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Abstract. The Wallman basis of a frame and the corresponding induced
compactification was first investigated by Baboolal [2]. In this paper, we pro-
vide an intrinsic characterisation of S-metrizability in terms of the Wallman
basis of a frame. Particularly, we show that a connected, locally connected
frame is S-metrizable if and only if it has a countable locally connected and
uniformly connected Wallman basis.

1 Introduction and Preliminaries

In [7], Garcifa-Mdynez utilised the Wallman basis to construct locally con-
nected compactifications and characterise S-metrizable spaces. The pur-
pose of this paper is to generalise Garcia-Méaynez’s characterisation of S-
metrizable spaces. Thus we present a study of the Wallman basis of a frame,
which was introduced by Baboolal in [2], and the corresponding construc-
tion of the Wallman compactification of frame. We present an isomorphism
theorem for the Wallman compactification of dense metric sublocales of a
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metric frame. This together with Baboolal’s work on insular ideals of a
Wallman compactification (see [2]), leads to obtaining a generalization of
Garcia-Mdynez’s intrinsic characterisation of S-metrizability in terms of the
Wallman basis of a frame.

We will first recall relevant material which will be required. A frame L is a
complete lattice which satisfies the infinite distributive law:

xA\/S:\/{xAS\SES},

for all x € L, S C L, where \/ S denotes \/{s | s € S}. The top element of
a frame L is denoted by 17, and the bottom element by 0. If no ambiguity
is caused then we simply use 0 and 1. A map h: L — M between frames
is called a frame homomorphism, if h preserves all finite meets, including
the top element, and all arbitrary joins, including the bottom element. h
is dense if whenever h(xz) = 0y then x = 0z. h is an onto frame homo-
morphism if for every y € L there is an z € M such that h(z) = y, and
h is one-to-one if whenever h(a) = h(b), then a = b for a,b € L. his a
frame isomorphism if and only if h is onto, one-to-one. h has a right adjoint
he : M — L satisfying the property that for all z € M and for all y € L,
x < hi(y) iff h(z) <y.

Given a topological space X, OX = {U C X| U is open} is a frame.
For any continuous map f : X — Y, from the topological space X to a
topological space Y, we have a frame homomorphism,

O(f): OY) — O(X),

U — fYU).
O : Top — Frm is a contravariant functor, where Top denotes the cat-
egory of topological spaces and continuous maps, and Frm denotes the

category of frames and frame homomorphisms. The contravariant functor
is given by

Y : Frm — Top,
L — XL
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Y.L, called the spectrum of L, is the space of all frame homomorphisms
1 : L — 2, where 2 denotes the two element frame {0,1}. XL has open
sets Xg = {¢ € XL | ¢(a) =1}, for a € L, and {¥,| a € L} is a topology on
3.L. For any frame homomorphism h : L — M, we have Xh : XM — XL
which is defined by composing a frame homomorphism from XM with h,
that is, Xh(¢)) = - h, for p € X M.

We now recall definitions of corresponding topological concepts for frames.
The pseudocomplement of a is denoted a* and is characterized by the fol-
lowing formula

a*:\/{xeLla/\x:O}.

For elements a,b in a frame L, we say that a is rather below b, written
a < b, if there exists an element ¢ in L such that aAc=0and bve=1. A
frame L is said to be regular if

az\/{méL\x%a}, for every a in L.

A frame L is compact if whenever \/ S = 1, then there exists a finite
subset F' of S such that \/ F = 1. An element z in a frame L is said to be
connected if whenever x = bV ¢ with bA ¢ = 0 we have either b = 0 or ¢ = 0.
Furthermore, a frame L is connected if its top element 1 is connected, and
it is said to be locally connected provided each element in the frame can be
written as the join of connected elements.

A compactification of a frame M is a compact regular frame L together
with a dense onto homomorphism h : L. — M, denoted by (L,h). A
compactification (L, h) is said to be perfect with respect to an element
u € M, if

ha(uV u*) = hy(u) V hy(u*),

where h, : M — L is the right adjoint of h. The compactification (L, h)
is said to be a perfect compactification of M, if it is perfect with respect to
every element v € M.

We recall the following from Banaschewski [4]. A strong inclusion on a
frame M is a binary relation <€ on M such that:

1. ifx <a 4b<ythen z 4y,
2. <« is a sublattice of M x M,
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ad4b=a<b,

a4b= b* €a”,
for eacha e M, a=\/{zx € M | x € a}.

Let S(M) be the set of all strong inclusions on M. Let K (M) be the set of
all compactifications of M, partially ordered by (L,h) < (N, f) if and only
if there exists a frame homomorphism g : L — N making the following

diagram commute.
L2+ N
l ‘f
M==M

Banaschewski [4] showed that K (M) is isomorphic to S(M) by defining
maps K(M) — S(M) and S(M) — K(M), which are inverses of each
other and are order preserving. For the map S(M) — K (M), let « be any
strong inclusion on M. Let vM be the set of all strongly regular ideals of M
(That is, the ideals J of M such that x € J implies there exists y € J with
x 4 y). Then the join map \/ : yYM — M is dense and onto and yM is a
regular subframe of the frame of ideals of M, Z(M). Hence \/ : yYM — M
is a compactification of M associated with the given «.
We will be concerned with metric frames [10], which are defined as follows:
A diameter on a frame L is a map d : L — R™ (the non-negative reals
including oo) such that:
(M1) d(0) = 0.
(M2) If @ < b then d(a) < d(b).
(M3) If a Ab # 0 then d(a V b) < d(a) + d(b).
(M4) For each ¢ > 0, U = {u € L| d(u) < €} is a cover.
A diameter d is called compatible if
(M5) For each a € L, a = \/{z € L | x <4 a}, where z <g a means there
exists U2 such that

Udz =\{ueUd|unz#0} <a.
A diameter d is called a metric diameter if
(M6) For each a € L with d(a) < oo, and € > 0 there exist u,v < a,

3.
4. a 4b=a < c <D, for some c € M,
5.
6.

J
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d(u),d(v) < e such that

d(a) —e < d(u V).
A frame L with a specified compatible metric diameter d is called a metric
frame and is denoted by (L,d). (L,d) is said to be uniformly locally con-
nected (abbreviated ulc) if given any € > 0, there exists § > 0 such that if
d(a) < § then there exists a connected ¢, a < ¢ and d(c) < e.

2 The Wallman compactification and dense sublocales of
compact metric frames

Our first aim is to show that every compact metric frame is a Wallman
compactification of each of its dense sublocales. In order to do so, we will
generalise a result of Steiner [13]. The Wallman compactification for frames
was first introduced by Johnstone [8]. We begin by defining the Wallman
compactification of a frame M.

Definition 2.1. For any frame M, B C M is called a Wallman basis of
M if:
1. The bottom and top elements of M are in B, and a,b € B implies
that avbe Band aAb € B.

2. For every a € M, a = \/{b € B | b <p a}, where b <p a means that
there exists ¢ € B such that bAc=0and ¢V a = 1.

3. For a,b € B such that aVb = 1, there exist ¢,d € B such that cAd =0
andaVec=bVvd=1.

Proposition 2.2 ([2]). Let M be a regular frame and B a Wallman basis
for M. Define a 4 b in M by

a 4p b iff there exists c € B such that a <p ¢ <p b.

Then 4p is a strong inclusion on M.

From Proposition 2.2, the corresponding compactification associated
with this Wallman basis B, denoted by ypM, is called the Wallman com-
pactification of M. Here vygM consists of all strongly regular ideals of M
associated with 45 and we have the join map \/ : ygM — M.
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Baboolal [2] also showed how using the Wallman basis of a frame, one could
obtain a Wallman basis for the corresponding Wallman compactification,
using the join map.

Proposition 2.3 ([2]). Let B be a Wallman basis of M, then k(B) is a basis
for ygM where k : M — ygM is the right adjoint of \| : ygM — M.

We now recall a result of Steiner [13], in spaces. Before generalising
the result in frames, we also recall the statement of the Boolean Ultrafilter
Theorem which is required in the next proof we present.

Proposition 2.4 ([13]). If (X,d) is a compact metric space, then it has a
base B of open regular sets which satisfies the following: Bi, By € B implies
that By N By € B and By U By € B. We say that B is a ring consisting of
reqular open sets.

Definition 2.5. An element a of a frame M is called regular if a = a**.
Remark 2.6. We note the following:

1. If X is a topological space, then an open set U is said to be regular

open if U = int(U).

2. It can be shown that an open set U € OX is regular open if and only
if U = U*, where U* refers to the pseudocomplement of U in the
frame OX.

Thus an open set U is reqular open if and only if U € OX is a regular
element.

Definition 2.7. Let M be a frame and B C M. B is called a ring in M,
if b1,b9 € B implies that by Aby € B and by V by € B.

Theorem 2.8 ([5], (Boolean ultrafilter theorem)). Every non trivial
Boolean algebra contains an ultrafilter (That is, a maximal proper filter).

Lemma 2.9 ([5]). The following are equivalent:

1. Every non trivial Boolean algebra contains an ultrafilter.

2. Every compact regular frame M is spatial.
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3. XM #0, for every non-trivial, compact reqular M.
In the next proposition we provide a generalisation Steiner’s result.

Proposition 2.10. If (M,d) is a compact metric frame, then M has a
base B of reqular elements, and B is a ring.

Proof. If (M,d) is a compact metric frame then (M, d) is compact regular,
since every metric frame is regular. If we assume the Boolean ultrafilter
theorem, then by Lemma 2.9, M is spatial. Thus

n: M — OXM, given by n(a) =%, ={¢: M — 2| ¢(a) = 1},

for a € M, is an isomorphism. From [6], (XM, p) is a metric space with
metric given by

p(&,n) = inf{d(a) | {(a) = 1 =n(a)}, for §n € XM,

and 7, (the topology on ¥ M generated by p) is exactly OX M. Furthermore,
since M is compact, OXM is compact and therefore XM is compact. So
(XM, p) is a compact metric space and by Proposition 2.4, has a ring base
B consisting of regular open sets of ¥M. Each ¥, € B is regular open in
XM, so ¥, € OXM is a regular element of the frame OXM . Since 7 is an
isomorphism, 7!(B) = B is aring base for M consisting of regular elements.
We can assume that 0p7, 137 is also in B, without loss of generality, since
BU{0ps, 15/} is still a ring base for M. O

The existence of a ring basis B of regular elements for a compact frame L,
is now guaranteed by Proposition 2.10. Utilizing this, we can show that for
any dense onto frame homomorphism h : L — M where L is compact, the
image of B under h is a Wallman basis.

Proposition 2.11. Leth : L — M be a dense onto frame homomorphism.
Suppose that L is compact and let B be a ring basis of reqular elements of
L. Then h(B) is a Wallman basis of M.

Proof. (1): Take any h(b1),h(b2) € h(B), for bj,ba € B. Then h(b1) A
h(ba) = h(by A ba), and since B is a ring, h(by A by) € h(B). Now h(by) V
h(bz2) = h(b1 V ba) € h(B), since B is a ring. Also, 0py = h(0r) € h(B) and
1y = h(1r) € h(B).
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(2): Take any w € M. We will show that w = \/{h(b) | b € B,h(b) <p(p)
w}. Now w = h(a), for some a € L since h is onto, and

a=\{b|be B,b<a},since L is regular and B is a basis of L.

Claim 1: b < a <= b<pa. (2.1)

For b < a, we have b* Va = 15. Now b* = \/{c | ¢ € B,c < b*}, so
by the compactness of L, we have ¢; Vco V ... V¢, Va = 1p, for suitable
c; <b*and ¢; € B fori=1,...,n. Since B is closed under finite joins, then
c=c1VecV..Ve, €B,and so ¢V a =1 with ¢ € B and ¢ < b*. Hence
c/Nb = 0p. Thus for b < a, we have shown that there exists ¢ € B such that
bANec=0r and ¢V a=1r. Hence b <p a.

Now b <p a implies b < a is immediate, hence b < a if and only if b <p a.

We also note that b <p a implies h(b) <(p) h(a), since for ¢ € B such that
bAc=0g and ¢V a = 1, we have h(b) A h(c) = 0, h(c) V h(a) = 1pr and
h(c) € h(B). Thus

w = h(a) = h(\/{b € B|b=<a})
=h(\/{b€B|b=pa})
= \/{n(b) | b€ B,b<pa}
< \/A{n() | b € B,h(b) <) ha)}
= \/{ (0) [ b€ B,h(b) <pp) w}
<w

So w = \/{h(b) | b € B, h(b) <p(p) w}, as required.

(3): Take any h(a), h(b) € h(B) with a,b € B, such that h(a) V

Then h(a V b) = 13;. We have to show that there exist h(c), h(d) € h(B)
such that h(c) A h(d) = Opr and h(c) V h(a) = 1y = h(d) V h(b). Now
aVbe B,soaVbis regular.

Claim 2: If x € L is regular and h(z) = 1/, then o = 1;. (2.2)
Assume that h(z) = 1j; where z is regular. Then,

h(b) = 1y
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= 2 =01, (since h is dense)
= g™ = 1r.

Since z is regular, z = 1, as claimed.

Hence h(a VvV b) = 1p implies a Vb = 1. Now a = \/{z | x € B,z <p a},
and b =\/{y |y € B, y < b}, therefore

\/{a:]xEB,:L'<Ba}\/\/{y|y€B,y<Bb}:1L.

Since M is compact, there exists x € B with x <p a, and there exists y € B

with y <p b such that x Vy = 1p. © <p a implies that there exists c € B,
such that t Ac=0p and ¢V a = 1, and y <p b implies that there exists
d € B such that yAd =0 and dVb= 1. Now, cAd=(cAd)A\(zVy) =
(eNdAx)V(eANdAy) = 0r. Hence h(c)Ah(d) = h(cAd) = 0ps. Furthermore,
h(c) V h(a) = 1p, since ¢V a = 11, and h(d) V h(b) = 1ps, since dV b = 1p.
Hence condition (3) is satisfied.

We have shown that h(B) is a Wallman basis of M. O

We briefly discuss an application of Proposition 2.11 to dense metric
sublocales to guarantee the existence of a Wallman basis for all dense metric
sublocales of compact frames. We recall the definition of a metric sublocale

[9].

Definition 2.12 ([9]). Let (L, p) be a metric frame and h : L — M be
an onto frame homomorphism. For a € M, let

d(a) = inf{p(x) | a < h(x),xz € L},

then d is a compatible metric diameter on M, and (M, d) is called a metric
sublocale of (L, p). Additionally, if h is a dense map, then we call (M,d) a
dense metric sublocale of (L, p).

Corollary 2.13. Let (M,d) be a dense metric sublocale of (L, p), with a
dense onto homomorphism h : L — M. Suppose that L is compact and let

B be a ring basis of reqular elements of L. Then h(B) is a Wallman basis
of M.
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Proof. Follows immediately from Proposition 2.11. O

We now recall a result that follows directly from the work of Banaschewski
in [4].

Theorem 2.14 ([4]). Let M be a frame. Let (L, h) be a compactification of
M associated with strong inclusion 41, and let (N, f) be a compactification
of M associated with strong inclusion d2. If <41=<g, then L = N.

It is well-known in the literature that rather below relation, <, inter-
polates in a compact regular frame. We recall this fact below and then
present an isomorphism theorem for the Wallman compactification of dense
sublocales of a frame.

Proposition 2.15 ([5]). Let L be a compact regular frame. Then for any
a,b e L, a<bimplies that there exists ¢ € L such that a < ¢ <b. We say
that < interpolates in a compact reqular frame.

Theorem 2.16. With the conditions as in Proposition 2.13, the Wallman
compactification y,gyM of M is isomorphic to L (as frames).

Proof. By Proposition 2.2, h(B) determines a strong inclusion on M given
by: = €y for z,y € M if and only if there exists h(b) for b € B, such that
T <3y Mb) <nB)y y- Thus, v,gyM = {J | J is a strongly regular ideal},
where J is said to be strong regular if z € J implies there exists y € J such
that = € y. y,(p)M is a compact regular frame and the join map

\/3’7h(B)M_’M
T \/J

makes vj,3)M a compactification of M. We will show that v, pM =
L. Let h, be the right adjoint of h. We note that h : L — M is a
compactification of M (since L is a compact regular frame), and this induces
a strong inclusion «; on M given by

T 41y <= h(x) < h(y).
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It suffices to show that « = <, for then by Theorem 2.14, vj,(g)M = L. So
suppose that x € y, for x,y € M. Then h,(z) < h.(y) and therefore there
exists z € L such that h.(x) < z < h.(y), since < interpolates in compact
regular frames by Proposition 2.15. Now h,(x) < z implies hy(x)*Vz =17,
and so hy(z)*V\/{be€ B|b<z}=1p. Since L is compact and B is closed
under finite joins, it follows that h.(z)* Vb = 1z, for some b € B with b < z.
Now,

ha(z) <b <z < h(y)

hy(z) < b < hy(y) (b€ B)

hi(xz) <p b <p h«(y) (by equation (2.1))
hhi () <np) h(b) <n(p) hhs(y)

z <ps) M) <nm) Y

T <y.

I

Now suppose « €y, for x,y € M. Then there exists by € B such that

r <p) Mb1) <nB) Y-

x <p(p) h(b1) implies there exists ¢; € B such that x A h(c1) = 0p and
h(c1) V h(b1) = 1pr. Now h(h.(z) Ac1) = hho(x) Ah(er) =2 Ah(er) = 0pr.
So, hi(x) Aep = 0r, since h is a dense map. Furthermore, ¢; Vb € B and is
therefore regular, so by equation (5.2), since h(c; V1) = h(c1)Vh(b1) = 1y,
we must have ¢; Vb = 1. Hence we have shown that h.(z) < b;. Now, we
observe that

h(b1) <y
= b1 < hu(y)
= h«(z) < b1 < hi(y)
= h(z) < hi(y)
= x 4 Y.

Hence, we have shown that ;)M = L. O
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3  S-metrizability and the Wallman basis

The purpose of this section is to provide one of the main results of this
paper. We present a characterisation of S-metrizability in terms of the
Wallman basis of a frame. S-metrizabilty of a frame is defined in terms of a
connectedness property, called Property S, which is attributed to Sierpinski
[12].

Definition 3.1. Let (L,d) be a metric frame. L is said to have Property S
if, given any € > 0, there exist ay, ag, ..., an such that \/}_; a; = 1, where q;
is connected and d(a;) < ¢ for each i.

Definition 3.2. Let (L,d) be a metric frame. Then (L, d) is S-metrizable
if L admits a metric diameter that has Property S.

In what remains, we will let M be a locally connected frame. We briefly
state required theory from [2].

Definition 3.3. An element 0 # ¢ € M is a component of an element
u € M if:

1. ¢ is connected and ¢ < u,

2. ¢ is maximally connected in w (that is, whenever ¢ < x < w and z is
connected in M, then ¢ = x).

Remark 3.4. We note that if ¢, and cg are components of u € M, and
Ca 7 g, then co Acg =0

Definition 3.5. Let B C M be a Wallman basis. Then B is locally con-
nected if each component of each element of B is also in B.

Definition 3.6. A basis B of M is uniformly connected if whenever A is
finite, \/ A =1 and A C B, then there exists finite cover C' C B, such that
every ¢ € C'is connected and C' is a refinement of A, denoted by C < A.

Definition 3.7. Let yg M be the Wallman compactification associated with
a Wallman basis B. An ideal J € ygM is said to be insular if whenever
x € J, there exists y € J having finitely many components, such that y € B
and x € y.
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In [2], Baboolal obtained the following characterisation for insular ideals
of the Wallman compactification associated with a locally connect Wallman
basis on a locally connected frame. This result plays an important role in
the main result of this paper.

Theorem 3.8 ([2]). Let B be a locally connected Wallman basis for the
locally connected frame M. Then the following are equivalent:

1. V: vBM — M s a perfect locally connected compactification of M.
2. B is uniformly connected.

3. Fvery ideal J in ygM 1is insular.

Although the following Lemma is known, it is difficult to find in the litera-
ture. We therefore, provide a proof for completeness.

Lemma 3.9. Let M be a locally connected frame and c be a component of
ve M. Thenv <cVc*.

Proof. By the local connectedness of M, v = \/_;ca, Where ¢, are the
components of v. Now ¢ = c,, for some o € I. For 3 # «, cg A co = O,
so ¢g < ¢*. This implies that \/ 4, cs < ¢*, therefore v =cV (V4 cs) <
cVcr. O

Next we shall show that S-metrizability of a locally connected frame en-
sures the existence of a countable locally connected and uniformly connected
Wallman basis. Before doing this, we need the following two propositions
on countability.

Proposition 3.10. FEvery compact metric frame has a countable base.
Proof. Let (M,d) be a compact metric frame. For each n € N, U{ = {x €

M | d(z) < 1} is a cover of M. So by compactness of M, there exists a
finite cover F,, C Uf, of M.

Let B =2, Fp. Then B is countable. We shall show that B is a base for
M. Take any a € M. Then a = \/{z € M | x <ga}. Now for any x <q4a,
there exists € > 0, such that ng < a. Take n € N, such that % < €. Then
fo < a. Since F}, is a cover of M,

z=aA\[{y|lyeF}=\/{zry|ye Fy+#0}
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Now, y € F,, and = Ay # 0 imply that y < a and therefore

xS\/{yan]x/\yyéO}Sa.

Since a is a join of the z’s, it follows that a is a join of elements that come
from B, since each y € F}, is in B. So B is a countable base. O

Proposition 3.11. If (M,d) is a compact locally connected metric frame,
then each uw € M has only countably many components.

Proof. Since M is locally connected, u =/ ca, Where c, are the compo-
nents of u. Let B be a countable base of M. The existence of a countable
base follows from Proposition 3.10. Each ¢, is a join of elements from B,
so we can choose any b, € B such that b, < co. Whenever o, € I and
a # B, then co A cg = 0, therefore b, # bg. Thus if I were uncount-
able, then {by}acr would be uncountable. But {bs}aer C B, and B is
countable. Hence {b, }acs is countable, which is a contradiction. Thus I is
countable. ]

Theorem 3.12 ([11]). Let (M,d) be a connected, locally connected metric

frame. Then (M,d) is S-metrizable if and only if (M, d) has a perfect locally
connected metrizable compactification.

We are now ready to present the main result of this section:

Proposition 3.13. Let (M,d) be a connected metric frame. If M is S-
metrizable then M has a countable, locally connected and uniformly con-
nected Wallman basis.

Proof. Assume that (M, d) is S-metrizable. Then by Theorem 3.12, (M, d)
has a perfect locally connected metrizable compactification (just take the
completion of (M,d)). Callit (L, p) and let h: (L, p) — (M, d) be a dense
surjection where p(a) = d(h(a)), for all a € L. We know by Propositions
2.10 and 3.10, that whenever L is a compact metric frame, then L has a
countable ring basis, call it By, consisting of regular elements. Let

Co = {c€ L|cisacomponent of some b € By},
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and let By = (By U Cy), where (By U Cp) denotes the ring generated by By
and Cy. We will now show that Bj is the smallest ring containing By and
Cy. Since By = (By U Cy), we have

n
B; ={x € L | x is a finite join of elements y, y = /\ ti, t; € BoUCy}.
i=1

Take any z,y € Bi. Then z = \/]_; x;, where z; = SEA LA s};i, for
33'- € ByUCy, and y = ;" yi, where y; = ti/\.../\tfh_, for téi € BouCy. Thus
zVy =V, z;VVi, yi, with z; and y; as described above, so x Vy € Bj.
Now, z Ay = Vi VL (@i Ayi), where ; Ay; = SYA NS NELA LA
So z Ay € By. Hence Bj is a ring containing By and Cj, and Bj is the
smallest ring containing By and Cj.

We now show that Bj consists of regular elements. We first note that if
and y are regular then z A y is regular. For if x = ™" and y = y**, then
(xAy)™ =2 ANy™ =ax Ay and so x Ay is regular. If ¢ € Cp, then c is
a component of some b € By. Now ¢ < b implies that ¢ < b** = b, so
c < < b. Now, c is connected therefore ¢** is connected. Since c is a
component we must have ¢ = ¢**. Hence c is regular. Thus By U Cy consists
of regular elements and finite meets of elements from BgUCj is regular. Let

H, ={x € L |z is a finite meet of elements from By U Cp}.
Then H; consists of regular elements. For each m > 1, let
H,, ={x € L |z is ajoin of at most m elements from H;}.

We prove by induction that each H,, consists of regular elements. Let
m > 1 and assume H,, 1 consists of regular elements. Let x € H,,. Then
there exist hq, ho, ..., hy, € Hy such that x = hqy V ho V...V hy,. Take any hy,
for 1 <k <m. Now,

hiy =bi A...AbtAci A ... Acs (where b; € By, c; € Cp)
=bACLA ... Acs,

where b = by A ... A by € By, since By is a ring. Each ¢; is a component of
some v; € By, so

hpy=bANc1 A...\cs
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<bAvIA..Nvs=d € By.

Claim: di < hy V h;;
heVhi =((BAcg Ao Nes)V(BAer Ao Nes)*. Now hy =bAcp Ao Aes < ¢,
fori=1,...,5. So ¢ < hj, for each 7, and thus ¢ V... V ¢; < hy. Hence,

hieVhy>(bAct AoNes) V(] V...Vcs)
=0V aV..Ve))AN(aV(EgV..Veg))N .. NesV(elV...Vcr))
>bA(aaVAV..VE)ANeaVaV..Ve) A . ANMesVelV...Vcs)
>bA(eaaVel)A(eaVey) A .. AesVe:) (By Lemma 3.9)
>bAvi Avg A ... ANvg = dy.

Thus proving the claim that d < hy V hy.

We now show that x is regular. Firstly, x = h1VhaV...Vhy, < d1VdaV..Vdp,.

Hence ** < (dy Vda V...V dy)*™* =dy Vda V...V dy, since d; € By and By
is a ring of regular elements. Fix any ¢, 1 <¢ < m. Now x = h; V \/#i hj,

hence
b < \/ by
J#i
= (z AR < (\/ h;)*™ = \/ h; (by the induction hypothesis)
J#L J#i
— AR < \/ h;
J#i
= 2" ARF < \/ Ry
J#

Hence for all ¢, we have z** A hf <V, ; h;. Now,

2 <diVdaV..Vdy
< (h1VhA])V (haVhy) V..V (hn VR,
=1 V..Vhp)V(RIV..VhL})
=xVh]Vhy. . Vh,.
Therefore,

a* =a™ AN(xVh]Vh;..Vh)
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=@ ANz)V (AR V(& ARV ...V (2 AR

<zv\/ v\ hVv.v\ h
i 2 i#m
<.

Since z < x**, we conclude that x = z**, and so x is regular.

Thus by induction on m, H,, consists of regular elements for every m > 1.
Thus By = (BoUC)) consists of regular elements. Let By = (B; UCh),
where C consists of components of elements from B;. By a similar argu-
ment in which we showed that By consists of regular elements, we can show
that By consists of regular elements. Thus B = | ;- , By, consists of regular
elements. Also, B is a ring basis since B,, C B,+1 and since each B, is a
ring basis. Hence by Proposition 2.13, h(B) is a Wallman basis for (M, d).

Claim: h(B) is countable.

By is countable and by Proposition 3.11, since (L, p) is compact and locally
connected, it follows that Cj is countable. Thus the ring generated by By
and Cj is countable. So B is countable. It follows that all B,’s are count-
able. Hence B = |J;2, By, is countable. In addition, h(B) would then be a
countable base, as claimed.

We now show that h(B) is a locally connected base. Take any h(b) € h(B),
where b € B. Let w be a component of h(b). We will show that w € h(B).
Now, b € By, for some n. We know that b = \/_{cq | co is a component of b},
therefore

h(b) = \/{h(ca) | co is @ component of b}.

Since (L, p) is a perfect compactification, then each h(c,) is connected in
M. Now w < h(b) implies w A h(cy) # Opnr, for some component ¢, of b.
Therefore w < w V h(cy) < h(b), with w V h(c,) connected in M. Since w
is a component of h(b), h(cy) < w. Also,

w=wAh(b) = (wAh(ca) V \/ (wAR(cg)).
B

Furthermore,

(w A h(ca)) A\ (wAR(cg)) =wA (h(ca) A \/ hlcs)) = Onr.
B#a B#a
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Whenever  # o, then h(cq) A h(cg) = h(ca N cg) = h(0r,) = 0pr. So since
w is connected and w A h(ca) # Onr, we must have Vg, (w A h(cg)) = On-
Hence w = w A h(cy) < h(cy), and therefore w = h(c,). But ¢4 is a com-
ponent of b € B, for some n, so ¢, € Bpy1 € B. Thus w = h(c,) with
ca € B, showing that h(B) is a locally connected basis.

Lastly, we show that h(B) is a uniformly connected base. We have h :

(L,p) — (M,d) is a perfect locally connected metrizable compactifica-
tion of M, therefore by Proposition 2.16, the Wallman compactification
YnByM = L, as frames. Thus 7;,p)M is a perfect locally connected com-
pactification of M. By Theorem 3.8, h(B) is uniformly connected. Thus
h(B) is a countable, locally connected and uniformly connected Wallman
base for M. O

4 The Main Result

The following metrization theory from [9], is required for our main result:

Definition 4.1. A subset X C M is said to be locally finite if there exists
a cover W of M such that each w € W meets only finitely many elements
from X.

Definition 4.2. A basis B of M is said to be o—locally finite if B =
U2, By, and each subset B, is locally finite.

Theorem 4.3 ([9]). Let M be a regular frame. M is metrizable if and only
if M has a o—locally finite basis.

We now establish our main result in this section, which is a generalisation
of a result of Garcia-Mdaynez [7].

Theorem 4.4. Let M be a connected and locally connected frame. The
following are equivient:

1. M is S-metrizable.

2. M has a countable locally connected and uniformly connected Wallman
basis.

3. M has a countable locally connected Wallman basis B such that every
ideal J of ypM is insular.
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Proof. 1 = 2: Follows from Proposition 3.13.
2 <= 3: Follows from Theorem 3.8.

2 = 1: Suppose then that M has a countable locally connected and uni-
formly connected Wallman basis B. By Theorem 3.8, \/ : ygM — M is
a perfect locally connected compactification of M. From Proposition 2.3,
k(B) is a basis for ygM, where k : M — ~ypM is the right adjoint of
\V :y8M — M. Since B is countable, then k(B) is countable. Thus ygM
has a countable basis and hence by Theorem 4.3 vpM must be metriz-
able, since it is regular . So M has a perfect locally connected metrizable
compactification and hence by Theorem 3.12 is S-metrizable. O

Remark 4.5. It should be noted that in [7], Garcia-Maynez does not as-
sume connectedness nor local connectedness. However, it is not expected
that local connectedness could be relaxed in the point-free context.
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