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Article Info Abstract

Drilling of exploratory boreholes is one of the most important and costly steps in
mineral exploration, which can provide us with accurate and appropriate information
to continue the mining process. There are limitations on drilling the target boreholes,
such as high costs, topographical problems in installation of drilling rigs, restrictions
caused by previous mining operation etc. The advances in artificial intelligence can
help to solve these problems. In this research, we used python as one of the most
pervasive and the most powerful programming languages in the field of data analysis
and artificial intelligence. In this method mean shift algorithms have been used to
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cluster data, random forest to estimate clusters, and gradient boosting to estimate iron
grade. Finally, in the studied area of Choghart in Central Iran, more than 91%
accuracy was achieved in detection of ore blocks. Also, the results of the neural
network indicate the mean square error (MSE) and mean absolute error (MAE) in the
training data, respectively equal to 0.001 and 0.029, in the test data is 0.002 and 0.03,
and in the validation boreholes, we reached a maximum of 0.06 and 0.2.

Mean shift
Gradient boosting

1. Introduction

Exploration boreholes are one of the most
important and costly steps in mineral exploration,
which can provide us with accurate and appropriate
information to continue the mining process. There
are limitations on drilling the target boreholes, such
as high costs, topographical problems in
installation of drilling rigs, restrictions caused by
previous mining operation etc. The use of artificial
intelligence and its superiority over other methods
in solving non-linear problems can be one of the
best solutions to reduce exploratory drilling. Due
to their structure, neural networks can provide
mining engineers with simpler and less expensive
ways to achieve more accurate results [1].

Al- based methods can overcome the problems
caused by the traditional methods with a more
realistic strategy; because these methods can
understand the hidden relationships between
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different input and output parameters in nonlinear
and complex spatial conditions.
The methods based on artificial intelligence are:

1. Artificial neural network methods (operator)
2. Optimization methods (optimizer)

3. Fuzzy logic method (normalizer)

4. Clustering methods (classifier) [2].

Data clustering is an unsupervised method in
artificial neural networks. Clustering is used to
show the difference, and indeed, we do not
anticipate simply dividing the data into different
clusters. Understanding clustering models is the
key to realize the differences and similarities
between  different  clustering  algorithms.
Understanding clustering models is the key to
knowing the differences and similarities between
different clustering algorithms. In the clustering
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method, the members of each cluster are tried to
have the most similarity to each other based on the
used variables, and also the members of different
clusters have the most differences. The most
important of these clusters are partition-based
clustering, hierarchical clustering, density-based
clustering, model-based clustering, and fuzzy
clustering [3].

A good clustering should have features such as
scalability, acceptability of data types, extraction
of clusters with different shapes, ability to deal
with noise and incomplete data, insensitivity to
data entry, no need to specify input parameters, and
accept big data [4].

Python was designed in the late 1980s by Guido
van Rossum, with a dynamic system with an
emphasis on readability and rapid prototyping.
Python is currently the premier programming
language for scientific computing, data science,
and machine learning, and it enhances performance
and productivity by using low-level libraries and
appropriate APIs.

The most important strengths
programming language are as follows:

of this

1. Ease of use while ensuring computational
efficiency

2. Create efficient libraries with lower-level code
than other programming languages

3. Parallel processing of operations
4. A free and available programming language

5. Portability between different operating systems

[5].

Many researchers have employed different
artificial neural networks for grade estimation in
the recent years. For example, a Radial Basis
Function (RBF) network has been used
successfully for grade estimation in an iron deposit
in England, and the results obtained have been
compared with the geostatistical models [6]. In
another case, a four-level perceptron network (4L-
MLP) has been used on the modified magnetic data
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to estimate the iron grade [7]. Badel has compared
one of the newer kriging methods called the
median indicator kriging with the artificial neural
networks for grade estimation in an iron ore deposit
[8]. The grade estimation results of a Choghart iron
ore deposit obtained from a back-propagation
neural network have been compared with the
results of a Support Vector Machine (SVM) [9]. In
another research work, the artificial neural
networks and geostatistics have been integrated
using ANNMG to optimize the mineral reserve
evaluation in the SW Sierra Leone [10].
Nezamolhosseini has applied a multi-layer
perceptron (MLP) neural network to estimate the
storage of Choghart mine using the exploratory
boreholes data [11]. In another article, the
comparison between the Local Linear Radial Basis
Function wusing Skewed Gaussian activation
(LLRBF-SG) and older neural networks such as
Differential Evolution (DE), Cuckoo Search (CS),
Covariance Matrix Adaptation Evolution (CMAE),
Artificial Bee Colony (ABC), Improved Artificial
Bee Colony (IABC) were used to estimate the
phosphate grade in Bafgh Esfordi [12]. Alimoradi
has estimated the silver grade in Zarshuran gold
mine by involving the boreholes spatial data and
the data obtained from the Induced Polarization
(IP) geophysical method with the cuckoo search
machine learning algorithm. The results show that
grade values can be accurately estimated from
geophysical data, especially in areas without
drilling operations data [13]. All of these research
works have illustrated that artificial neural
networks can be used as a reliable approach to
obtain the most accurate grade estimations.

The mean shift algorithm is a clustering method
for the analysis of complex spaces and non-
parametric properties to determine the maximum
probability function. Application domains of this
algorithm include cluster analysis in machine
learning and image processing. This algorithm is
based on data density, and can automatically adjust
the number of clusters [14].
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Figure 1. How to select centers in each step in the mean shift algorithm [15].

The problem of this algorithm is in determining
the bandwidth, which is a difficult operation. To
determine the bandwidth, the results of clustering
estimation have been used and the best bandwidth
with appropriate estimation has been selected by
repeating different numbers [16]. This algorithm is
available in the sci-kit-learn library in python
programming language.

Random forest or random decision forests is a
combined learning method for -classification,
regression, which is based on a structure consisting
of a large number of decision trees, on the training
time and output of classes (classification), or for
the average predictions of each tree. They work
separately [17]. Random forests are suitable for
decision trees that are pre-fitted in the training
complex. Also, this algorithm is very user-friendly,
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and has only two network input parameters, which
are the number of trees and subset variables, which
usually the network response is not very sensitive
to the value of these parameters [18].

The decision tree is an algorithm that is easy to
understand and interpret, but a single tree may not
be sufficient to learn the properties of the model.
Random forest algorithm, on the other hand, is a
tree-based algorithm that uses the properties of
several trees to make decisions. Also, the decision
tree algorithm is extremely vulnerable in terms of
over-training and over-fitting, but this problem can
be easily overcome by performing random forest
regression. Another important feature of this
algorithm is its low variance in regression. This
algorithm uses averaging to improve performance
and control the overfitting [19].
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Figure 2. Random forest performance procedure and integration of results of several decision trees [19].

This algorithm is also available in the sci-kit-
learn library and the ensemble sub-library in the
python programming language.

The gradient boosting algorithm is a machine
learning method for regression and classification
problems that are typically generated from a
prediction model in the form of a set of weak
prediction models, typically a decision tree. It
builds this model step by step, like other amplifier
methods, and generalizes the variable performance

bl s

of the decision tree by allowing arbitrary
optimization. The gradient boosting algorithm is an
integrated, high-performance, stable algorithm; it
can control noise data well, and has a high
estimation ability to predict non-linear data [20].

Figure 3 shows the training process and
progress of the gradient boosting algorithm based
on the error function and iteration of the training
process:

S
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““““ '—.+ £
""" =
Iterations

Figure 3. Gradient boosting training process [21].
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Gradient boosting is a decision tree-based
algorithm developed with the Ada Boost method.
The correct understanding of the error function
depends on the parameter should be optimized.
One of the most important features of this method

Journal of Mining & Environment, Vol. 15, No. 2, 2024

The main difference between this method and
random forest is that in this method the decision
trees form a network in the direction of each other,
while in random forest the trees form a network
together. It is completely observable in Figure 4.

is that it allows the user to specify the error function [22].
according to its needs [22].
Single Decision Tree Gradient Boosted Trees Random Forest
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Figure 4. Difference between random forest algorithm and gradient boosting algorithm [22].

In this study, the gradient boosting algorithm is
used to estimate the iron grade in the last step. This
algorithm can also be used in the sci-kit-learn
library in python programming language.

In the beginning of the study, data mine
software is used for composite data & then they are
reviewed & pre- processed with SQL2014
software; in the main stage, the required code is
implemented in python programming language
(Python 3.7) and in Spyder environment of the
Anaconda package.

Y. Choghart iron Deposit

Central Iran zone is located within the Alpine-
Himalayan orogenic system, which evolved during
the closing of Palettes Ocean. This zone is located
in the northeast of Zagros-Makran belt connected
to the NeoThetis ocean suture along with the other
areas of Cimmerian block of Iran (Alborz and

Sanandaj-Sirjan). The microcontroller separately
described the continents of central and eastern Iran
with fault boundaries including three crustal areas
of Lut, Tabas, and Yazd blocks with a north-south
orientation that are adjacent from east to west,
respectively. Tabas and Yazd blocks are separated
by a long, complex arched structural belt called
Kashmar-Kerman tectonic zone (It is also called
Posht-Badam block). Located 12 km NE of the city
of Bafgh in Iran, Choghart mine is one of the
biggest iron ores in this country. The main orebody
at Choghart is in the form of a roughly vertical,
discordant, pipe-shaped body plunging 73°NNW,
and has been explored to a depth of 600 m.
Different types of volcanic (intrusive and extrusive
alkali rhyolites) and metamorphous rocks occur in
the vicinity of the deposit. Syenite, pyroxenite,
gabbro, granite, and alkali rhyolites are the major
components of the volcanic rocks of Choghart
deposit [23].
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§5°0'0"E 56°0'0"E
Figure 6. a) The position of Central Iran in relation to the Zagros and Alborz joints; B) Landscape map of
Central Iran blocks; C) Geological map of Bafgh-Saghand block with the location of iron oxide-apatite,
manganese and lead, and zinc deposits [24].
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Figure 6. a) The position of Central Iran in relation to the Zagros and Alborz joints; B) Landscape map of
Central Iran blocks; C) Geological map of Bafgh-Saghand block with the location of iron oxide-apatite,

manganese and lead, and

The oldest rocks at Bafq mining district are
composed of Mesoproterozoic —metamorphic
schists covered by the Neoproterozoic to
Cretaceous units. Bafq region is one of the most
important mineralized zones of central Iran with
the upper Precambrian metamorphic-sedimentary
rocks and rift series of Precambrian-Paleozoic [25].

The Cambrian Volcano Sedimentary Unit
(CVSU), as the major host of Bafq Fe-P-REE
deposits, is composed of Rizu-Desu series and
Esfordi Formation. The CVSU is made up of felsic
tuff, sandstone and micro-conglomerate, mafic,
and felsic volcanic rocks, pyritic siltstone-shale,
volcanoclastic beds and tuffaceous shale, dolomite
and dolomitic limestone [26].

Potassic, phyllic, argillic, and propylitic are the
major alteration types, and they are attended by
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zinc deposits [24].

the veins to veinlets of quartz, quartz magnetite,
and Fe-hydroxides filling [27].

3. Methodology

In this section, the background of surveys and
observations about the borehole datasets are
presented. Then, considering that only coordinates
and degrees are available, the proposed method
will be as follow: According to have degrees and
coordinates in different dimensions, data are
clustered and models are created to estimate these
categories. Finally, the model proceeds to estimate
the grade according to different clusters.
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3.1. Data preparation

The information used in this paper is obtained
in the form of assay, collar, and survey data from
the raw data. After entering this information into

Journal of Mining & Environment, Vol. 15, No. 2, 2024

3.2. Data statistical studies

The learning data sets from the Pandas library
in python environment is extracted as follows:

the data environment, the boreholes were Table 1. Statistical parameters of the studied data.
composited to unify the sampled lengths. Parameter Grade value
Composition is a length-dependent operation.
. . : . Mean 12.9
Since the mining operations have been carried out d deviati 1.9
in the studied area before our research and the St. - eviation .
extraction blocks have been considered as 10 Minimum 0
meters, the composite has been considered based 25% 0
on the length of the extraction blocks and the limit 50% 12.3
grade. A total of 2264 data was obtained, of which 75% 20.86
2 boreholes in the center and 2 boreholes in the .
. Maximum 62.68
exploration area were excluded from the data set as i
Variance 142

validation boreholes. The statistical adjustments
related to the other data used in the neural network
training and testing is as follows, and the data of
these four boreholes has been completely excluded
from the network process.

Notable points include the large amount of zero
data in the measured values, which can be related
to the low accuracy of sampling and borehole
analysis as well as human error; this can inevitably
lead to some errors.

~ 1700
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Figure 7. Diagram of how the boreholes are positioned according to the measured grade.

regular, their distance from each other is
approximately 100 meters. Also, the frequency of
zero-k data with a dark color has been illustrated,
indicating low accuracy in measured grades.

In the picture above, the position of the
boreholes can be seen according to the measured
grade. Although the distance between the
boreholes and the position of the boreholes is not
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Figure 8. Procedural diagram of available information from boreholes.

According to Figure 8, it can be easily
understood that the length of the boreholes is not
regular, which is due to the limitations created by
the topography of the area. This issue can make
difficulty in network training process, especially in

places where there is not enough data for network

training in terms of height.

To further investigate this scattering in different
directions, diagrams of the degree of change in
different directions are given as below:

+3.516e6
500 -
400 - . .""l - \\%.
RSO
:_:n-.\ PR
300 - iz
>-
200 -
100 1
0 o
351800

352000 352200 352400 352600
X

352800 353000

Figure 9. Ore grade changes in the X-Y direction.
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Figure 10. Ore grade changes in the X-Z direction.
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Figure 11. Carat changes in the Y-Z direction.

Looking more closely at the ore grade change
diagrams, it can be seen that the changes are more
severe along the Z-axis, and the depth parameter
will play more important role in predicting the final
ore grade. Due to the data scattering, an algorithm
which is resistant to the out-of-noise data is needed.
This algorithm can cluster data with small
amounts. Also, the nonlinear behavior of the data

and their unpredictability are quite evident in these
graphs.
3.3. Data pre-processing

To prepare the data for use in neural networks,
it is necessary to pre-process the data first. At this
stage, after examining the data in terms of validity
and usability and deleting invalid data, the data is
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normalized. This is done to equalize the effect of
large and small data, and all data will be within a
certain range.

In this paper, the Min-Max model is used to
normalize the data and the data is defined in the
range of [0,1]. The python programming language
uses a preprocessing library to do this. In this
method, each set of data is mapped to arbitrary
intervals whose minimum and maximum values

newMazx —

Journal of Mining & Environment, Vol. 15, No. 2, 2024

are already known. In this way, any desired interval
can be converted to a new interval with just a
simple conversion. Suppose that attribute A is to be
mapped from the data set between minA to maxA
to the new range newMin to newMax. For this
purpose, any initial value such as v in the initial
interval will be converted to a new value V' in the
new interval according to the following equation:

newMin

Vv = (v —miny,)

3.4. Main shift clustering algorithm

Mean shift is a procedure for locating the
maxima of the modes of a density function. This is
an iterative method, and we start with an initial
estimate. The Kernel function determines the
weight of nearby points for re-estimation of the
mean. Typically, a Gaussian Kernel on the distance
to the current estimate is used:

K(xi — x) = e_C“xi_x“z'

The weighted mean of the density in the
window determined by K is:

inEN(x) K(xi - x)xi
inEN(x) K(xi - .X)

where N(x) is the neighborhood of x, is a set of
points for which K(x;) # 0 [28].

The difference of m(x) — x is called mean shift
in Fukunaga and Hostetler. The mean shift
algorithm now sets m(x)—x, and repeats the
estimation until m(x) converges [29].

Although the mean shift algorithm has been
widely used in many applications, a rigid proof for
the convergence of the algorithm using a general
Kernel in a high dimensional space is still not
known [30]. However, the one-dimensional case
has limited real world applications. Also, the
convergence of the algorithm in higher dimensions
with a finite number of the (or isolated) stationary
points has been proved [30,31]. However,
sufficient conditions for a general Kernel function
to have finite (or isolated) stationary points have
not been provided.

m(x) =

3.5. Random forests algorithm
3.5.1. Tree learning

Decision trees are a popular method for various
machine learning tasks. Tree learning comes
closest to meeting the requirements for serving as
an off-the-shelf procedure for data mining because

mazrA —
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=y + (newMin)

it is invariant under scaling and various other
transformations of feature values, is robust to
inclusion of irrelevant features, and produces
inspectable models. However, they are seldom
accurate [32].

In particular, trees that are grown very deep tend
to learn highly irregular patterns: they over-fit their
training sets, i.e. have low bias, but very high
variance. Random forests are a way of averaging
multiple deep decision trees, trained on different
parts of the same training set, with the goal of
reducing the variance [32].

This comes at the expense of small increase in
the bias and some loss of interpretability, but
generally greatly boosts the performance in the
final model. Forests are like the pulling together of
decision tree algorithm efforts. Taking the
teamwork of many trees thus improving the
performance of a single random tree. Though not
quite similar, forests give the effects of a K-fold
cross-validation [33].

3.5.2. Bagging

The training algorithm for random forests
applies the general technique of bootstrap
aggregating, or bagging, to tree learners. Given a
training set X = x, ..., x, with responses Y =y, ...,
Vv, bagging repeatedly (B times) selects a random
sample with replacement of the training set and fits
trees to these samples:

Forb=1, .., B:

1. Sample, with replacement, n training examples
from X, Y; call these X, Y.

2. Train a classification or regression tree f, on X,
Y.

After training, predictions for unseen samples x'
can be made by averaging the predictions from all
the individual regression trees on x":
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B
.~ 1
f== ;fb(x')

or by taking the majority vote in the case of
classification trees.

This bootstrapping procedure leads to better
model performance because it decreases the
variance of the model, without increasing the bias.
This means that while the predictions of a single
tree are highly sensitive to noise in its training set,
the average of many trees is not, as long as the trees
are not correlated. Simply training many trees on a
single training set would give strongly correlated
trees (or even the same tree many times, if the
training algorithm is deterministic); bootstrap
sampling is a way of de-correlating the trees by
showing them different training sets [34].

3.5.3. From bagging to random forests

The above procedure describes the original
bagging algorithm for trees. Random forests differ
in only one way from this general scheme: they use
a modified tree learning algorithm that selects, at
each candidate split in the learning process, a
random subset of the features. This process is
sometimes called "feature bagging". The reason for
doing this is the correlation of the trees in an
ordinary bootstrap sample: if one or a few features
are very strong predictors for the response variable
(target output), these features will be selected in
many of the B trees, causing them to become
correlated. An analysis of how bagging and
random subspace projection contribute to accuracy
gains under different conditions is given by Ho
[35].

Typically, for a classification problem with p
features, \/5 (rounded down) features are used in

Journal of Mining & Environment, Vol. 15, No. 2, 2024

each split. For regression problems the inventors
recommend g (rounded down) with a minimum

node size of 5 as the default. In practice the best
values for these parameters will depend on the
problem, and they should be treated as tuning
parameters [32].

3.6. Gradient boosting algorithm

In many supervised learning problems there is
an output variable y and a vector of input variables
x, related to each other with some probabilistic
distribution. The goal is to find some function F (x)
that best approximates the output variable from the
values of input variables. This is formalized by
introducing some loss function L(y,F(x)) and
minimizing it:

F =arg mFin Exy [L(y, F(x))].

The gradient boosting method assumes a real-
valued y, and seeks an approximation F(x) in the
form of a weighted sum of functions /;(x) from
some class H, called base (or weak) learners:

M
F(x) = Z y; h;(x) + const.
i=1

We are usually given a training set {(xi, y1), (X2,
y2), ..., (Xn, Yu)} of known sample values of x and
corresponding values of y. In accordance with the
empirical risk minimization principle, the method
tries to find an approximation F(x) that minimizes
the average value of the loss function on the
training set, i.e., minimizes the empirical risk. It
does so by starting with a model, consisting of a
constant function Fy(x), and incrementally expands
it in a greedy fashion:

n
Fo() = argmin - LOu7)
i=1

n
Fn(x) = Fpn-1(x) +arg ]zmgl}l [Z L, Fo1 () + hon ()
"=

where h,,€H is a base learner function.

Unfortunately, choosing the best function /4 at
each step for an arbitrary loss function L is a
computationally infeasible optimization problem
in general. Therefore, we restrict our approach to a
simplified version of the problem. The idea is to
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apply a steepest descent step to this minimization
problem (functional gradient descent). If we
considered the continuous case, i.e. where H is the
set of arbitrary differentiable functions on R, we
would update the model in accordance with the
following equations:
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Fn () = Fna(O = ¥ ) Vi LGt Fnoa ()
i=1

n
Ym = arg myinz L(yi, Fn-1(x) = ¥Ve,_ L(¥i, Fn-1(x)))

=1

where the derivatives are taken with respect to
the functions F; fori € {1, 2, ..., m}, and ¥, is the
step length. In the discrete case however, i.e. when
the set A is finite, we choose the candidate function
h closest to the gradient of L for which the
coefficient y may then be calculated with the aid of
line search on the above equations. Note that this
approach is a heuristic and therefore doesn't yield
an exact solution to the given problem, but rather
an approximation [36].

4. Ore grade estimation process
4.1. Apply clustering with mean shift algorithm

The mean shift algorithm has been used to
cluster the information in different dimensions.
One of the main features of this algorithm is that
there is no need to determine the number of
clusters. This algorithm is available in the sci-kit-
learn library in python. The parameters considered
for clustering, which include different categories of
data in different dimensions, are listed in Table 2.
The main parameter in the average transmission
algorithm is bandwidth. The selection of
bandwidth for different classifications is based on
the best result in terms of the minimum mean
absolute error. The results of each type of
clustering are shown in Table 3 and Figures 12 to
18.

Table 2. Clusters and parameters involved in them.

Considered parameters Clustering type

X & Grade 1*' Clustering type

Y & Grade 2" Clustering type

7 & Grade 3" Clustering type

XY & Grade 4™ Clustering type

X,Z & Grade 5™ Clustering type

Y,Z & Grade 6" Clustering type

X,Y,Z & Grade 7™ Clustering type

Table 3. Bandwidth and number of clusters for each type of clustering.
Number of clusters Bandwidth  Clustering type
5 0.14 1* clustering type
10 0.12 2™ clustering type
11 0.11 3" clustering type
9 0.17 4™ clustering type
7 0.19 5" clustering type
9 0.19 6™ clustering type
11 0.2 7™ clustering type
719
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Cluster 2

Cluster 1

Cluster 3 Cluster £

Cluster 4

Figure 12. Percentage of data in each cluster of the first
type clustering.

Cluster 1

“luster 2

Cluster 6,7,8,9,10,1°
Cluster 5
Cluster 4

Cluster 3

Figure 14. Percentage of data in each cluster of the third
type clustering.

lualll &

Cluster 1
luster 3

Cluster

Cluster 6

Cluster 4

Fhictar €

Figure 16. Percentage of data in each cluster of the fifth
type clustering.
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Cluster 1

“luster 2

Cluster 7,8,9,1¢
Cluster 6

Cluster 5
Cluster 3

Cluster 4

Figure 13. Percentage of data in each cluster of the second
type clustering.

Cluster 1
“luster 2

Cluster 8,¢
Cluster 7

Cluster 3 Cluster 6

Cluster 4 Cluster 5

Figure 15. Percentage of data in each cluster of the fourth
type clustering.

Cluster 1

Cluster 2

Cluster 8
Cluster 6,7.¢
Cluster 5

Cluster 4
Cluster 3

Figure 17. Percentage of data in each cluster of the sixth
type clustering.
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“luster 2 Cluster 1

Cluster 8,9,10,11

Cluster 7

Cluster 6

Cluster 5
Cluster 4

Cluster 3

Figure 18. Percentage of data in each cluster of the seventh type clustering.

The following figure (Figure 19) shows the for estimating the grade and type of different
correlation coefficient of the available parameters clusters:
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Figure 19. Correlation coefficient of existing parameters for estimating the grade and type of different clusters.
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According to the figure above, it can be easily
seen that the correlation coefficient of the
categories in which the depth was affected has a
higher correlation with the iron grade. As a result,
it can be concluded that among the data used, depth
is the most important parameter in determining the
grade.

4.2. Determining clustering with random forests
algorithm

After clustering the parameters in different
directions, it is necessary to predict the numbers

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1
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assigned to each category for validation data,
which was done by a random forest algorithm. For
this purpose, at first, to learn the network for each
cluster, the data was divided into training and
experimental data in a ratio of 80 to 20. As stated
in Section 3.7, the selection of network parameters
in the clustering section is based on the selection of
the best result in terms of the lowest mean absolute
error. You can see the results of comparing the
important parameters in the network for each type
of clustering in the following figure:

Cluster No.1 Cluster No.2 Cluster No.3 Cluster No.4 Cluster No.5 Cluster No.6 Cluster No.7

==@==R MAE

RMSE MAPE

Figure 20. Comparison of correlation coefficient values and three error parameters (MAE, RMSE, MAPE) in
different types of clustering.

With alittle reflection on the accuracy diagrams
of the forecast model, it can be seen that, as
expected, clusters with fewer data have less
accuracy in forecasting; this is due to the lack of
training data and consequently poor forecasting in
these clusters [38, 39].

4.3. Ore grade estimation with gradient
boosting algorithm

The ore grade is estimated using the gradient
boosting algorithm. The most important parameter

722

in this algorithm is determining the learning rate.
The learning rate of 0.01 has been used to estimate
the iron ore grade for this paper according to the
use of auxiliary parameters resulting from
clustering; for the initial evaluation, the data is
divided into train and test data in a ratio of 80 to
20, which are the network input parameters,
coordinate specifications and the results of the
classification estimation models. In the image
below, you can see the results of the grade
estimation for the train and test data:
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0.940

0.033 0.002 0.019

Testing Data

MAPE

Figure 21. Comparison of correlation coefficient values and three error parameters (MAE, RMSE, MAPE) in
the network learning process.

The accuracy of the model in predicting the
train and test data can be seen in the above figure,
which indicates the appropriateness of the model
accuracy and its optimality in estimating the data
quality point by point. In addition to the above, it
should be noted that all the extraction blocks in
terms of waste or ore in the network learning
process are correctly predicted and the detection
accuracy of the extraction block is equal to 100%.

After comparing the results of training and
testing the data and ensuring the low error of the

1 1
0.911
0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2 0.125
0.091
0.1

-
0 ||

1st Borehole Validation

0.061 0.060

0.005
| el |

u MAE

2nd Borehole Validation

mRMSE = MAPE

model, it is time to examine the validation
boreholes. As mentioned earlier, four borehole data
were completely excluded from the learning
process. The stage of reviewing test data can be
considered as the stage of point-to-point review of
results, and this stage, i.e. validation based on
boreholes, can be considered as borehole-to-
borehole review. The results of the four validation
boreholes are illustrated in Figure 22 and the
accuracy of the network prediction in each
borehole are shown in Figures 23 to 26.

0.979 0.972
0.245 0263
0.164
0.112
0.044 0.067
- ||
3rd Borehole Validation 4th Borehole Validation

AEBD

Figure 22. Comparison of accuracy values in extraction block detection (AEBD) and three error parameters
(MAE, RMSE, MAPE) in the network validation process.
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Figure 23. Accuracy of model prediction in the first validation borehole.
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Figure 25. Model prediction accuracy in the third validation borehole.
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Figure 26. Accuracy of model prediction in the fourth validation borehole.
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software with the help of python programming
language, which you can see in the following
images related to this software:

4.4. Convert mineral ore estimation process to
software

In this section, the steps of the grade estimation
process in this article were converted into a

B ens

Lol Anafysis  Management

4 ‘l_’glq_a [
-E'rl'—

e
i

* Boreholes -
I : s L - BingHybridbtapProvider

ajaj = |e

Figure 27. Pictures of the program environment written for the mineral grade estimation process.
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5. Conclusions

The main problem in the use of machine
learning in various sciences is the existence of
accurate and appropriate data in terms of quantity
and quality. In this paper, the most limiting
parameter is the data parameter and its accuracy
and dispersion. As seen in the clustering section,
the amount of data in some clusters was very small,
which in turn disrupts the network learning process
and reduces network accuracy.

Combining data such as remote sensing,
geochemistry and geophysics can help to increase
the accuracy of the model. Accuracy and
orderliness in sampling and drilling boreholes
under the regular exploration network can also help
to increase accuracy.

According to the results, by expanding this
method, the cost of mineral exploration can be
greatly reduced and a big step can be taken to
optimize the exploration drilling network as the
costliest part of mine exploration.
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