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Abstract 

Distance-based clustering methods categorize samples by optimizing a global criterion, finding ellipsoid clusters with 

roughly equal sizes. In contrast, density-based clustering techniques form clusters with arbitrary shapes and sizes by 

optimizing a local criterion. Most of these methods have several hyper-parameters, and their performance is highly 

dependent on the hyper-parameter setup. Recently, a Gaussian Density Distance (GDD) approach was proposed to 

optimize local criteria in terms of distance and density properties of samples. GDD can find clusters with different shapes 

and sizes without any free parameters. However, it may fail to discover the appropriate clusters due to the interfering of 

clustered samples in estimating the density and distance properties of remaining unclustered samples. Here, we introduce 

Adaptive GDD (AGDD), which eliminates the inappropriate effect of clustered samples by adaptively updating the 

parameters during clustering. It is stable and can identify clusters with various shapes, sizes, and densities without adding 

extra parameters. The distance metrics calculating the dissimilarity between samples can affect the clustering 

performance. The effect of different distance measurements is also analyzed on the method. The experimental results 

conducted on several well-known datasets show the effectiveness of the proposed AGDD method compared to the other 

well-known clustering methods. 
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1. Introduction 

Clustering can be considered the most important 

unsupervised learning problem. In clustering, several 

objects (data points) are grouped such that data points 

within each cluster are similar to each other while data 

points from different clusters are dissimilar. Clustering 

is used in many areas, including machine learning, 

pattern recognition, image analysis, information 

retrieval, bioinformatics, data compression, computer 

graphics, web pages, and robotics [1]-[4].  

There are many well-known clustering methods. Hard 

and soft clustering are the two main groups in clustering 

approaches [5]. Soft or Fuzzy clustering [6], [7] is a 

form of clustering in which each data point can belong 

to more than one cluster, but in hard clustering, each data 

point can only belong to one cluster.  

Generally, hard clustering can be categorized into 

hierarchical clustering and partitioning clustering [8], 

[9]. In hierarchical clustering methods, data points are 

categorized into hierarchical tree structures called 

dendrograms. All the data points are placed in the 

dendrogram’s root, and each leaf node is a record, and 

the middle nodes determine the similarity of records to 

each other. 

Partitioning clustering decomposes a data set into 

multiple groups based on their similarity through an 

iterative process. Two main categories of partitioning 

methods are distance-based and density-based methods 

which follow different theoretical intuitions to 

categorize data into clusters. Distance-based clustering 

                                                 
 
1 Density-based spatial clustering of applications with noise 

 

methods such as k-means, k-medoids, and fuzzy c-

means [10], [11] optimize global criteria based on the 

distance between samples and cluster centroids. These 

methods need the number of clusters as prior knowledge 

while not available in many real applications [12]. 

Besides, they are not repeatable, i.e., using different 

initial cluster centers, they produce different clustering 

results. Another important issue for distance-based 

approaches is that they tend to create ellipsoid clusters 

with roughly equal sizes, and they are not appropriate 

for finding non-convex clusters. 

The theoretical intuition behind density-based clustering 

methods, such as DBSCAN1 [13] and OPTICS [14] is 

that they optimize local criteria according to the density 

distribution of patterns to find clusters with arbitrary 

shapes and sizes. For example, the DBSCAN method 

connects nearby neighbors to form clusters. This 

algorithm takes input parameters, ℇ-neighborhood 

radios, and min-points (minimum number of data points 

in neighborhood radios) in defining the core object. If a 

data point is within reach of ℇ, and the connected data 

points are more than min-points then the area is 

clustered. However, DBSCAN doesn’t work well for 

clusters with varying density rates and high-dimension 

data. DVBSCAN handels density variation within 

clusters, but it’s parameters cannot be determined 

automatically [15]. OPTICS extends DBSCAN to 

produce a cluster ordering obtained from a wide range 

of parameter settings. This algorithm performs 
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clustering without considering a fixed value for 

parameter ℇ. 

The previously mentioned methods have some free 

parameters which the user should determine. These 

parameters significantly affect the clustering results. 

Additionally, they defined a density factor for detecting 

noisy points. Smiti et al. [16] proposed DBSCAN-GM2 

to automatically set the parameters of the DBSCAN 

method. It utilizes Gaussian Means to find ℇ and min-

points in a cluster. Like the DBSCAN algorithm, it 

assumes similar densities for the clusters and degrades 

when the densities of clusters are different. Gaussian 

density is also used in Gaussian Mixture Model (GMM) 

for clustering [17], [18]. This method forms each cluster 

using a Gaussian element whose mean and covariance 

are estimated through Expectation Maximization (EM) 

algorithm. The number of Gaussians can be determined 

either by the user or automatically. The computational 

complexity of these algorithms is high. Besides, in some 

cases, the shape of the data does not follow the Gaussian 

model. Varsha et al. [19] proposed ADBSCAN 

(Adaptive DBSCAN) that uses techniques such as grid 

search and Gaussian kernel to search optimized values 

for the threshold density of clusters. It’s a free parameter 

clustering method but, due to using grid search 

algorithm, it has high time complexity. 

Güngör et al. [20] have proposed a new free parameter 

approach for clustering based on Gaussian Density 

Distance (GDD). The main contribution of this work is 

its use of GMM in creating Gaussian values to represent 

data points. Standard deviation was used to create 

cluster regions. The densest point was defined as the 

cluster centroid. This clustering algorithm is parameter-

free and can calculate all necessary parameters based on 

the dataset. The main issue of GDD is that this method 

involves all samples (clustered and unclustered samples) 

to form each cluster. However, it is clear that when a 

cluster is formed, the samples in the cluster must not be 

interfered with in creating the next cluster. It can be 

ignored if the clustered samples have little effect on 

forming the next clusters, but this issue might be 

negligible. But in some situations, it can lead to 

inappropriate selection of the next cluster centroid. 

One of the drawbacks of GDD is that it cannot perform 

well for datasets with sudden density variation.  In GDD, 

since all parameters are calculated once. The clustered 

samples may undesirably interfere in creating new 

clusters. In this paper, a modification of the GDD 

algorithm (called Adaptive GDD) is proposed by 

adaptively calculating the parameters during the 

clustering process. The GDD and the proposed AGDD 

methods optimize local criteria based on both the 

distance and density properties of samples. In the GDD 

method, these properties are inappropriately affected by 

the clustered samples. However, in AGDD, after 

grouping similar data points into one cluster, the 

clustered samples are ignored, and both density and 

distance properties are updated before creating the next 

cluster. In this study, a toy problem is designed to show 

                                                 
2 Density-Based Spatial Clustering of Applications with Noise-

Gaussian Means 

the drawback of the GDD method and visualize how the 

suggested AGDD algorithm can rectify this defect.  

Various distance measurement methods are available to 

calculate the distance between the samples, such as 

Euclidean distance, Manhattan distance, Chord distance, 

Cosine similarity, Czekanowski Coefficient, and Mean 

Character Difference distance [21], [22]. Depending on 

the distance measurement method, the clustering results 

may be changed, which can affect the performance of 

the method. Here, the effect of different distance 

measurements has been analyzed in terms of the 

clustering output of the method. The experimental 

results are provided and discussed on different well-

known datasets to study the effectiveness of the 

proposed AGDD method. The results show that the 

AGDD method could improve the clustering 

performance and decrease the number of samples used 

to calculate parameters employed in creating a cluster. 

In sum, the main contributions of the paper can be 

enumerated as follows: 

 For intelligent unsupervised clustering, we propose an 

adaptive version of the GDD method, which offers 

stability over different trials of the algorithms and the 

ability to identify clusters with different shapes and 

connectivity rates with no hyper-parameter tuning. We 

have improved the GDD method by eliminating the 

inappropriate effect of clustered samples in grouping 

remaining unclustered samples, which is well 

described in a toy problem. 

 The effect of various distance measurements has been 

studied for the proposed method. Furthermore, the 

performance of the method has been analyzed and 

discussed using several indices on different well-

known datasets. 

The rest of the paper is organized as follows: Section 2 

provides the background of the paper.  Section 3 

represents the GDD issues, explains the proposed 

AGDD method, and finally describes the behavior of 

both methods via a toy problem. Section 4 presents our 

experimental results and discussion, followed by a 

conclusion in Section 5.  

 

2. GDD Clustering Method 

The Gaussian Density Distance (GDD) method [20] has 

no hyper-parameter and performs clustering based on 

the distance of samples as well as the density of samples 

calculated by Gaussian kernel. In this way, it calculates 

the following parameters: 

 Gaussian Matrix (𝐺𝑀𝑛×𝑛): Gaussian Matrix is a non-

negative and symmetrical 𝑛 × 𝑛 matrix when n shows 

the number of samples. In this matrix, GMi.j is the 

Gaussian density of i-th sample in respect to j-th 

sample [20].  

 Distance Matrix (𝐷𝑀𝑛×𝑛): It is a non-negative and 

symmetrical n × n matrix. In this matrix, DMi.j is the 

Euclidean distance between i-th sample and j-th 

sample [20]. 

The GDD method calculates GM and DM using all 

samples. For i-th sample the summation of its GM over 
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all samples, i.e., ∑ GMi.j
n
j=1.i≠j  is utilized to measure how 

a sample is dense. At each step, the GDD method selects 

the densest sample as the centroid of a new cluster and 

forms the cluster Ck with this sample. Then, an 

unclustered sample xj is added to the cluster Ck (with xt 

as its centroid) if the two following conditions are 

satisfied: 

∃𝑥𝑗 ∈ 𝐶𝑘    𝑤ℎ𝑒𝑟𝑒   {
𝐺𝑀𝑡.𝑗 ≥ 𝐹𝐺𝐷𝑇 − 𝐺𝐺𝐷𝑇

𝐷𝑀𝑡.𝑗 ≤ 𝐹𝐷𝑇 + 𝐺𝐷𝑇     
      (1) 

where these parameters are defined as FDT: “Fixed 

Distance Threshold”, and FGDT: “Fixed Gaussian 

Density Threshold” which are calculated based on the 

cluster centroid [20]. Besides, GDT: “Gradient Distance 

Threshold” and GGDT: “Gradient Gaussian Density 

Threshold” express changes in variance [20]. The 

calculation of these parameters needs many details, 

which is out of our focus here. Therefore, to avoid 

confusion, we do not indicate the formulation of these 

parameters. The readers are referred to [20] for more 

details on GDD calculations. 

 

3. Proposed Approach 
The GDD method is one of the nonparametric methods 

for clustering samples based on Gaussian kernel and 

density. This algorithm is not sensitive to the initial point 

i.e., it leads to the same results if a run is reapeted  [20]. 

However, several issues degrade the performance of this 

method in certain situations. Here, the GDD issues are 

discussed in section 3-1; then, an improvement on the 

GDD, named AGDD (Adaptive GDD), is proposed in 

section 3-2. Finally, to have a better clarification of the 

proposed approach, GDD and AGDD methods are 

compared in terms of effectiveness in section 3-3. 

 

3.1. GDD Issues 
The main issue of GDD is that this method involves all 

samples (clustered and unclustered samples) to form 

each cluster. However, it is clear that when a cluster is 

formed, the samples in the cluster must not interfere in 

creating the next cluster. It can be ignored if the 

clustered samples have little effect on forming the next 

clusters, but in some situations, it can lead to 

inappropriate selection of the next cluster centroid, i.e., 

the most densely unclustered sample. This side effect is 

shown in Fig. 1. It can be seen that the cluster centroids 

(red points) are not located at the center of Clusters #2 

and #3. 

 
 Fig. 1. Inappropriate selection of most dense cluster 

sample due to interference of clustered samples 

In many applications, cluster centroids have a key role 

in decision-making. Employing an unsuitable cluster 

center might lead to incorrect estimation propagated to 

the next clustering steps. For example, two clusters are 

possible to be incorrectly formed in one cluster; and/or, 

one cluster is possible to be incorrectly shown by two 

disjoint clusters. It also might corrupt some calculations, 

such as the FDT calculation of the GDD method in 

equation (1). A toy problem is provided and discussed in 

Section 3-3 to illustrate these side effects of the GDD 

method. 

 

3.2. Proposed Adaptive GDD (AGDD) 

Let X = {X1. X2. … . Xn} be an input dataset, and n is the 

number of samples. Each of which is Xi =
{xi1. xi2. … . xid}, the i-th sample of the dataset, and d is 

the number of sample attributes. If Ck shows the samples 

of k-th cluster, then the unclustered samples would be: 

𝑋𝑘 = 𝑋𝑘−1 ∖ 𝐶𝑘    (2) 

where 𝑋0 = 𝑋 𝑎𝑛𝑑 𝐶0 = ∅. The operator 𝐴\𝐵 means 

removing the samples of B from A. In the first step, all 

samples are unclustered so X0 and C0 are equal to X and 

∅ (empty set), respectively. Let GMk show the Gaussian 

Matrix after forming k-th cluster. In equation (3), the 

GDD method employed a static value at each time step, 

i.e., GM0 = GM1 = ⋯ = GM#cluster. Here, at time step 

k (when k-th cluster is formed), the GM between i-th 

and j-th samples is adaptively calculated as: 

𝐺𝑀𝑖.𝑗
𝑘 = exp  −∑

 𝑥𝑖𝑚−𝑥𝑗𝑚 
2

2𝑐2
𝑑
𝑚=1     

𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 . 𝑋𝑗 ∈ 𝑋𝑘  𝑎𝑛𝑑 𝑐 =  
𝜇𝑚𝜎𝑚

2𝜋
  

(3) 

where xim is m-th attribute of i-th sample in Xk. In this 

equation, c illustrates the inter-connection coefficient 

among samples which explains how neighboring 

samples are scattered. In calculating c,  μm and σm are 

the mean and deviation of m-th attribute of all samples, 

respectively.  

Suppose GPMi
k illustrates the Gaussian Point Mean of i-

th sample at step k, which is used to select the densest 

sample as the centroid of the new cluster. Here, instead 

of using static value [20], the GMP is adaptively 

calculated at step k using: 

𝐺𝑃𝑀𝑖
𝑘 =

1

 𝑋𝑘 − 1
 𝐺𝑀𝑖.𝑗

𝑘

𝑋𝑖.𝑋𝑗 ∈ 𝑋𝑘.𝑗≠𝑖

 (4) 

Analogously, the Distance Matrix between i-th and j-th 

samples at step k, DMi.j
k , is computed using: 

𝐷𝑀𝑖.𝑗
𝑘 = 𝑑𝑖𝑠 𝑋𝑖 . 𝑋𝑗  𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 . 𝑋𝑗 ∈ 𝑋𝑘 (5) 

where dist(.) shows the distance function  [21]. The 

parameters mentioned above are utilized to calculate the 

other GDD method variables (see [20] for more details). 

Using the proposed adaptive calculation of the 

parameters, apart from the GDD method, the 

unclustered samples cannot have negative side effects 

on the clustering process. Fig. 2 depicts the overview of 

the proposed Adaptive GDD method (AGDD). 

Initially, at the pre-processing step, the samples with at 

least one missing attribute, redundant samples, and the 

attributes with zero variance (which have no useful 

information) are removed to reduce the computational 

cost. In the clustering process, the parameters GM, 
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GPM, and DM are calculated based on the unclustered 

samples.

 
Fig. 2. Overview of the proposed AGDD method 

At each iteration, the densest sample is selected as the 

centroid of the new cluster. Afterward, each unclustered 

sample xj is added to this cluster (with xt as its centroid) 

if:  

∃𝑥𝑗 ∈ 𝐶𝑘    𝑤ℎ𝑒𝑟𝑒   {
𝐺𝑀𝑡.𝑗

𝑘 ≥ 𝐹𝐺𝐷𝑇 − 𝐺𝐺𝐷𝑇

𝐷𝑀𝑡.𝑗
𝑘 ≤ 𝐹𝐷𝑇 + 𝐺𝐷𝑇     

 (6) 

where GMt.j
k  and DMt.j

k  are calculated using (3) and (5), 

respectively, and the other parameters are defined as 

explained in Section 2.  Then, the clustered samples are 

removed from the sample set, and this process is 

repeated until all samples are clustered.  

3.3. Toy problem 

To have a better clarification, in this section, the 

behavior of the GDD method versus the proposed 

AGDD approach is explained via a toy problem with 3 

clusters. Consider the samples of three clusters shown in 

Fig. 3. 

 

Fig. 3. A toy problem to show the drawback of the 

GDD method 

At first, GDD is used for clustering these samples. Fig. 

4 represents the clustering output and the GPM of each 

sample at each step. Recall that GPM is used to find the 

densest sample (shown with red background in GPMs of 

Fig. 4) as the centroid of a new cluster. Clearly, using 

static calculation of the GDD method, GPM is fixed at 

all steps. The cluster centroids are illustrated with red 

stars in the clustering outputs shown in the first row of 

Fig. 4. It is clear that due to the effect of clustered 

samples, the centroids are selected inappropriately, and 

five clusters are formed incorrectly. 

The results of the proposed AGDD method are 

illustrated in Fig. 5. As shown, at every step, the GMP is 

updated using only unclustered samples. The clustered 

samples are shown with dashed lines in GMP vectors. 

Obviously, the AGDD method can successfully select 

appropriate cluster centroids and form three clusters. It 

should be noted that despite the GDD, the cluster 

centroids found with AGDD are located at the center of 

their clusters. 

4. Experimental result 
In this section, the efficiency of the proposed method is 

evaluated on different distance measurements. Besides, 

the performance of the method is compared with several 

well-known methods using different datasets.  

4.1. Data Description 

The efficiency of the proposed AGDD and other widely 

used methods are compared using some benchmark 

datasets. These datasets are illustrated in Table 1. As 

shown, datasets with varied dimensions, clusters, and 

instances are employed. 

Table 1. Data Description [23]–[25] 

Dataset Name #Dimension #Cluster #Instance 

Jain 2 2 373 

R15 2 15 600 

Spiral 2 3 312 

Aggregation 2 7 788 

Compound 2 6 399 

DiffDense 2 6 139 

New_thyroid 5 3 215 

Breast-canser-

wisconsin 
9 2 263 

Iris 4 3 150 

Zoo 16 7 101 

 
Start 

Preprocessing 

Initialization 

𝑿𝟎 = 𝑿, 𝑪𝟎 = ∅, 𝒌 = 𝟎 

 

Calculation 

𝑮𝑴𝒌, 𝑮𝑷𝑴𝒌, 𝑫𝑴𝒌, … 

 

𝑿𝒌 ≠ ∅ 
Return 

𝑪𝒌 ∀𝒌 = 𝟏, … , #𝒄𝒍𝒖𝒔𝒕𝒆𝒓 

 

Finish 

Centroid (𝑪∗) Selection 

by 𝑮𝑷𝑴𝒌 

Forming New Cluster 

𝑪𝒌= Closest 𝑿𝒊 ∈ 𝑿𝒌 to 𝑪∗ based on 𝑮𝑴𝒌, 𝑫𝑴𝒌 and 

equation (5) 

Removing Clustered Samples 

𝑿𝒌 = 𝑿𝒌−𝟏\𝑪𝒌 

Increasing Step Number 

𝒌 = 𝒌 + 𝟏 
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Step 0 Step 1 Step 2 Step 3 Step 4 

Fig. 4. Clustered samples and corresponding value of GPM vector in every step of GDD. At each step, the densest 

sample (determined by red color) is selected as the centroid of a new cluster and the unclustered samples, which 

satisfy equation (1), are added to this new cluster. 

Here, several datasets with different shapes (convex and 

non-convex shaped), densities (varying within and 

between clusters), sizes, and connectivity rates are 

utilized to study the performance of the method. The 

datasets (except DiffDense) are ones that the GDD 

approach has been applied to them. 

 

4.2. Evaluation metrics 

Clustering analysis can be performed using either 

internal or external validity indices. Internal validity 

indices measure the compactness and the degree of 

separation between clusters; whereas, external validity 

indices measure the degree of agreement between the 

estimated clustering results and the ground truth 

partitions. In the present study, in addition to 

demonstrating the results, we validate the results using 

validity measures including MPSR1 and NMI2 [26]–

[37]. MPSR has been utilized in the GDD paper, and 

NMI is added to better evaluation of the results. These 

metrics are calculated as below: 

 MPSR measures the prediction error between the 

predicted clustering label and true target label 

calculated as: 

𝑀𝑃𝑆𝑅 =
#𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

#𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

(7) 

 

 

 

                                                 
1 Missed Predicted Sample Rate 
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Fig. 5: Clustered samples and corresponding value of 

GPM vector in every step of the proposed AGDD. In 

contrast to the GDD method, the clustered samples are 

removed from the sample set at each step. 

2 Normalized Mutual Information 
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 NMI is a measurement based on mutual information 

for comparing disjoint partitions and measuring 

diversity among different clusters which is calculated 

as [29], [38]: 

𝑁𝑀𝐼(Ω. 𝐶) =
𝐼(Ω; 𝐶)

 𝐻(Ω) + 𝐻(𝐶) 2 
 

(8) 

   where 𝐈 and 𝐇 are mutual information and entropy, 

respectively. 

 

4.3. Evaluation through different distance metrics 

Depending on the distance measurement method [21], 

the clustering results can change, which may affect the 

performance of the method. Here, the effect of different 

distance measurements including Euclidean distance, 

Manhattan distance, Chord distance, Cosine similarity, 

Czekanowski Coefficient, and Mean Character 

Difference distance [21] have been analyzed on the 

clustering output of the GDD and AGDD methods. Fig. 

6 depicts the mean value of the indices calculated on all 

datasets described in Table 1 for both GDD and AGDD 

methods.  As Fig. 6 demonstrates, it is evident that the 

AGDD method performs better than the GDD method 

according to all distance measurements. Besides, the 

results show that the Euclidian distance achieves a better 

performance than the other distance measurements. 

Therefore, in the rest of this paper, we have only 

considered the results obtained by Euclidean distance. 

 
(a) 

 
(b) 

Fig. 6. Results of different distance metrics in the GDD 

and AGDD algorithms. (a) MPSR, (b) NMI 

 

4.4. Evaluation on simulated datasets 

The efficiency of GDD and the proposed AGDD 

methods are compared using some benchmarks [20], 

depicted in the first column of Fig. 7. Visual results of 

applying both GDD and AGDD algorithms are shown in 

the second and third columns of Fig. 7, respectively. 

Like the toy problem illustrated in Section 3.3, it can be 

seen that in Aggregation and DiffDense datasets, the 

GDD method fails to discover clusters with sudden 

density variations and generates several single-sample 

clusters [26].  

To have a more precise comparison between GDD and 

AGDD on these datasets, we have reported the 

following criteria for both methods on the simulated 

datasets: 

 ESC (Error of Single Cluster): this criterion shows the 

number of clusters with only one or two samples. 

 ENC (Error of Number of Clusters): The difference 

between the number of clusters in the input samples 

and the number of clusters outputted clustering 

method. 

 ECC (Error of Centroid Cluster): if centroids of all 

clusters are located correctly after applying the 

clustering method, this method does not have ECC. 

 USR (Used Sample Rate): sample rate used in forming 

clusters is calculated as: 

𝑈𝑆𝑅 =
∑ # 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑗𝑐𝑗

#𝑐𝑙𝑢𝑠𝑡𝑒𝑟×#𝑠𝑎𝑚𝑝𝑙𝑒
  (11) 

The first three criteria are shown in Table 2, and the later 

one is depicted in Fig. 8. 

Table 2. Results of GDD and AGDD for ESC, ENC 

and ECC criteria 

       Method 

 
Datasets       

AGDD GDD 

ES

C 

EN

C 

EC

C 

ES

C 

EN

C 

EC

C 

Jain 0 0 ✔ 0 0 ✔ 

R15 0 5 ✖ 0 6 ✖ 

Spiral 0 0 ✔ 0 0 ✔ 

Aggregatio

n 
0 2 ✖ 8 10 ✔ 

Compound 0 1 ✔ 0 1 ✔ 

DiffDense 0 0 ✖ 1 1 ✔ 

 

The results show that: 

 For Jain, Spiral, and Compound datasets, the results of 

GDD and AGDD methods are the same while, 

according to Fig. 8, it can be seen that averaged used 

sample rate (USR) of the AGDD method is less than 

GDD in all datasets. 

 According to Fig. 7, in Aggregation dataset, both GDD 

and AGDD methods merge Cluster#6 and cluster#3. 

This is because when two neighboring clusters have a 

connection (even a thin connection), the GDD and 

AGDD methods which utilize distance as well as 

density property of samples, link the clusters together. 

 

 

Archive of SID.ir

Archive of SID.ir



Tabriz Journal of Electrical Engineering (TJEE), vol. 52, no. 3, Autumn 2022                                                                                              Serial no. 101 

DOI: 10.22034/tjee.2022.15642 

 

211 

Jain 

   

R15 

   

Spiral 

   

Aggregation 

   

Compound 

   

DiffDense 

   

 (a) (b) (c) 
 

 

Fig. 7. Original simulated datasets and the results of GDD and the proposed AGDD methods. (a) Original 

Data, (b) GDD Result, (c) AGDD Result. 
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Fig. 8. Used Sample Rate (USR) for GDD and AGDD 

 

 The Error of single clusters (ESC) and the Error of 

Number of Clusters (ENC) show that the GDD method 

fails to discover the clusters with sudden density 

change and therefore produces several single-sample 

clusters. However, as shown in the toy problem 

(Section 3-3), the AGDD method improves the 

clustering output by eliminating the effect of samples 

in other clusters. 

To have a better evaluation, the result of the proposed 

AGDD is compared to the results of the GDD and the 

well-known methods, including k-means, DBSCAN, 

and OPTICS clustering methods in Table 3. In this table, 

at each row, the first best result is shown by the 

underlined red number, and the blue number illustrates 

the second-best result. For parametric methods such as 

k-means and DBSCAN, it is a big challenge to select 

parameters to achieve the best performance. Here, min-

points, which are the parameters of DBSCAN, are 

considered fixed and set to 4 as suggested by Güngör et 

al. [20]. The best value for another parameter of 

DBSCAN (ℇ) and the only parameter of OPTICS (min-

points) are chosen via cross-validation. For k-means 

clustering, the value of k is pre-determined based on the 

true number of clusters according to Table 1. Besides, 

since k-means results in different outputs at each run, the 

average validity indices are obtained over 100 runs.

 

Table 3. Results of the methods on simulated datasets in term of MPSR and NMI (Underlined red: first best result, 

Blue: second best result) 

k-means OPTICS DBSCAN GDD AGDD 
Evaluation 

Metric 
Dataset 

21.45 86.06 13.14 0 0 MPSR 
Jain 

0.37 0.21 0.7 1 1 NMI 

20.2 64.6 46.52 33.8 27.8 MPSR 
R15 

0.91 0.69 0.74 0.84 0.86 NMI 

65.06 62.18 4.17 0 0 MPSR 
Spiral 

0 0.4 0.9 1 1 NMI 

22.24 8.79 18.22 17.96 17.08 MPSR 
Aggregation 

0.86 0.89 0.88 0.89 0.89 NMI 

21.55 69.42 15.79 9.52 9.52 MPSR 
Compound 

0.72 0.48 0.82 0.95 0.95 NMI 

18.12 64.03 28.78 1.43 0 MPSR 
DiffDense 

0.8 0.55 0.85 0.99 1 NMI 

 

According to Table 3, it can be said that for Jain, Spiral, 

and Compound datasets, the results of GDD and AGDD 

methods yield better results rather than k-means, 

DBSCAN, and OPTICS methods. For all Aggregation, 

R15, and, DiffDense datasets, the proposed AGDD 

method performs better than GDD in all indices. In the 

Aggregation dataset, OPTICS can separate one of the 

linked clusters by selecting proper min-points (which 

are determined via exhaustive cross-validation) and 

achieve the best results; the proposed AGDD method 

reaches the best results without requiring any free 

parameters. In R15, k-means have the best results since 

this dataset has ellipsoid clusters with similar sizes. 

More importantly, this method already knows the actual 

number of clusters in advance. Here, the AGDD method 

achieves the second-best results without knowing the 

number of clusters as prior knowledge. 

 

4.5. Evaluation on multi-dimensional datasets 

In order to have a better analysis, the performance of the 

proposed method is also evaluated on real-world 

benchmark datasets with higher dimension. Table 4 

shows the results of all methods using the evaluation 

metrics. The parameters for DBSCAN, OPTICS, and k-

means are tuned like simulated datasets via cross-

validation. 

According to the results in Table 4, AGDD achieves the 

best results on New_thyroid dataset. In Breast-cancer-

wisconsin, AGDD reaches the second-best results after 

k-means which knows the true number of clusters. The 

performance of the AGDD method degrades on Zoo 

datasets. Analysis of the results shows that it happened 

due to the curse of dimensionality. When the 

dimensionality increases, the volume of the sample 

space increases so fast and the available data points 

become sparse. In this condition, the density estimation 

employed in AGDD recursions is not promising; 

Therefore, the performance of the method degrades. 

 

4.6. Time complexity analysis 

In this section, the time complexity of the proposed 

AGDD method is analyzed.  If we consider the iterative 

steps of the proposed method shown in Fig. 2, the time 

complexity can be expressed as follows.  

Let n is the number of samples, d is the dimension of the 

samples, and k is the number of clusters. At the 

Calculation step, several 𝑛 × 𝑛 matrixes (GM and DM) 
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and 𝑛 × 1 vectors (GPM and DPM) are calculated based 

on the  

Table 4. Results of the methods on multi-dimontional datasets in term of MPSR and NMI (Underlined red: first best 

result, Blue: second best result 

k-means OPTICS DBSCAN GDD AGDD 
Evaluation 

Metric 
Dataset 

32.56 30.23 29.30 18.14 15.81 MPSR 
New_thyroid 

0.41 0.27 0.41 0.53 0.61 NMI 

3.95 34.99 34.85 41.58 7.17 MPSR Breast-cancer-

wisconsin 0.75 0.19 0.08 0.33 0.49 NMI 

34.66 71.33 33.33 34 32.67 MPSR 
Iris 

0.58 0.43 0.73 0.73 0.69 NMI 

30.3 27.72 19.8 58.42 40.59 MPSR 
Zoo 

0.78 0.6 0.85 0.49 0.13 NMI 

unclustered samples. If we suppose that on average 𝑚 

samples (𝑚 < 𝑛) are clustered at each iteration, the time 

complexity at the Calculation step is: 

(𝑑𝑛2) + (𝑑(𝑛 − 𝑚)2) + (𝑑(𝑛 − 2𝑚)2) + ⋯ + (𝑑(𝑛 − (𝑘 − 1)𝑚)2) 

 

≤ (𝑘𝑑𝑛2) = 𝑂1(𝑘𝑑𝑛2) 

(12) 

Then, the time complexity for selecting the densest 

samples as the centroid of the new clusters is: 

(𝑛) + (𝑛 − 𝑚) + (𝑛 − 2𝑚) + ⋯ + (𝑛 − (𝑘 − 1)𝑚) 

≤ (𝑘𝑛) = 𝑂2(𝑘𝑛) 
(13) 

Afterward, similar to the above calculation, the time 

complexity of forming new clusters (i.e. assigning 

unclustered samples into their corresponding clusters) 

is also: 

𝑂3(𝑘𝑛) (14) 

Finally, the time complexity to remove the clustered 

samples from the main sample set is: 

𝑂4(1) (15) 

In all the calculations, the tasks with constant time 

complexity are considered as 𝑂(1). By summing up 

these time complexities, the overall time complexity of 

the proposed AGDD method can be expressed as: 

𝑂1(𝑘𝑑𝑛2) + 𝑂2(𝑘𝑛) + 𝑂3(𝑘𝑛) + 𝑂4(1) = 𝑂(𝑘𝑑𝑛2) (16) 

In the case of parallel computation, the time complexity 

of the Calculation step, 𝑂1(𝑘𝑑𝑛2), and forming a new 

cluster step, 𝑂3(𝑘𝑛), can be reduced into 𝑂1(𝑘𝑑) and 

𝑂3(𝑘), respectively. Therefore, the parallel processing 

reduces the overall time complexity into linear form, 

i.e.: 

𝑂1(𝑘𝑑) + 𝑂2(𝑘𝑛) + 𝑂3(𝑘) + 𝑂4(1) = 𝑂(𝑘(𝑑 + 𝑛)) (17) 

4.7.  Advantages and limitations of AGDD method 
The main advantages of the proposed method over the 

other methods can be summarized as follows: 

 In contrast to k-means which tends to produce 

ellipsoid clusters with similar sizes [39], and need the 

number of clusters, GDD and AGDD can discover 

clusters with arbitrary shape and size without any 

hyper-parameter. 

 The hyper-parameters of k-means, DBSCAN, and 

OPTICS need to be tuned through cross-validation, 

and their performance is highly dependent on their 

hyperparameters. In contrast, both GDD and AGDD 

form the clusters automatically without free 

parameters, and they are stable and repeatable, i.e., the 

clustering results do not change at different runs. To 

study the sensitivity of k-means, DBSCAN, and 

OPTICS to their parameters, the clustering results of 

these methods with different values of their parameters 

are illustrated in Fig. 9. Evidently, GDD and AGDD 

offer stability over different runs, whereas, in the other 

methods, different initializations can lead to different 

results. 

 
(a) 

 
(b) 

Fig. 9. Sample box chart for methods with different 

hyper-parameter tuning. (a) MPSR, (b) NMI. 

 

 GDD may fail to discover clusters with sudden density 

variations and generate several single-sample clusters 

[20] due to the interference of clustered samples in 

estimating the density and distance properties of 

remaining unclustered samples. However, the 

proposed AGDD method improves this implication by 
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adaptive calculation of the parameters during 

clustering. 

The limitations of the method can be clarified as 

follows: 

 In practice, the performance of GDD and AGDD 

methods may degraded as the dimensionality increases 

due to the curse of dimensionality. This is because, 

density estimation using Gaussian model is not 

promising in high-dimensional space, especially when 

the number of samples is limited. 

 Like most density-based clustering methods such as 

DBSCAN and OPTICS, when two neighboring 

clusters have a connection (e.g., Aggregation dataset), 

both GDD and AGDD link the clusters together. 

Therefore, if a user wants these clusters separately, 

another clustering algorithm is advised. 

 In general, when there is no density or distance gap 

between the samples, most density-based clustering 

methods, including GDD and AGDD, may group all 

samples into one cluster. In this condition, a clustering 

technique such as k-means that gives the numbers of 

clusters as an input parameter performs better. 

 

5. Conclusion 
The GDD method has been proposed as a density-based 

clustering algorithm with no free parameters. In the 

GDD method, clustered samples and unclustered 

samples are incorporated into forming a cluster, leading 

to an inappropriate effect on clusters with different 

densities. In this paper, an adaptive approach called the 

AGDD method was proposed. It discards the clustered 

samples at each iteration and adaptively updates the 

parameters during the clustering process. The results 

showed the proposed AGDD performs similarly or 

better than GDD while AGDD incorporates smaller 

sample rates in the clustering process. Same as most 

density-based clustering methods, the performance of 

GDD and AGDD may decrease when there is no density 

or distance gap between the samples. For future work, 

we are going to optimize the method for image 

segmentation in which data includes spatial 

coordination and other features such as color 

information. 
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