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Abstract 
 
Sirtuin1 (SIRT1) is an enzyme that deacetylates histones and several nonhistone proteins including p53 
during stress and plays an important role in the survival of tumor cells. Hereby, this study describes the 
potency of salermide as a SIRT1 inhibitor to induce apoptosis in the MCF-7 and MRC-5 cell lines. MCF7 
and MRC-5 cell lines were cultured in RPMI-1640 and treated with or without salermide at concentration of 
80.56 µmol/L, based on the half-maximal inhibitory concentration (IC50) index at different times (24, 48 
and72 h). The IC50 value was established for the salermide in MCF-7. The percentage of apoptotic cells was 
measured by flow cytometry. Real-time quantitative RT-PCR was performed to estimate the mRNA 
expression of sirtuin1 in MCF-7 and MRC-5 with salermide at different times. ELISA and Bradford protein 
techniques were used to detect endogenous levels of total and acetylated p53 protein generated in MCF-7 
and MRC-5 cells. Our findings indicated that salermide can induce apoptosis in MCF-7 significantly more 
effective than MRC-5 cells. We showed that the expression of SIRT1 was dramatically down-regulated by 
increasing the time of salermide treatment in MCF-7 but not MRC-5 and that the acetylated and total p53 
protein levels were increased more in MCF-7 than MRC-5. Salermide, by decreasing the expression of 
sirtuin1 gene, can induce acetylation of P53 protein and consequently induce significant cell death in MCF-7 
that was well tolerated in MRC-5. 
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INTRODUCTION 

 
Cancer is one of the most important cause 

of mortality in the world population and the 
second leading cause of the death in 
developing countries (1). Breast cancer is the 
most common cancer among females 
worldwide (2). Each year, as estimated, 1.15 
million cases of females worldwide are 
diagnosed with breast cancer while about 
502,000 die from the disease (3). While more 
than half of the cancer cases often have 

mutations in P53 gene (the most important 
tumor suppressor gene), but alterations in 
tumor suppressor genes are not always due to 
mutations. They may also be due to epigenetic 
alteration (4).  

In some diseases such as cancer, often there 
is an imbalance between the expression of 
histone acetyltransferase (HATs) and histone 
deacetylase (HDACs) families. HDACs 
comprise a super family of enzymes involved 
in regulating the lifespan which include 
regulation of transcription (5). HDACs are 
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GAPDH: Glyceraldehyde3-phosphatedehydrogenase, as 
endogenous control 
 
Sigma (USA). All Cell lines used in the 
present study were cultured in RPMI-1640 
medium (Sigma) supplemented with 10% fetal 
bovine serum (FBS, Sigma) and 1% penicillin-
streptomycin (Sigma), at 37°C and in 
humidified atmosphere containing 5% CO2. 
Salermide was dissolved in stock solutions and 
for treatments; the compounds were diluted in 
DMSO to appropriate concentrations 
according to the reported procedures (23). 
When cells became >80% confluent and 
growing exponentially in 10 cm diameter 
culture dishes, 105 cells (MCF-7 or MRC-5) 
were counted and plated in 3-cm diameter 
culture dishes for 24 h in RPMI-1640 culture 
medium before they were incubated with 
certain concentrations of salermide, based on 
IC50 index, at different times (24, 48 and 72 
h). Photography was done for cultures before 
and after treatment with salermide at different 
times using inverted microscope (Nikon, TE 
2000-U, Japan) (24). 

 
IC50 assay   

After 24 h of the treatment, the IC50 value 
for salermide in MCF-7 group was determined. 
Briefly, 104 Cells (MCF-7) were counted and 
placed into each well of a 24-well micro plate 
and were treated with various drug concen-
trations (0, 6.25, 12.5, 25, 50, 100, 150, 200 
µM ) for 24 h and the MTT survival assay was 
then carried out for the evaluation of the cell 
viability with different drug concentration. A 
plot of viability versus drug concentration was 
used to calculate IC50 values for MCF-7 cell 
line (5). 
 
Flowcytometric analysis 

The percentage of apoptotic cells was 
measured by flow cytometry following 
AnnexinV (FL1-H) and PI (FL2-H) labeling.. 
A minimum of 5×105cells/ml were analyzed 
for each sample. Cells were treated with 

salermide (80.56 µg/ml) for 24, 48 and 72 h, 
then washed in PBS and resuspended in 
Binding buffer (1x). After the additionof 5 µl 
AnnexinV-FITC to 195 µl cell suspension the 
analysis was carried out according to the 
manufacturer’s protocol (BMS500F1/100CE 
AnnexinV-FITC, eBiscience, USA), Finally 
the apoptotic cells were counted by FACScan 
flow cytometry (Becton Dickinson, Heidelberg, 
Germany). These experiments were carried out 
in triplicate and independently repeated at least 
three times (25). 

 
Reverse transcription and real-time PCR 
analysis 

Real-time quantitative RT-PCR was 
performed to quantitatively estimate the 
mRNA expression of sirtuin1 in MCF-7 and 
MRC-5 cells before and after treatment with 
salermide at different times. Total RNA was 
isolated by RNeasy mini kit (Qiagen), treated 
by RNase free DNase (Qiagen) to eliminate 
the genomic DNA. The RNA concentration 
was determined using a Biophotometer 
(Eppendorf). Total RNA (100 ng) was reverse-
transcribed to cDNA by using the RevertAid™ 
First Strand cDNA Synthesis Kit (Fermentas) 
according to the manufacturer’s instructions. 
Real-time RT-PCR was performed by the 
Maxima SYBR Green Rox qPCR master mix 
kit (Fermentas). Primer sequences are shown 
in Table1. Real-time PCR reactions were 
performed using the Steponeplus (Applied 
Biosystem). The PCR amplification conditions 
consisted of 10 min at 95ºC followed by 40 
cycles of denaturation step at 95ºC for 15 sec 
and annealing and extension for 1 min at 60 
ºC. Data were analyzed using the comparative 
Ct (∆∆ct) method, the relative expression level 
of SIRT1 was calculated by determining a 
ratio between the amount of SIRT1 and that of 
endogenous control. Melting curve analysis 
(60ºC → 95ºC increment at 0.3ºC) was used to 
determine melting temperature of specific 
amplification products and primer dimmers. 
These experiments were carried out in 
triplicate and independently repeated at least 
three times (26). 

 
Bradford protein assay 

Total (intracellular) protein concentration was 
determined by Bradford method. This method 

Table1. Primers used in real-time PCR  
Primer sequences Primer ID  

TGGCAAAGGAGCAGATTAGTAGG  SIRT1-F  
CTGCCACAAGAACTAGAGGATAAGA  SIRT1-R  

AAGCTCATTTCCTGGTATG  GAPDH-F  
CTTCCTCTTGTGCTCTTG  GAPDH-R  
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DISCUSSION 
 

We have studied the potency and functional 
mechanism of the recently developed SIRT1 
inhibitor (salermide) at a concentration 
according to IC50 on MCF-7 as the breast 
cancer cell line and MRC-5 as a non-
tumorigenic control cells. Salermide IC50 
result was similar to the previously published 
data on the efficiency of salermide on SIRT1 
in breast cancer cells(MDA-MB-231) (5). 
Previous studies have shown that this 
compound can inhibit NAD-dependent 
deacetylases in mammalian cells (23). In 
recent years, several researchers have 
described the apoptotic effect on HDAC (class 
III) inhibitors and have shown that these 
effects depend on the type of cancerous cells 
(29,30).  

The role of SIRT1 is complex during stress 
and its inhibitory effect is likely to be cell 
context specific (31). Specific explanations 
regarding the molecular mechanisms for most 
of sirtuin inhibitors (particularly salermide) in 
different cancerous and normal cell lines and 
in relation to time is lacking. In this study we 
examined the apoptotic potency of salermide, 
using the MCF-7 breast carcinoma cell line 
because this cell line has substantial 
expression level of SIRT1, has mainly wild-
type p53 genes and this type of cancer is the 
most prevalent malignancy in woman. In this 
study, treatment by 80.56 µM salermide at 
different times showed a time-dependent 
increase in apoptotic cells count of the 
cancerous cells but not in non-tumorigenic 
MRC-5 cells as measured by flow cytometric 
assay. On the other hand although salermide 
can effectively induce inhibition of SIRT1 and 
subsequent cancer cell death, it does not have 
such effect on the fibroblastic cells. These 
results revealed that the apoptotic sensitivity of 
MRC-5 cells to salermide was negligible. This 
is in accordance with findings of Lara and 
coworkers (5) who showed that sirtuin 
inhibitors can induce massive apoptosis in 
cancerous but not in nonmalignant cells. We 
observed the strongest apoptotic effect in 
MCF-7 cells after 72 h of incubation with 
salermide, in that only 10% of MCF-7 cells 
were viable while at this time MRC-5 cells 
showed only a slight increase in level of 

apoptosis (only 10-20%). It seems that this 
observation in MCF-7 cells is due to the 
presence of the wild-type p53, since MDA-
MB-231 breast cancer cells (mutant-P53) 
shows only a small increase of apoptotic 
response to salermide (5). 

Therefore, it seems that in MCF-7 cells 
SIRT1 promotes cell survival and salermide 
alone can induce apoptosis in this cancer cell 
with wild-type p53 in a time-dependent 
manner. Our results are in close agreement 
with the findings of Zou and coworkers (32) 
who have shown that TSA (HDAC inhibitor) 
can induce apoptosis in BGC-823 gastric cell 
line in a time-dependent manner. Also our 
results are consistent with the findings of 
Solomonand coworkers (33) that SIRT1 may 
be an important regulator of wild-type p53 
function and small molecule inhibitors of 
SIRT1 may act as anticancer agents. We 
observed that salermide is ineffective in 
promoting P53 acetylation and hence is unable 
to activate P53 to induce apoptosis in 
fibroblastic cells. This finding is supported by 
morphological examination using inverted 
microscope. 

Once we determined that salermide 
antitumor activity was primarily because of the 
promotion of apoptosis, we decided to study 
the molecular mechanisms involved in this 
process. We first studied the expression of 
SIRT1 in salermide-mediated apoptosis using 
Real time PCR. The results of Real time PCR 
assay indicated that salermide mediated 
inhibition of sirtuin1 expression in a time-
dependent manner in MCF-7 cells. We also 
found that sirtuin1 expression levels in MRC-5 
cells was low and after the treatment with 
salermide slightly decreased in a time 
dependent manner. Importantly, we found that 
in the noncancerous cells, SIRT1 silencing due 
to salermide was at least equivalent to MCF-7 
breast cancer cells. Subsequently, we observed 
that SIRT1 silencing occurred particularly 
after 48 h of salermide treatment in MCF-7 
cells. However, SIRT1 silencing had no 
apparent effect on the cell growth or viability 
of the noncancerous cells. This is in close 
agreement with the findings of other 
investigators (34-38) that, in the absence of 
applied stress, SIRT1 silencing induces growth 
arrest and/or apoptosis in human epithelial 
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cancerous cells. In contrast, normal human 
epithelial cells and normal human diploid 
fibroblasts seem to be refractory to SIRT1 
silencing. This is in apparent disagreement 
with the findings of Peck and coworkers (19) 
who described that knockdown of SIRT1 using 
siRNA-silencing assay did not affect the 
growth of the cancerous cells in comparison to 
the controls. However, these data can explain 
the failure of salermide to induce cell death in 
MRC-5 cells.  

These results indicated that the constitutive 
function of SIRT1 differs in MCF-7 and 
MRC-5 cells and that SIRT1 enables MCF-7 
cancer cell viability, but is not essential for the 
viability of lung fibroblast cells. These results 
are also similar to the study of Kojima and 
coworkers (26) who noted that the up-
regulation of SIRT1 expression was observed 
in breast cancer MCF-7 cells and that 
treatment with a SIRT1 inhibitor, Sirtinol, 
induced inhibition of SIRT1 expression and 
subsequently inhibited cell growth in human 
prostate cancer cell lines. Importantly, in 
MRC-5 cells we observed that after 48h of 
treatment, SIRT1 mRNA levels started to rise 
so that the effect of 72-h of treatment of MRC-
5 cells by salermide was similar to the non-
treatment condition. Subsequently, we used 
real time PCR to evaluate the SIRT1 
expression in both cell lines before the 
treatment and we observed over-expression of 
SIRT1 in MCF-7 cells compared to MRC-5 
cells. This increased level of SIRT1expresion 
in MCF-7 cells presumably inhibit apoptosis 
and mediate survival in response to stress. This 
finding is in accordance with the findings of 
Sun and coworkers (39) that reported over 
expression of sirtuin1 in breast carcinoma. Our 
findings indicated that the induction of cell 
death by SIRT1 inhibitor required the 
inactivation of SIRT1 gene so these findings 
show its potential antitumor effects. A recent 
study by Calvanese and coworkers (40), has 
discussed the implications of similar findings 
on sirtuin inhibition based cancer treatment 
and application of sirtuin activation for 
anti‐aging therapy. A number of previous 
studies have reported that SIRT1 inhibition 
could induce (24,41) or not induce (42) p53 
acetylation in cancer cell lines. We observed a 
direct correlation between total and acetylated 

P53 protein levels and salermide toxicity in the 
MCF-7 cell line. These results suggest that 
incubation of MCF-7 with salermide could 
induce hyperacetylation of p53 protein and 
apoptosis in MCF-7 cells. Our results 
indicated a slightly decrease of total and 
acetylated p53 at 72 h of incubation in MCF-7 
cells. We presume that, although increase in 
total and acetylated p53 levels in response to 
SIRT1 silencing occurs at this time, this 
increase is undetectable by ELISA assay 
because of the release of proteases and 
activation of degradation processes inside the 
cancer cells after 48 h of cell death. These 
findings show that although in MCF-7cells 
P53 was wild-type, however, it was a target for 
deacetylation by SIRT1and so, could not 
induce apoptosis due to this aberrant 
epigenetic event.  

These data are in accordance with the 
findings of Pruitt and coworkers (43) who 
reported that SIRT1 is a cancer-related gene 
and inhibits p53 function through epigenetic 
changes. Our findings suggest that acetylation 
of wild-type p53 as a tumor suppressor leads 
to activation of apoptotic program and is an 
integral part of cytotoxic activity of salermide 
to induce massive apoptosis in less than 24h 
treatment in MCF-7 cells (44). The role of 
SIRTs in drug resistance may be foremost 
related to their ability to target and modulate 
the activity of tumor suppressors, including 
p53. This finding further support the 
theoretical assumption that SIRT1 inactivation 
is required for the cell death induction and p53 
acetylation in cancer cells only for wild-type 
p53 and salermide neither triggers cell death 
nor p53 acetylation in normal cells. Our results 
is also in agreement with the studies of Kamel 
and coworkers (45), Matsushita and coworkers 
(46) and Heltweg and coworkers (24) who 
suggested that SIRT inhibitors are targets for 
SIRT1and SIRT2 and p53 acetylation is 
important for the cell death induction. 
Huhtiniemi and coworkers (47) has shown that 
salermide is ineffective in inducing apoptosis 
in cells with functional p53 expression (wild-
type p53) which is in contrast to our findings. 
Intriguingly, Salermide can induce apoptosis 
without increasing p53 acetylation in SW480 
cells (5). Treatment with chemotherapeutic 
drugs also induce cell death indistinguishable 
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from that triggered by silencing of SIRT1 (48) 
that is also accompanied by p53 acetylation 
suggesting that SIRT inhibitors, such as 
salermide, function through common pathways 
and mediated their cytotoxic effects through 
targeting p53 and its acetylation. 

 
CONCLUSION 

 
A hypothesis is formulated that SIRT1 is 

aberrantly recruited to proapoptotic proteins in 
cancer but not in normal cells and as a 
consequence of this; P53 is aberrantly 
repressed in MCF-7 cells. The treatment with 
salermide would induce apoptosis 
predominantly through the inhibition of SIRT1 
and consequent hyperacetylation and 
reactivation of tumor suppressor P53 to 
induced cell death in MCF-7cells. In this study 
we describe that salermide represent a 
potential for cancer therapy that has a strong 
inhibitory activity on sirtuin1. It induces 
massive apoptosis in MCF-7 cancer cells but 
not in noncanceric cells. This makes it a 
promising novel class of antitumorigenic drugs 
that target acetylation of proteins that are 
epigenetically repressed by SIRT1 exclusively 
in cancer cells. 
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