lemma 2.7).

Let $f \in D(S)$ be such that $f|_{\overline{\cos_X(f_i)}} = f_i$ for $i \in I$ and $f|_{X-U} = 0$. Since S is dense and C^* -embedded (and $[-\infty, +\infty]$ is compact), f extends to $\overline{f} \in D(X)$ ([15, 6.4]). One sees that $\overline{f} = \bigvee_{i \in I} f_i$.

Theorem 2.9. $(\omega < \alpha)$ For every $A \in \mathbf{W}$,

$$Yp(\alpha)A = Yl(\alpha)A = d(\alpha)YA.$$

Proof. Given A, we have the cover $YA \stackrel{\sigma}{\leftarrow} d(\alpha)YA \equiv X$. Since $X \in D(\alpha)$, we have $D(X) \in L(\alpha)$ by Theorem 2.8.

Since σ is a cover, $A \approx A \circ \sigma \leq D(X)$ is an essential extension with codomain in $P(\alpha)$. Hence $p(\alpha)A \leq D(X)$ by the minimality of $p(\alpha)A$. Then $Yp(\alpha)A \leq YD(X) = X$ (as covers), from the Yosida functor. But $Yp(\alpha)A \in D(\alpha)$ by Theorem 2.4. Thus $Yp(\alpha)A = X$ by the minimality of $d(\alpha)YA$.

Since
$$A \leq p(\alpha)A \leq l(\alpha)A \leq D(X)$$
, we see too that $Yl(\alpha)A = X$. \square

Note, Theorem 2.9 assumes $\omega < \alpha$. The case $\omega = \alpha$ is less purely topological and more complicated.

Theorem 2.10. Let $A \in \mathbf{W}$.

- (a) ([22]) $YA \leftarrow Yp(\omega)A$ is the minimum among covers $YA \xleftarrow{\sigma} X$ for which the closure of $\sigma^{-1}(\cos(a))$ is open in X for all $a \in A$.
- (b) ([6], [25]) $Yp(\omega)A$ is the Stone space of the Boolean subalgebra generated by $\{\{P \in \text{Min}(A) \mid a \notin P\}\}_{a \in A}$ in the power set of Min(A) (here Min(A) is the collection of minimal prime subgroups of A).

Two related questions arise: What about Theorem 2.10(a) (mutatis mutandis) for $\omega < \alpha$? For compact X, is there/what is the minimum among covers $X \stackrel{\sigma}{\leftarrow} Z$ which have $\overline{\sigma^{-1}(U)}^Z$ open for all $U \in \alpha \operatorname{coz}_X(C(X))$ (for

 $\omega \leq \alpha$, here)? To the first, [22, 3.7(b)] says "it's the same". For the second, [25, 6.3] (and a little thought) says such a minimum exists. Then, what is it? $d(\alpha)X$? For $\alpha = \infty$, it's easy to see that this minimum is in $D(\infty)$ (=ED), and thus is $d(\infty)X$ (the Gleason cover).

But, for $\omega = \alpha$, Vermeer [39] has constructed this minimum called $\Lambda_1 X$ (= $Yp(\omega)C(X)$, by Theorem 2.10(a)), and shown that $d(\omega)X$ is achieved by transfinite iteration of Λ_1 , and presented the example $\Lambda_1 X < d(\omega) X$ (qua covers) in Corollary 2.11(b) following.

Corollary 2.11. (Of Theorem 2.10 and the literature)

- (a) For every A, $Yp(\omega)A \leq d(\omega)YA$ (qua covers of YA, which means $Yp(\omega)A$ is covered by $d(\omega)YA$).
- (b) If $Z = \beta \mathbb{N} \mathbb{N}$, then $Yp(\omega)C(Z) < d(\omega)Z$, i.e., $Yp(\omega)C(Z) \notin D(\omega)$ (by the minimality of $d(\omega)Z$, see Definition 1.5).
- (c) Suppose Z compact (so YC(Z) = Z). If every open set in Z is a cozero-set (e.g., Z compact metrizable), then $Yp(\omega)C(Z) = Yp(\alpha)C(Z) = d(\infty)Z$ for every α (a fortiori, $= d(\omega)Z$).

Proof. (a) $X = d(\omega)YA$ has \overline{U} open for all $U \in \omega \operatorname{coz}_X(C(X))$, not just the $\sigma^{-1}(\operatorname{coz}(a))$.

- (b) [39, Theorem 3.6].
- (c) By Theorem 2.10 and the remark above that $d(\omega)Z$ is the minimum cover making preimages of opens in Z, open in the cover.

Remark 2.12. What "really is" $d(\alpha)X$ ($\omega < \alpha$)?

Since $d(\alpha)X$ is ZD, it is the Stone space of $\operatorname{clop}(d(\alpha)X)$, of course. The question is to be interpreted with the addition "in terms of X", thus "What is $\operatorname{clop}(d(\alpha)X)$, in terms of X?".

From various details of Stone Duality between Boolean Algebras and compact ZD spaces, and the discussion in [20] and [21], the following suspect/conjecture emerges: $\operatorname{clop}(d(\alpha)X) = \alpha \mathcal{B}X/\alpha M$ (where $\alpha \mathcal{B}X$ is the σ -algebra generated by the α -cozero sets in the power set of X, and αM is its σ -ideal of meagre sets).

This is true if and only if $\alpha \mathcal{B}X/\alpha M$ is an α -complete Boolean Algebra, which is true in at least these three cases:

(i) $\alpha = \infty$. This is because $d(\infty)X$ is the Stone space of the regular open algebra, which algebra is $\infty \mathcal{B}X/\infty M$ ([16], [37]).

(ii) $\alpha = \omega_1$. Some people surely know this, but in any event it follows from the discussion in [2].

(iii) X is α -cozero-complemented (i.e., for every $U \in \alpha \operatorname{coz}_X(C(X))$ there is a disjoint $V \in \alpha \operatorname{coz}_X(C(X))$ with $U \cup V$ dense in X). This is a slight extension of [21, 3.2].

We depart the subject.

3 Representation of the hulls $p(\alpha)A$ and $l(\alpha)A$

Our descriptions are the main results of the paper. We make two constructions: A_X in Theorem 3.1 and $\overline{A_X}$ in Theorem 3.3. Note that these constructions depend on α , but the notation will suppress that for the sake of simplicity.

A frequently used notation (for emphasis) is: $\bigcup U_i$ for the union of disjoint sets $\{U_i\}$, $\sum f_i$ for a sum of disjoint elements $\{f_i\}$ in an ℓ -group or in a D(X).

Theorem 3.1. ([22, 2.5 and 2.6]) Suppose X is compact and ZD and $A \leq D(X)$. Define A_X to be the set of all $\sum_{i \in I} a_i \chi(U_i) \in D(X)$ such that $|I| < \omega$, each $a_i \in A$, and $\{U_i\}_{i \in I} \subseteq \operatorname{clop}(X)$ is a disjoint family. (Note, we could enlarge $\{U_i\}_{i \in I}$ to $\{U_i\}_{i \in I} \cup (X - \bigcup_{i \in I} U_i)$ and on $X - \bigcup_{i \in I} U_i$, let the function be 0; so we could suppose that $\bigcup_{i \in I} U_i = X$.) Then $A_X \leq D(X)$, $YA_X = X$, $A_X \in Loc$, and (*) $A_X \in P(\omega)$ if and only if $\overline{\operatorname{coz}(a)}$ is open for every $a \in A$.

Proof. See the reference given. The last assertion does not appear there, but is obvious. $\hfill\Box$

Corollary 3.2. ([22, 2.6]) Suppose $A \in \mathbf{W}$, and take $X = Yp(\omega)A$ in Theorem 3.1. Then $A_X = p(\omega)A$.

Note here that, as described in Section 2, $X = Yp(\omega)A$ need not be ω -disconnected (BD, $D(\omega)$). Toward the representation especially for $l(\alpha)A$, $\omega < \alpha$, we extend the ideas in Theorem 3.1 as follows.

Let $X \in D(\alpha)$ and consider $A \leq D(X)$, $|I| < \alpha$, $\{a_i\}_{i \in I} \subseteq A$, and $\{U_i\}_{i \in I}$ a disjoint family in $\operatorname{clop}(X)$, where X = YA. Then (*) $f \equiv \sum_{i \in I} a_i \chi(U_i)$ is a priori just defined on $U \equiv \bigcup_{i \in I} U_i$, and $U \in \alpha \operatorname{coz}(A)$,

so \overline{U} is open. Then, we extend the definition of f to $U \cup (X - \overline{U}) \equiv S$, which is dense and in $\alpha \operatorname{coz}(A)$, by letting $f \equiv 0$ on $X - \overline{U}$. Then, S is C^* -embedded in X (by (c) and (d) of Lemma 2.7), and so (by [15, 6.4]) f extends further to a function in D(X).

So, we can understand an expression (*) to include " $\bigcup_{i\in I} U_i$ is dense in X" – we say " $\{U_i\}_{i\in I}$ is a clopen quasi-partition of X" – and $f\in D(X)$. Thus, one obtains an analogue $A_{X,\alpha}$ of A_X for $\alpha>\omega$ (and note that $A_{X,\omega}=A_X$).

Then our extension of Theorem 3.1 is

Theorem 3.3. Suppose compact $X \in D(\alpha)$ and $A \leq D(X)$. Then:

- (a) $A_X \in P(\alpha)$.
- (b) Let $\overline{A_{X,\alpha}}$ be the set of all $\dot{\Sigma}_{i\in I} a_i \chi(U_i)$ such that $|I| < \alpha$, $\{a_i\}_{i\in I} \subseteq A$, and $\{U_i\}_{i\in I}$ is a disjoint family in $\operatorname{clop}(X)$. Then $\overline{A_{X,\alpha}} \leq D(X)$, $\overline{A_{X,\alpha}} \in Loc$, and $\overline{A_{X,\alpha}} \in L(\alpha)$.

Proof. (a) In Theorem 3.1, (*) is satisfied.

(b) (This goes as the proof of Theorem 3.1, mutatis mutandis, but we write down some details.)

We expressed that $\overline{A}_{X,\alpha} \subseteq D(X)$. To see that $\overline{A}_{X,\alpha} \in \mathbf{W}$, take $f = \sum_{i \in I} a_i \chi(U_i)$, $g = \sum_{j \in J} b_j \chi(V_j)$ in $\overline{A}_{X,\alpha}$, where we assume $\{U_i\}_{i \in I}$ and $\{V_j\}_{j \in J}$ are clopen quasi-partitions in X, and consider $\otimes = +, -, \vee, \wedge$. Then, one sees that $\{U_i \cap V_j\}_{i,j}$ is a clopen quasi-partition of X and

$$f \otimes g = \sum_{i,j} (a_i \otimes b_j) \chi(U_i \cap V_j) \in \overline{A_X}.$$

So $\overline{A_{X,\alpha}} \in \mathbf{W}$.

Since $\chi(U) \in \overline{A_{X,\alpha}}$ whenever $U \in \operatorname{clop}(X)$, we see that $\overline{A_{X,\alpha}}$ separates points of X, so $Y\overline{A_{X,\alpha}} = X$. Since any $a\chi(U) \in \overline{A_{X,\alpha}}$ and X is ZD, we have $\overline{A_{X,\alpha}} \in Loc$ (see Theorem 5.1).

Finally, $\overline{A_{X,\alpha}} \in L(\alpha)$ is shown much as $D(X) \in L(\alpha)$ was shown, to wit. Let $\{f_{\gamma}\}_{{\gamma} \in \Gamma}$ be a disjoint family in $\overline{A_{X,\alpha}}$ with $|\Gamma| < \alpha$. Let \mathcal{U}_{γ} be the set of U_i 's in the expression for f_{γ} with $\cos(f_{\gamma}) \cap U_i \neq \emptyset$. Then, since $\{\cos(f_{\gamma})\}_{{\gamma} \in \Gamma}$ is a disjoint family, $\bigcup_{{\gamma} \in \Gamma} \mathcal{U}_{\gamma} \equiv \mathcal{V}$ is a disjoint clopen family with $|\mathcal{V}| < \alpha$, and one may let f be defined as f_{γ} on each $U \in \mathcal{U}_{\gamma}$ and 0 on $X - \overline{\bigcup \mathcal{V}}$. Then f extended over X realizes $\bigvee_{{\gamma} \in \Gamma} f_{\gamma}$ in $\overline{A_{X,\alpha}}$.

To be completely explicit about the hulls:

Theorem 3.4. Suppose $\omega < \alpha$. Let $A \in \mathbf{W}$, and let $X = Yp(\alpha)A = Yl(\alpha)A = d(\alpha)YA$ (recalling Theorem 2.9), denoted qua cover as $YA \xleftarrow{\sigma} X$. Identify A with its isomorph $A \circ \sigma \leq D(X)$. Then, $p(\alpha)A = (A \circ \sigma)_X$ and $l(\alpha)A = \overline{(A \circ \sigma)_{X,\alpha}}$. Explicitly for reference later, about the elements:

The elements of $p(\alpha)A$ are exactly the $f \in D(X)$ of the form $f = \dot{\sum}_{i \in I} (a_i \circ \sigma) \chi(U_i)$, where I is finite, $a_i \in A$ for $i \in I$, and $\{U_i\}_{i \in I}$ is a clopen partition of X.

The elements of $l(\alpha)A$ are exactly the $f \in D(X)$ of the form $f = \dot{\sum}_{i \in I} (a_i \circ \sigma) \chi(U_i)$, where $|I| < \alpha$, $a_i \in A$ for $i \in I$, and $\{U_i\}_{i \in I}$ is a clopen quasi-partition in X.

Both [5] and [11] construct $p(\omega)A$ and $p(\infty)A$ for a representable ℓ -group A in ways which have elements in common with the method of the present paper. [5] remarks that [11] fails to leave the reader with a "concrete feeling for these hulls". Our method, which is restricted to \mathbf{W} , of course, considerably enhances concreteness.

Note too, that [11] shows that, via the construction there, if A is an f-ring, so too are the hulls. In \mathbf{W} , that is considerably extended by Theorem 4.1 here.

The history of these hulls, and others, is complicated. See the references in [5], [11], and in [23] and [24], inter alia.

We apologize to neglected authors.

4 Some features of $p(\alpha)$ and $l(\alpha)$

The "features" involve: If A has additional algebraic properties, then $p(\alpha)A$ and $l(\alpha)A$ do/do not possess those properties. And, how $p(\alpha)$ and $l(\alpha)$ treat boundedness. Our representations of the hulls informs these issues.

The "additional algebraic properties" are closures under sets of functorial implicit operations of **W**. Such an operation is an $o \in C(\mathbb{R}^{\mathbb{N}})$, and A is o-closed means: if $\{a_n\}_{n\in\mathbb{N}}\subseteq A$, then $o\circ\langle a_n\rangle\in A$ in the following sense. Let $S=\bigcap_{n\in\mathbb{N}}a_n^{-1}(\mathbb{R})$, dense in YA by the Baire Category Theorem. $\langle a_n\rangle\colon S\to\mathbb{R}^{\mathbb{N}}$ is $\langle a_n\rangle(x)=(a_1(x),a_2(x),\dots)\in\mathbb{R}^{\mathbb{N}}$, so $o\circ\langle a_n\rangle\in C(S)$, and if this extends over YA (automatically uniquely), we write " $o\circ\langle a_n\rangle\in A$ ". Then, for $\mathcal{O}\subseteq C(\mathbb{R}^{\mathbb{N}})$, A is \mathcal{O} -closed if A is o-closed for every $o\in\mathcal{O}$.

The classes \mathcal{O} -closed in \mathbf{W} comprise exactly the full monoreflective subcategories \mathcal{R} in \mathbf{W} for which each reflection map is essential, and $\mathcal{R} = H\mathcal{R}$ (i.e., \mathcal{R} is closed under \mathbf{W} -homomorphic images).

An $o \in C(\mathbb{R}^{\mathbb{N}})$ is n-ary $(n < \omega)$ if $o = \overline{o} \circ P_n$ for some $\overline{o} \in C(\mathbb{R}^n)$, where $P_n \colon \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^n$ is projection onto the first n coordinates, and finitary if n-ary for some n; $\mathcal{O} \subseteq C(\mathbb{R}^{\mathbb{N}})$ is finitary if each $o \in \mathcal{O}$ is finitary.

Examples of many 1-ary's are: For p a prime, let $d(p): \mathbb{R} \to \mathbb{R}$ be given by $d(p)(x) = \frac{x}{p}$. Then A is divisible if A is \mathcal{O} -closed for $\mathcal{O} = \{d(p) \mid p \text{ prime}\}$. Also, for $r \in \mathbb{R}$, let $m(r): \mathbb{R} \to \mathbb{R}$ be given by m(r)(x) = rx. Then A is a vector lattice if A is \mathcal{O} -closed, where $\mathcal{O} = \{m(r) \mid r \in \mathbb{R}\}$.

The property "A is an f-ring" is binary.

The property "A is uniformly complete" is infinitary: This property is u-closed, for $u \colon \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ given by $u((x_n)) = \sum_{n \in \mathbb{N}} \frac{1}{2^n} (|x_n| \wedge 1)$.

The largest \mathcal{O} -closed class is \mathbf{W} , which has $\mathcal{O} = F(\omega)$, the \mathbf{W} -object in $C(\mathbb{R}^{\mathbb{N}})$ generated by 1 and all projections $\mathbb{R}^{\mathbb{N}} \equiv \prod_{k \in \mathbb{N}} \mathbb{R}_k \xrightarrow{\pi(n)} \mathbb{R}_n$. This is the \mathbf{W} -object free with respect to the functor F from \mathbf{W} to pointed sets, which has $F(u_A)$ the distinguished point in F(A).

The smallest \mathcal{O} -closed class has $\mathcal{O} = C(\mathbb{R}^{\mathbb{N}})$, and this gives the class of " Φ -algebras closed under countable composition" from [29], which coincides with the class $\{C(\mathcal{F}) \mid \mathcal{F} \text{ a frame}\}$ ([31], [33]).

All this is discussed in detail, for \mathbf{W} , in [17], and in an abstract setting in [18].

- **Theorem 4.1.** (a) Suppose $\mathcal{O} \subseteq C(\mathbb{R}^{\mathbb{N}})$ is finitary. Then, if A is \mathcal{O} -closed, so are $p(\alpha)A$ and $l(\alpha)A$.
 - (b) There are A u-closed with $p(\omega)A = p(\infty)A$ and $l(\omega_1)A = l(\infty)A$, and these are not u-closed.

Proof. (a) We suppose that $A \leq D(X)$ with X ZD, and A is \mathcal{O} -closed. We show that A_X is too. This gives the result for $p(\alpha)A$ in (a) by virtue of Section 3.

To suppress tedious typography, we take liberties with the notation.

Let $o \in \mathcal{O}$. Since \mathcal{O} is finitary, we may view $o \in C(\mathbb{R}^n)$ for some $n < \omega$. We need to show $o \circ \langle f_i \rangle \in A_X$ for $\{f_1, \ldots, f_n\} \subseteq A_X$.

 $f \in A_X$ means $f = \sum_{U \in \mathcal{U}} a_U \chi(U)$, with \mathcal{U} a finite clopen partition, and $a_U \in A$ for $U \in \mathcal{U}$. Write f/\mathcal{U} .

Given $f_i \in A_X$, $i \in \{1, ..., n\}$, and f_i/\mathcal{U}_i , let $\mathcal{V} = \bigwedge_{i \in I} \mathcal{U}_i$ (\mathcal{V} is all $U_1 \cap \cdots \cap U_n$, $U_i \in \mathcal{U}_i$) and rewrite f_i expressing f_i/\mathcal{V} for each $i \in \{1, ..., n\}$ as $f_i = \sum_{V \in \mathcal{V}} a_{V,i} \chi(V)$, where $a_{V,i} = a_U$ if $U \in \mathcal{U}_i$ with $V \subseteq U$.

Then, $o \circ \langle f_i \rangle = \sum_{V \in \mathcal{V}} (o \circ \langle a_{V,i} \rangle) \chi(V)$, where $\langle a_{V,i} \rangle = \langle a_{V,1}, \dots, a_{V,n} \rangle$ (by the "liberties with notation"), and $o \circ \langle a_{V,i} \rangle \in A$, so $o \circ \langle f_i \rangle \in A_X$.

We turn to $l(\alpha)$. This goes as for $p(\alpha)$, with the necessary modification of replacing the finite partitions with quasi-partitions of size less than α .

Suppose that $A \leq D(X)$ with $X \in D(\alpha)$, and A is \mathcal{O} -closed. We show that $\overline{A_{X,\alpha}}$ is too. This gives the desired conclusion by virtue of Section 3.

We continue the "liberties with notation".

Again, let $o \in \mathcal{O}$ so $o \in C(\mathbb{R}^n)$, $n < \omega$. Now, $f \in \overline{A_{X,\alpha}}$ means $f = \dot{\sum}_{U \in \mathcal{U}} a_U \chi(U)$, with \mathcal{U} a clopen quasi-partition in X, $|\mathcal{U}| < \alpha$, and $a_U \in A$ for $U \in \mathcal{U}$. Write f/\mathcal{U} .

Given $\{f_1, \ldots, f_n\} \subseteq \overline{A_X}$ with f_i/\mathcal{U}_i , $\bigwedge_{i=1}^n \mathcal{U}_i = \mathcal{V}$ as before are again a quasi-partition with $|\mathcal{V}| < \alpha$, and we rewrite f_i expressing f_i/\mathcal{V} . Then, as in the last paragraph of the proof for $p(\alpha)$ above, $o \circ \langle f_i \rangle \in \overline{A_{X,\alpha}}$.

(b) An example is A = C([0,1]), the important features being from [35], as we now explain.

[35] says: Suppose X compact metrizable. The maximum ring of quotients (in the general sense of Johnson-Utumi) of C(X), called Q(X), is uniformly complete if and only if the set $\operatorname{isol}(X)$ of isolated points of X is dense in X (in which case $Q(X) = C(\operatorname{isol}(X))$). (And for X compact metrizable, this Q(X) is just the usual "ring of fractions" (called $Q_{\operatorname{cl}}(X)$). See [14] about Q(X), $Q_{\operatorname{cl}}(X)$, etc.)

Suppose X is compact metrizable. Then for all $\alpha \geq \omega$, one has $d(\alpha)X = d(\infty)X = gX$ (the Gleason cover) by Lemma 2.11(c) (or [39, Theorem 3.5]), hence $Yp(\alpha)C(X) = gX$ for $\alpha \geq \omega$ and $Yl(\alpha)C(X) = gX$ for $\alpha > \omega$.

Now for all $G \in \mathbf{W}$, we have YG = YBG, and

$$(*) p(\omega)G \le p(\alpha)G \le l(\alpha)G \le l(\infty)G.$$

Also, for any X, $Q(X) = l(\infty)C(X)$ ([38]).

Thus, for any compact metrizable X and G = C(X), uniform completeness of any item A in (*) means that BA = C(gX) (since BC(X) is a vector lattice, the Stone-Weierstrass Theorem yields that $l(\infty)C(X)$ is uniformly complete too). But, for X = [0, 1], that fails by [35, Theorem 2.6].

[8], [9], and precursor articles examine and classify hull operators h by the equations that are satisfied by h together with B (the bounded coreflection in \mathbf{W} , $BA = \{a \in A \mid \exists n \in \mathbb{N} | a| \leq n \cdot u_A\}$). The cases in point here are: h commutes with B (i.e., hB = Bh; we say h is antithesis of preserving boundedness if, by definition, h = hB; we say h is anti-PB. It is not hard to see that no h is both (written $CB \cap anti-PB = \emptyset$).

The following is part of data exhibited in the Hasse Diagram [8, p.167]. We don't know if a full proof has been published; we present one now.

Theorem 4.2. [8]

- (a) $(\omega \le \alpha \le \infty) p(\alpha)$ is CB.
- (b) $(\omega < \alpha \leq \infty) \ l(\alpha)$ is anti-PB.

Proof. We note first the cases $\omega = \alpha$. For $p(\omega)$, the result is explicit in [25] (we prove it again, the same way below). And $l(\omega)$ is just the identity, and this fails anti-PB.

Now, keep in mind the representation of elements of $p(\alpha)A$ and $l(\alpha)A$ as of the form $\dot{\Sigma}_I$ as discussed in Section 3.

Suppose now $\omega < \alpha$.

Now, for all $A \in \mathbf{W}$, we know $YA \stackrel{\sigma}{\leftarrow} Yp(\alpha)A$ or $Yl(\alpha)A$ and the elements of $p(\alpha)A/l(\alpha)A$ are of the form (*) $f = \sum_{i \in I} (a_i \circ \sigma)\chi(U_i)$, for appropriate I and $\{U_i\}_{i \in I}$.

(a) Since BA is essential in A, $p(\alpha)BA \leq p(\alpha)A$. First, $p(\alpha)BA = Bp(\alpha)BA$ (called " $p(\alpha)$ preserves boundedness", and written $p(\alpha)$ is PB), because in (*), if the finitely many a_i are bounded, so is the finite sum $\sum_{i\in I} (a_i \circ \sigma)\chi(U_i)$. Thus $p(\alpha)BA \leq Bp(\alpha)A$.

Reversely, if in (*) the f is bounded, say $|f| \leq n$, then if the a_i are replaced by $(a_i \wedge n) \vee (-n) \in BA$, we get the same f, showing $f \in p(\alpha)BA$.

(b) Here, $\omega < \alpha$ and $Yl(\alpha)A = d(\alpha)YA \equiv X$.

Again $BA \leq A$ essential yields $l(\alpha)BA \leq l(\alpha)A$. For the reverse, take $f \in D(X)^+$. Then, some arithmetic shows $f^{-1}(\mathbb{R}) = \dot{\bigcup}_{n \in \mathbb{N}} U_n$, where $U_n \in \text{clop}(X)$ for $n \in \mathbb{N}$ and $f|_{U_n} \leq n$ because $X \in D(\omega)$. Then $\{U_n\}_{n \in \mathbb{N}}$ is a quasi-partition in X and

$$f = \sum_{n \in \mathbb{N}} f\chi(U_n) = \sum_{n \in \mathbb{N}} (f \wedge n)\chi(U_n).$$

Applying this to $f = a \circ \sigma$ yields (**) $a \circ \sigma = \sum_{n \in \mathbb{N}} ((a \wedge n) \circ \sigma) \chi(U_n)$. Now take $f \in (l(\alpha)A)^+$, per (*) as $f = \sum_{i \in I} (a_i \circ \sigma) \chi(U_i)$ and for each $i \in I$ insert (**), obtaining

$$f = \sum_{i \in I} \left(\sum_{i,n} ((a_i \wedge n) \circ \sigma) \chi(U_n^i)) \right) \chi(U_i)$$
$$= \sum_{I \times \mathbb{N}} ((a_i \wedge n) \circ \sigma) \chi(U_n^i \cap U_i).$$

Take note that the index set $I \times \mathbb{N}$ is of size less than α . Thus $f \in l(\alpha)BA$.

5 About C(X)

We first characterize $C(X) \in P(\alpha)$ (resp., $L(\alpha)$), then consider the inclusion $p(\alpha)C(X) \leq C(d(\alpha)X)$ for X compact. Here it is understood that the distinguished weak unit of C(X) is the constant function with value 1.

First, we summarize the general situation.

Theorem 5.1. $(\omega \leq \alpha \leq \infty)$

- (a) $A \in wP(\alpha)$ if and only if $BA \in wP(\alpha)$.
- (b) If $A \in P(\alpha)$, then $BA \in P(\alpha)$.
- (c) $[A \in P(\alpha) \iff BA \in P(\alpha)]$ if and only if $A \in Loc.$
- (d) If $A \in Loc$ and $\omega coz(A) = \omega coz(C(YA))$, then $[A \in P(\alpha)]$ if and only if $YA \in D(\alpha)$.

Proof. (a) YA = YBA, so coz(A) = coz(BA).

- (b) If $A \in P(\alpha)$, then $A \in wP(\alpha)$, so $BA \in wP(\alpha)$ by (a); and $BA \in Loc$.
- (c) Again, use (a). ([23, Remarks 2.3(a)] contains an example of a non-local A with $YA = \beta \mathbb{N}$, which makes $BA \in P(\infty)$.)
- (d) The case $\alpha > \omega$ is immediate from Corollary 2.4(b). The case $\alpha = \omega$ uses that $\cos(A) = \omega\cos(C(YA))$ (also, recall from Remark 2.2 that $P(\alpha) = wP(\alpha) \cap Loc$).

The following adds some information to Corollary 2.5.

Corollary 5.2. $(\omega \leq \alpha \leq \infty)$ The following are equivalent:

- (a) $C(X) \in P(\alpha)$ (or $wP(\alpha)$).
- (b) $BC(X) \in P(\alpha)$ (or $wP(\alpha)$).
- (c) $X \in D(\alpha)$ (and/or $\beta X \in D(\alpha)$).

Proof. The "(or $wP(\alpha)$)" in (a) and (b) are because $C(X) \in Loc$. In (c), $X \in D(\alpha)$ if and only if $\beta X \in D(\alpha)$. The rest follows from Theorem 5.1. \square

We turn to the question: When is $C(X) \in L(\alpha)$? First, we treat the case $\alpha = \omega_1$, due to Buskes ([6]), with a small elaboration of his result.

The space X is called a P-space if all cozero sets are closed (see [15, 4J]).

Theorem 5.3. These are equivalent.

- (a) $C(X) \in L(\omega_1)$.
- (b) Each countable disjoint family in $C(X)^+$ has an upper bound in C(X), and βX is ZD.
- (c) X is a P-space.

Proof. (a) \Longrightarrow (b). We need only that βX is ZD, which follows since $L(\omega_1) \subseteq P(\omega_1)$ and for every $A \in \mathbf{W}$, if $A \in P(\omega_1)$, then YA is ZD (use Corollary 2.5 and Definition 1.5).

(b) \Longrightarrow (c). Take $U \in \omega \operatorname{coz}_X(C(X))$. We show U is closed. Now $U = \operatorname{coz}_X(u)$ for $u \in C^*(X)$. Let $\tilde{u} \in C(\beta X)$ extend u, and let $\tilde{U} = \operatorname{coz}_X(\tilde{u})$. Then, $\tilde{U} \cap X = U$. Since βX is ZD, $\tilde{U} = \dot{\bigcup}_{n < \omega} U_n$ for $U_n \in \operatorname{clop}(\beta X)$, and then $U = \tilde{U} \cap X = \dot{\bigcup}_{n < \omega} (U_n \cap X)$ and $V_n \equiv U_n \cap X \in \operatorname{clop}(X)$. Here each $V_n \neq \emptyset$ (unless U is already clopen, in which case we're done), so if $x \in \overline{U} - U$, any neighborhood W of x meets infinitely many V_n 's.

Now suppose (b), so there is $f \in C(X)$ with $f \geq n\chi(V_n)$ (pointwise) for all $n < \omega$. If $x \in \overline{U} - U$, then there is a neighborhood W of x with $f(x) - 1 \leq f(y) \leq f(x) + 1$ for every $y \in W$, so W can meet only finitely many of the V_n 's. Thus there does not exist $x \in \overline{U} - U$.

(c) \Longrightarrow (a). Given disjoint $\{f_n\}_{n<\omega}\subseteq C(X)^+$, $U=\bigcup_{n<\omega}\operatorname{coz}_X(f_n)\in\omega\operatorname{coz}_X(C(X))$, so U is closed (since X is a P-space). Then f defined as

 $f|_{\cos_X(f_n)} = f_n|_{\cos_X(f_n)}$, and $f|_{X-U} = 0$ is locally continuous, thus continuous, and f is the pointwise supremum of $\{f_n\}_{n<\omega}$. Thus $f = \bigvee_{n<\omega} f_n$ in C(X).

The preceding (Theorem 5.3) is a lemma to, and a special case of, the following.

Theorem 5.4. $(\omega < \alpha \leq \infty)$. The following are equivalent.

- (a) $C(X) \in L(\alpha)$.
- (b) $X \in D(\alpha)$ (and/or $\beta X \in D(\alpha)$) and X is a P-space.
- (c) $C(X) \in P(\alpha) \cap L(\omega_1)$.

Proof. (b) \Longrightarrow (c), by Corollary 5.2 and Theorem 5.3.

- (a) \Longrightarrow (c). $L(\alpha) \subseteq P(\alpha)$ and $L(\alpha) \subseteq L(\omega_1)$.
- (b)/(c) \Longrightarrow (a). Recall from Lemma 2.7 that $D(\alpha) \subseteq F(\alpha)$.

Suppose (b)/(c), and consider disjoint $\{f_i\}_{i\in I}\subseteq C(X)^+$, with $|I|<\alpha$. Since X is a P-space, the $\operatorname{coz}_X(f_i)$ are clopen, and since $X\in D(\alpha)$, one sees $V\equiv \overline{\bigcup_{i\in I}\operatorname{coz}_X(f_i)}$ is clopen. Thus, $(\bigcup_{i\in I}\operatorname{coz}_X(f_i))\cup (X-V)\equiv S$ is C^* -embedded, and dense. Define $f\in C(S)$ as $f|_{\operatorname{coz}_X(f_i)}=f_i|_{\operatorname{coz}_X(f_i)}$ for $i\in I$, and $f|_{X-V}=0$. Extend f to $\hat{f}\in D(X)$. Now, $\hat{f}^{-1}(\infty)$ is a zero-set, thus open (since X is a P-space). Moreover, $\hat{f}^{-1}(\infty)$ intersects the dense set S and therefore is empty. Now, one easily sees that $f=\bigvee_{i\in I}f_i$ in C(X) (in fact, is the pointwise join).

Example 5.5. (a) $(\alpha = \infty)$ Theorem 5.4 for $\alpha = \infty$ (also noted in [6]) says $C(X) \in L(\infty)$ if and only if X is ED and a P-space. Isbell ([31]) has shown that if X is ED and a P-space, and if the cardinal |X| is non-measurable, then X is discrete. But, if Y is discrete and |Y| is measurable, then the Hewitt realcompactification vY ($\supseteq Y$) is ED and a P-space (and not discrete). See [15].

(b) $(\omega < \alpha < \infty)$ This witnesses the other cases of Theorem 5.4 and will be used later. Let D be discrete with $|D| \ge \alpha$, and let $X(\alpha) = D \cup \{x(\alpha)\}$ be D with the point $x(\alpha)$ adjoined, where neighborhoods U of $x(\alpha)$ have $|D-U| < \alpha$. Then $x(\alpha)$ is a P-point of $X(\alpha)$, so $X(\alpha)$ is an α -disconnected P-space. Of course $YC(X(\alpha)) = \beta X(\alpha)$. Let D denote the one-point compactification of D (caution: this use of the dot notation should not be confused with the earlier use of the dot to denote disjoint sums and unions).

Then $\beta X(\alpha) = d(\alpha)\dot{D}$, because (one can show) that $\beta X(\alpha)$ is the minimum $D(\alpha)$ cover of \dot{D} .

(c) $(\omega < \alpha \leq \infty)$ One may wonder if Theorem 5.4(c) holds for any $A \in \mathbf{W}$, i.e., if $L(\alpha) = P(\alpha) \cap L(\omega_1)$ in \mathbf{W} . Here are examples to the contrary.

Let $X \in D(\alpha)$ be compact with a clopen quasi-partition of size ω_1 (e.g., the $\beta X(\alpha)$ in (b)).

Let $F(X, \mathbb{R}) = \{ f \in C(X) \mid |f(X)| < \omega \}$ and $A = l(\omega_1)F(X, \mathbb{R})$. We show $A \notin L(\alpha)$. Any $a \in A$ is of the form $a = \sum_{i \in I} r_i \chi(U_i)$ with $\{U_i\}_{i \in I}$ a countable clopen quasi-partition in X. Put $U(a) = \bigcup_{i \in I} U_i$, which is dense, and evidently $|a(U(a))| \leq \omega$.

Let $\{V_j\}_{j\in J}$ be a clopen quasi-partition in X with $|J|=\omega_1$. Take distinct $r_j\in\mathbb{R}$ $(j\in J)$. Then $f=\bigvee_{j\in J}v_j\chi(V_j)$, extended over X, is in $l(\alpha)F(X,\mathbb{R})$ (recall that $\bigcup_{j\in J}V_j$ is C^* -embedded in X).

Supposing $f \in A$, we have U(f) as above. But every $V_j \cap U(f) \neq \emptyset$, so $r_j \in f(U(f))$. Thus $|f(U(f))| \geq \omega_1$. The contradiction shows $f \notin A$, so $A \notin L(\alpha)$.

If X is compact and $\omega \leq \alpha \leq \infty$, then $p(\alpha)C(X) \leq C(Yp(\alpha)C(X))$. We illustrate instances of <, and of =.

Example 5.6. (a) $Yp(\omega)C(\dot{\mathbb{N}}) = \beta \mathbb{N}$ (which is ED) and $p(\omega)C(\dot{\mathbb{N}}) < C(\beta \mathbb{N})$.

The first is easily checked. The second is shown much as Example 5.5(c): Any $a \in p(\omega)C(\dot{\mathbb{N}})$ has $|a(\beta\mathbb{N})| \leq \omega$, while there are $f \in C(\beta\mathbb{N})$ with $|f(\beta\mathbb{N})| = c$.

(b) $(\omega < \alpha \le \infty)$ We exhibit compact X which is not ω -disconnected so $C(X) < p(\omega)C(X)$, for which, for all $\omega < \alpha \le \infty$, we have:

$$Yp(\omega)C(X) = Yp(\alpha)C(X) = d(\infty)X,$$

and

$$p(\omega)C(X) = p(\alpha)C(X) = C(d(\infty)X).$$

We recall a construction from [28], which see for details. Suppose E is compact ED, and $p \neq q$ in E are non-P-points. Let γ be the quotient map identifying p and q, let $E_{\gamma} = E - \{p, q\}$, and denote the resulting surjection $\dot{E}_{\gamma} \stackrel{\gamma}{\leftarrow} E$ (since the image under γ is the one-point compactification of E_{γ}).

Then: $\dot{E}_{\gamma} \notin D(\omega)$ (because p, q are not P-points), and E is the unique proper cover of \dot{E}_{γ} .

To make our X: let Y be infinite compact ED, Y' a copy of Y, for $y \in Y$ denote the corresponding point in Y' as y'. Let E = Y + Y' (topological sum). Take y a non-P-point of Y, with corresponding $y' \in Y'$, and identify y with y' in E = Y + Y', per the construction outlined above. We now have $X = \dot{E}_{\gamma} \stackrel{\gamma}{\leftarrow} E$ with the properties mentioned, which result in:

 $C(\dot{E}_{\gamma}) < p(\omega)C(\dot{E}_{\gamma}), \ Yp(\omega)C(\dot{E}_{\gamma}) = E$, then using the material in Section 2, $p(\omega)C(\dot{E}_{\gamma}) = p(\alpha)C(\dot{E}_{\gamma})$ for all $\omega \leq \alpha \leq \infty$.

We now show $p(\omega)C(\dot{E}_{\gamma}) = C(E)$.

By Theorem 3.4, $p(\omega)C(\dot{E}_{\gamma})$ is comprised of all $\sum_{i\in I}(g_i\circ\gamma)\chi(U_i)$, where $|I|<\omega$, $\{g_i\}_{i\in I}\subseteq C(\dot{E}_{\gamma})$, and $\{U_i\}_{i\in I}$ is a clopen partition of E. Now, any $f\in C(E)$ takes this form, indeed as

$$(*) f = (g \circ \gamma)\chi(Y) + (g' \circ \gamma)\chi(Y')$$

with $g, g' \in C(\dot{E}_{\gamma})$, defined as follows.

For $y \in Y$, $g(y) \equiv f(y) \equiv g(y')$, and $g'(y) \equiv f(y') \equiv g'(y')$. These g, g' factor through γ , which is quotient, thus we construct $g, g' \in C(\dot{E}_{\gamma})$. One checks (*).

6 $bL(\alpha)$ (in W)

We consider application of our methods to one more family of hull classes, $bL(\alpha)$, which has received attention the literature, beginning with [38] for $\alpha = \infty$. We simply summarize the situation, with references and a few indications of proof.

Definition 6.1. ($\omega < \alpha \leq \infty$) A is boundedly laterally α -complete ($A \in bL(\alpha)$) if for every $|I| < \alpha$, $\{a_i\}_{i \in I} \subseteq A^+$ disjoint and A-bounded (i.e., there is $a \in A$ such that $a_i \leq a$ for every $i \in I$), the join $\bigvee_{i \in I} a_i$ exists in A.

Theorem 6.2. In W:

- (a) ([23, 3.2], with credits to [38]) $L(\alpha) \subseteq bL(\alpha) \subseteq P(\alpha)$. So $A \in bL(\alpha)$ implies $YA \in D(\alpha)$.
- (b) ([23, 2.9], with credits to [38]) $bL(\alpha)$ is a hull class in **W**. Denoting the hull operator $bl(\alpha)$, $p(\alpha) \leq bl(\alpha) \leq l(\alpha)$.

(c) Suppose $A \in \mathbf{W}$. Denote the cover $YA \stackrel{\sigma}{\leftarrow} d(\alpha)YA$. Then $Ybl(\alpha)A = d(\alpha)YA$, and

$$bl(\alpha)A = \{ f \in l(\alpha)A \mid \exists a \in A \text{ with } |f| \leq a \circ \sigma \}.$$

- (d) $bl(\alpha)$ is CB (commutes with the bounded coreflection B).
- (e) $C(X) \in bL(\alpha)$ if and only if $X \in D(\alpha)$ if and only if $C(X) \in P(\alpha)$.

Proof. (Sketch)

- (a) and (b): See the references above.
- (c) As with $l(\alpha)$ earlier in this paper.
- (d) The last item in (c) shows that $bl(\alpha)$ is the "convex modification" of $l(\alpha)$, called $\overline{c}(l(\alpha))$ in [10]; since $l(\alpha)$ is anti-PB (Theorem 4.2), $\overline{c}(l(\alpha))$ is CB by ([10]). (This can be shown directly from (c).)
- (e) Apply Theorem 5.3 and (c) here, observing that, there, the condition "X is a P-space" disappears because of the now added condition " $\{a_i\}$ is A-bounded".

Acknowledgement

The authors wish to thank the anonymous referee for their helpful comments.

References

- Anderson, M. and Feil, T., "Lattice-Ordered Groups; an Introduction", Reidel Texts, Math. Sci., Kluwer, 1988.
- [2] Ball, R.N. and Hager, A.W., Epicompletion of Archimedean ℓ-groups and vector lattices with weak unit, J. Aust. Math. Soc. Ser. A 48(1) (1990), 25-56.
- [3] Ball, R.N., Marra, V., McNeil, D., and Pedrini, A., From Freudenthal's spectral theorem to projectable hulls of unital Archimedean lattice-groups, through compactifications of minimal spectra, Forum Math. 30(2) (2018), 513-526.
- [4] Bigard, A., Keimel, K., and Wolfenstein, S., "Groupes et Anneaux Reticules", Lecture Notes in Math. 608, Springer, 1977.
- [5] Bleier, R.D., The SP-hull of a lattice-ordered group, Canad. J. Math. 26(4) (1974), 866-878.

[6] Buskes, G.J.H.M., Disjoint sequences and completeness properties, Nederl. Akad. Wetensch. Indag. Math. 47(1) (1985), 11-19.

- [7] Carrera, R. and Hager, A.W., On hull classes of ℓ-groups and covering classes of spaces, Math. Slovaca 61(2) (2011), 411-428.
- [8] Carrera, R. and Hager, A.W., Bounded equivalence of hull classes in Archimedean lattice-ordered groups with unit, Appl. Categ. Structures 24 (2016), 163-179.
- [9] Carrera, R. and Hager, A.W., A classification of hull operators in Archimedean lattice-ordered groups with weak unit, Categ. Gen. Algebr. Struct. Appl. 13(1) (2020), 83-103.
- [10] Carrera, R. and Hager, A.W., Some modifications of hull operators in Archimedean lattice-ordered groups with weak unit, (to appear).
- [11] Chambless, D.A., Representation of the projectable and strongly projectable hulls of a lattice-ordered group Proc. Amer. Math. Soc. 34(2) (1972), 346-350.
- [12] Darnel, M.R., "Theory of lattice-ordered groups", Monographs and Textbooks in Pure and Applied Mathematics, vol. 187, Marcel Dekker, New York, 1995.
- [13] Dashiel, F., Hager, A.W., and Henriksen, M., Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685.
- [14] Fine, N., Gillman, L., and Lambek J., "Rings of Quotients of Rings of Functions", McGill Univ. Press, Montreal, 1965.
- [15] Gillman, L. and Jerison, M., "Rings of Continuous Functions", The University Series in Higher Mathematics. Van Nostrand, Princeton, 1960. (Reprinted as Springer-Verlag Graduate Texts 43, 1976.)
- [16] Gleason, A.M., Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
- [17] Hager, A.W., Algebraic closures of ℓ-groups of continuous functions, In: "Rings of continuous functions", Lecture Notes in Pure and Appl. Math. 95, 149-164, Dekker, 1985.
- [18] Hager, A.W., A description of HSP-like classes, and applications, Pacific J. Math. 125(1) (1986), 93-102.
- [19] Hager, A.W., Minimal covers of topological spaces, Ann. New York Acad. Sci. 552 (1989), 44-59.
- [20] Hager, A.W., α-cut complete Boolean algebras, Algebra Universalis 39(1-2) (1998), 57-70.

- [21] Hager, A.W., A note on αcozero-complemented spaces and αBorel sets, Houston J. Math. 25(4) (1999), 679-685.
- [22] Hager, A.W., Kimber, C.M., and McGovern, W.W., Weakly least integer closed groups, Rend. Circ. Mat. Palermo (2) 52(3) (2003), 453-480.
- [23] Hager, A.W. and Martinez, J., α-Projectable and laterally α-complete archimedean lattice-ordered groups, In S. Bernau (ed.): "Proc. Conf. on Mem. of T. Retta (Temple U., PA/Addis Ababa, 1995)", Ethiopian J. Sci. 19 (1996), 73-84.
- [24] Hager, A.W. and Martinez, J., Hulls for various kinds of α-completeness in archimedean lattice-ordered groups, Order 16 (1999), 98-103.
- [25] Hager, A.W. and McGovern, W.W., The projectable hull of an archimedean ℓ-group with weak unit, Categ. Gen. Algebr. Struct. Appl. 7(1) (2017), 165-179.
- [26] Hager, A.W. and Robertson, L.C., Representing and ringifying a Riesz space, Symp. Math. 21 (1977), 411-431.
- [27] Hager, A.W. and Robertson, L.C., Extremal units in an archimedean Riesz space, Rend. Semin. Mat. Univ. Padova 59 (1978), 97-115.
- [28] Hager, A.W. and Wynne, B., Atoms in the lattice of covering operators in compact Hausdorff spaces, Topology Appl. 289 (2021), 107402.
- [29] Henriksen, M., Isbell, J.R., and Johnson, D.G., Residue class fields of lattice-ordered algebras, Fund. Math. 50 (1961), 107-117.
- [30] Henriksen, M. and Johnson, D., On the structure of a class of archimedean latticeordered algebras, Fund. Math. 50 (1961), 73-94.
- [31] Isbell, J., Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.
- [32] Luxemburg, W. and Zaanen, A., "Riesz Spaces I", North Holland, 1971.
- [33] Madden, J.J. and Vermeer, J., Epicomplete Archimedean \(\ell-groups\) via a localic Yosida theorem, J. Pure Appl. Algebra 68(1-2) (1990), 243-253.
- [34] Martinez, J., Hull classes of Archimedean lattice-ordered groups with unit: a survey, In: "Ordered algebraic structures", Dev. Math., vol. 7, pp. 89-121. Kluwer Academic Publishers, 2002.
- [35] Martinez, J. and McGovern, W.W., When the maximum ring of quotients of C(X) is uniformly complete, Topology Appl. 116(2) (2001), 185-198.
- [36] Porter, J.R. and Woods, R.G., "Extensions and absolutes of Hausdorff spaces", Springer-Verlag, 1988.

- [37] Sikorski, R., "Boolean algebras", Third edition, Springer-Verlag, 1969.
- [38] Veksler, A.I. and Geiler, V.A., Order completeness and disjoint completeness of linear partially ordered spaces, Sibirsk. Mat. Ž 13 (1972), 43-51.
- [39] Vermeer, J., The smallest basically disconnected preimage of a space, Topology Appl. 17(3) (1984), 217-232.
- [40] Yosida, K., On vector lattices with a unit, Proc. Imp. Acad. Tokyo 17 (1941), 121-124

Anthony Wood Hager Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT, 06459, USA.
Email: ahager@wesleyan.edu

Brian Wynne Department of Mathematics, Lehman College, CUNY, Gillet Hall, Room 211, 250 Bedford Park Blvd West, Bronx, NY 10468, USA. Email: brian.wynne@lehman.cuny.edu

