Accepted: 23 November 2011

# Determination of Genetic Variation in Indian Sesame (Sesamum indicum) Genotypes for Agro-Morphological Traits

Spandana Bandila<sup>1\*</sup>, Anuradha Ghanta<sup>1</sup>, Sivaraj Natarajan<sup>2</sup>, Sivaramakrishnan Subramoniam<sup>1</sup>

1- Institute of Biotechnology (IBT), Acharya N.G. Ranga Agricultural University (ANGRAU), Hyderabad-500030, India 2- National Bureau of Plant Genetic Resources (NBPGR), Hyderabad, India

\*Corresponding author: Email: spandanabandila@gmail.com

#### ABSTRACT

Sesame (Sesamum indicum L.) is one of the oldest oil crops and is widely cultivated in Asia and Africa. Characterization and quantification of genetic diversity has long been a major goal in evolutionary biology. Information on the genetic diversity within and among closely related crop varieties is essential for a rational use of genetic resources. The analysis of genetic variation within and among elite breeding materials is of fundamental interest to plant breeders. It contributes to monitoring of germplasm and can also be used to predict potential genetic gains .To determine the level of diversity in relation to geographical origins and morphological characteristics, a total of 60 accessions have been collected from different parts of the India were analyzed using statistical techniques for thirteen quantitative and four qualitative parameters using D² analysis. Number of seeds per capsule contributed highest towards the divergence. The distribution pattern of genotypes in different clusters indicated that genetic divergence was not related to geographical differentiation.

**Keywords:** D<sup>2</sup> analysis; Euclidean distance; genetic diversity; morphological traits; Sesamum indicum L.

# INTRODUCTION

Received: 5 August 2011

Sesame (Sesamum indicum Pedaliaceae) is the most commonly cultivated edible oil crop species out of over 30 species in the genus Sesamum (Nayar and Mehra, 1970; Kobayashi et al., 1990). The crop has been cultivated in various ecological regions of Vietnam and Cambodia hundreds for of years. Information on genetic diversity and relationships among populations important for plant breeding programs as it helps to select the right genetic material to be used (Ganesh and Thangavelu, 1995).

Genetic diversity in crop species can be determined bv using the morphological as well as biochemical and molecular markers (Liu, 1997; Geleta et al., 2007, 2008). Studies on sesame genetic diversity and divergence have been mainly on agro-morphological Several of these agro-morphological trait based studies have found a high genetic diversity in sesame populations (Bisht et al. 1998; Arriel et al., 2007). There is an improving ample scope for productivity of this important oil seed crop through varietal improvement and hybrid cultivar development.

#### MATERIALS AND METHODS

## Plant material

Germplasm of Sesamum indicum L. collected and stored by National Bureau of Plant Genetic Resources (N.B.P.G.R) Rajendranagar, Hyderabad from eight different states of India, were selected for the present study. Details of the germplasm accessions are furnished in Table 1. The experiment was carried out during late Kharif 2008-09. The experimental materials were sown in simple Randomised Block Design with 60 ×10 cm spacing in three replications at College Farm, College of Agriculture, Acharya N.G. Ranga Agricultural University, Rajendranagar, Hyderabad. Recommended agronomic practices and prophylactic measures were adopted for raising a good crop for field observation.

| Table 1. Details of the experimental material included for the study |               |                |      |               |                     |  |  |  |  |  |
|----------------------------------------------------------------------|---------------|----------------|------|---------------|---------------------|--|--|--|--|--|
| S.No                                                                 | Accession No. | State          | S.No | Accession No. | State               |  |  |  |  |  |
| 1                                                                    | IC751         |                | 31   | IC14329       |                     |  |  |  |  |  |
| 2                                                                    | IC16225       |                | 32   | IC21705       |                     |  |  |  |  |  |
| 3                                                                    | IC16236       |                | 33   | IC23233       |                     |  |  |  |  |  |
| 4                                                                    | IC16238       |                | 34   | IC23271       | <i>y</i>            |  |  |  |  |  |
| 5                                                                    | IC16243       | Maharastra(13) | 35   | IC23321       |                     |  |  |  |  |  |
| 6                                                                    | IC16248       |                | 36   | IC23325       |                     |  |  |  |  |  |
| 7                                                                    | IC16249       |                | 37   | IC23327       |                     |  |  |  |  |  |
| 8                                                                    | IC16250       |                | 38   | IC23332       |                     |  |  |  |  |  |
| 9                                                                    | IC41906       |                | 39   | IC23335       | M 11 1 1 (24)       |  |  |  |  |  |
| 10                                                                   | IC41910       |                | 40   | IC23341       | Madhyapradesh(24)   |  |  |  |  |  |
| 11                                                                   | IC41911       | • 4            | 41   | IC23346       |                     |  |  |  |  |  |
| 12                                                                   | IC41912       |                | 42   | IC41932       |                     |  |  |  |  |  |
| 13                                                                   | IC41978       | 400            | 43   | IC41948       |                     |  |  |  |  |  |
| 14                                                                   | IC14080       |                | 44   | IC41953       |                     |  |  |  |  |  |
| 15                                                                   | IC14106       |                | 45   | IC41962       |                     |  |  |  |  |  |
| 16                                                                   | IC14135       | Rajasthan(8)   | 46   | IC41964       |                     |  |  |  |  |  |
| 17                                                                   | IC14155       | rajustran(0)   | 47   | IC41966       |                     |  |  |  |  |  |
| 18                                                                   | IC14174       |                | 48   | IC42200       |                     |  |  |  |  |  |
| 19                                                                   | IC26303       |                | 49   | IC52585       |                     |  |  |  |  |  |
| 20                                                                   | IC42965       |                | 50   | IC52586       |                     |  |  |  |  |  |
| 21                                                                   | IC42987       |                | 51   | IC52592       |                     |  |  |  |  |  |
| 22                                                                   | IC14163       |                | 52   | IC52593       |                     |  |  |  |  |  |
| 23                                                                   | IC43169       |                | 53   | IC52599       |                     |  |  |  |  |  |
| 24                                                                   | IC43171       | Gujarat(8)     | 54   | IC52600       |                     |  |  |  |  |  |
| 25                                                                   | IC43177       | Gujarun(0)     | 55   | IC96098       |                     |  |  |  |  |  |
| 26                                                                   | IC43179       |                | 56   | IC96109       | Uttar Pradesh(3)    |  |  |  |  |  |
| 27                                                                   | IC43181       |                | 57   | IC96113       |                     |  |  |  |  |  |
| 28                                                                   | IC43185       |                | 58   | IC16832       |                     |  |  |  |  |  |
| 29                                                                   | IC43217       |                | 59   | IC31379       | Punjab(2)           |  |  |  |  |  |
| 30                                                                   | IC20156       | Nagaland(1)    | 60   | IC96079       | Himachal Pradesh(1) |  |  |  |  |  |

#### STATISTICAL ANALYSIS

The data recorded were subjected to the following statistical analysis:

#### ANOVA

Difference between genotypes for various characters was tested for significance by using analysis of variance technique as suggested by Panse and Sukhatme (1957).

#### Variance

The genotypic and phenotypic variances were calculated as per the formula suggested by Burton and Devane (1953).

## Genetic diversity

The genetic diversity in 60 genotypes for characters was estimated using Mahalanobis's (1936)  $D^2$  statistic technique.

Contribution of individual characters towards divergence

In all the combinations, each character was ranked on the basis of its contribution towards divergence between two entries (d<sub>i</sub> = y<sub>it</sub> - y<sub>jt</sub>). Rank- I was given to the highest mean difference and rank-P to the lowest

differences. 'P' is the total number of characters considered.

Heirarchial method of clustering of genotypes into various clusters

Clustering of genotypes into different clusters was done by using Euclidean method.

## Intra and inter cluster distances

Based on  $D^2$  values, average intra and inter cluster distances were calculated as per Euclidean method.

# RESULTS

Sixty sesame germplasm accessions were characterized for the morphological characters using descriptor guidelines developed by IPGRI. The descriptors were unambiguous and easily identifiable. Characterization was done for each genotype to establish their diagnostic features. The experimental material exhibited large variability for all of the morphological characters.

# Mean performance

Mean performance for the thirteen quantitative characters are presented in Table 2.

Table 2. Mean performance for the thirteen quantitative characters

|                 |                     |                    |                      |                    | -                 |                               | -                    |                             |                            |                        |                      |                    |                         |
|-----------------|---------------------|--------------------|----------------------|--------------------|-------------------|-------------------------------|----------------------|-----------------------------|----------------------------|------------------------|----------------------|--------------------|-------------------------|
| Trait Accession | Plant<br>height(cm) | Branches/<br>plant | No. of leaves/ plant | leaf<br>length(cm) | leaf<br>width(cm) | No. of<br>nodes/<br>main stem | Internode length(cm) | No. of<br>flowers/<br>plant | No. of<br>flowers/<br>Axil | No. of capsules/ plant | No. of seeds/capsule | seed<br>weight(gr) | Seed<br>yield/plant(gr) |
| Mean            | 25.6297             | 4.0628             | 72.3097              | 3.2953             | 1.0820            | 3.6783                        | 3.7453               | 43.8588                     | 1.0333                     | 43.4770                | 50.8995              | 2.7243             | 5.6336                  |
| C.V.            | 15.0773             | 43.5200            | 21.7463              | 20.9874            | 28.6289           | 45.4369                       | 18.7708              | 19.9311                     | 0.0000                     | 17.2046                | 11.3103              | 5.7380             | 25.2867                 |
| F ratio         | 1.7242              | 1.7007             | 3.2847               | 1.6387             | 1.1001            | 1.8242                        | 1.1609               | 4.1567                      | 0.0000                     | 6.2651                 | 11.9878              | 2.6299             | 4.9843                  |
| F Prob.         | 0.0063              | 0.0075             | 0.0000               | 0.0119             | 0.3266            | 0.0029                        | 0.2450               | 0.0000                      | 1.0000                     | 0.0000                 | 0.0000               | 0.0000             | 0.0000                  |
| S.E.            | 2.2310              | 1.0208             | 9.0787               | 0.3993             | 0.1788            | 0.9649                        | 0.4059               | 5.0469                      | 0.0000                     | 4.3186                 | 3.3237               | 0.0903             | 0.8225                  |
| C.D. 5%         | 6.2481              | 2.8589             | 25.4252              | 1.1183             | 0.5008            | 2.7023                        | 1.1367               | 14.1341                     | 0.0000                     | 12.0944                | 9.3083               | 0.2528             | 2.3034                  |
| C.D. 1%         | 8.2607              | 3.7797             | 33.6149              | 1.4785             | 0.6622            | 3.5728                        | 1.5029               | 18.6869                     | 0.0000                     | 15.9902                | 12.3066              | 0.3342             | 3.0453                  |
| Min             | 15.6500             | 1.9000             | 44.7000              | 1.3000             | 0.7000            | 1.8000                        | 3.0000               | 22.4000                     | 1.0000                     | 18.5000                | 22.6000              | 2.3667             | 2.3433                  |
| Max             | 32.8333             | 6.9333             | 119.2667             | 4.6000             | 1.8000            | 7.4000                        | 5.3333               | 68.8000                     | 2.0000                     | 67.8667                | 72.4000              | 2.9800             | 10.8600                 |

#### Qualitative characters

Two types of Leaf shapes were observed; entire and lobed. Only one accession showed the lobed type of shape whereas the remaining accessions showed entire type. Flower colour for all the accessions was found to be white with purple shading.

Six colours (white, black, brown, grey, light brown, and reddish brown) of seed were observed. Among the sixty accessions studied, forty were white, one brown, seven reddish brown, two light brown, four grey, and six were black

Capsule beak was long in all the accessions studied.

## Analysis of variance

ANOVA showed significant differences for all the traits evaluated. The results of ANOVA are presented in Table 3.

# Variability

Among the thirteen characters studied, seed yield (29.14%) recorded higher GCV, followed by nodes/main stem (23.82%), while least GCV was recorded for seed weight (4.23%). Highest PCV was recorded by number of branches/plant (48.34%) and the least PCV by seed weight (7.13%) (Table 4).

The difference between the PCV and GCV values for nodes/main stem was high indicating the influence of environment on these traits. However, the difference between the PCV and GCV values for other characters was low indicating minimum effect of environment.

Table 3. Coefficient of variability for thirteen characters in 60 sesame genotypes

| Sl. No | Character              | PCV (%) | GCV (%) | ECV (%) |
|--------|------------------------|---------|---------|---------|
| 1      | Plant height           | 16.7    | 7.4     | 15.02   |
| 2      | No. of branches/plant  | 48.3    | 21.03   | 43.52   |
| 3      | No. of leaves/plant    | 28.6    | 18.97   | 21.7    |
| 4      | Leaf length            | 23.11   | 9.68    | 20.9    |
| 5      | Leaf width             | 29.10   | 5.2     | 28.6    |
| 6      | No. of nodes/main stem | 51.3    | 23.8    | 45.4    |
| 7      | Internode length       | 19.3    | 4.3     | 18.8    |
| 8      | No. of flowers/plant   | 28.55   | 20.44   | 19.93   |
| 9      | No. of flowers/axil    | 17.51   | 17.51   | 0.0     |
| 10     | No. of capsules/plant  | 28.55   | 22.79   | 17.20   |
| 11     | No. of seeds/capsule   | 24.42   | 21.64   | 11.3    |
| 12     | 1000 seed weight       | 7.12    | 4.22    | 5.73    |
| 13     | Seed yield             | 38.6    | 29.14   | 25.28   |

Table 4. Analysis of variance for thirteen characters of 60 sesame genotypes Mean of Squares

|            | df  | C/P      | LL      | LW     | РН        | B/P      | IL     | N/M      | L/P      | F/P      | SW     | SY      | N/A      | Ns/c    |
|------------|-----|----------|---------|--------|-----------|----------|--------|----------|----------|----------|--------|---------|----------|---------|
| Replicate  | 2   | 246.4*   | 13.12** | 0.1615 | 172.24**  | 81.39**  | 3.65** | 110.00** | 22.3048  | 168.0608 | 0.0382 | 23.79** | 0.0000   | 27.1854 |
| Treatments | 59  | 350.53** | 0.7838* | 0.1056 | 25.7461** | 5.3167** | 0.5738 | 5.0956** | 812.18** | 317.63** | 0.06** | 10.11** | 0.0983** | 397.9** |
| Error      | 118 | 55.9511  | 0.4783  | 0.0959 | 14.9326   | 3.1262   | 0.4942 | 2.7933   | 247.2663 | 76.4144  | 0.0244 | 2.0294  | 0.0000   | 33.1417 |

C/P-capsules per plant, B/P-branches per plant, F/P-flowers per plant, Ns/C-number of seeds/capsule, LL-leaf length, IL- internode length, SW-seed weight LW-Leaf width, N/M-nodes per mainstem, SY-seed yield, PH-plant height, L/P-leaves per plant, N/A-number of flowers per axil



<sup>\*\*</sup>Significant at 1% level

<sup>\*</sup> Significant at 5 % level

## Genetic divergence

The quantitative assessment of genetic divergence was made by adopting Mahalanobis  $D^2$  statistics for yield and its contributing characters.  $D^2$  statistic was carried out following the procedure of Rao (1952).

The distribution of 60 genotypes of sesame into different clusters is presented in Table 4.

Average intra and inter cluster distances

The average intra and inter cluster D<sup>2</sup> values are presented in Table 7. Intra cluster values ranged from 10.31 (Cluster II) to 17.32 (Cluster VII) (Figure 2 and 3). From the inter-cluster distances, it can be inferred that highest divergence occurred between Cluster I and VII (64.2), while it was least between Cluster II and Cluster III (16.88) (Table 6).

Table 5. Distribution of 60 sesame genotypes into different clusters

| Cluster No. | No. of<br>Accessions | Accessions                                                                                                             |  |  |  |  |
|-------------|----------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| I           | 4                    | IC14080, IC 52600, IC 43185, IC 96098                                                                                  |  |  |  |  |
| II          | 7                    | IC 16243, IC 20156, IC 16248, IC43217, IC 52593, IC 23335, IC 14329                                                    |  |  |  |  |
| III         | 7                    | IC 23271, IC 52592, IC 43169, IC 23332,IC 41964, IC 14174, IC 96079                                                    |  |  |  |  |
| IV          | 5                    | IC 16236, IC 41948, IC 41932, IC751, IC52599                                                                           |  |  |  |  |
| V           | 10                   | IC 16238, IC 42987, IC 42965, IC 16250, IC 52586, IC 41910, IC 41911, IC 16249, IC 42200,IC 96109                      |  |  |  |  |
| VI          | 13                   | IC 14106, IC43177, IC 14135,IC 41966,IC 21705,IC 23321,IC 23341, IC 16225,96113,IC 14155, IC 41978, IC 41953, IC 26303 |  |  |  |  |
| VII         | 10,0                 | IC 16832, IC 23346, IC 41912, IC 23233, IC 41906, IC31379, IC 43181                                                    |  |  |  |  |
| VIII        | 7                    | IC 23325,IC 52585, IC14163,IC 23327, IC43179, IC41962, IC43179                                                         |  |  |  |  |

Table 6. Cluster means for thirteen characters

|             | Plant<br>height(cm) | Branches/ | Leaves / Plt | Leaf length(cm) | Leaf width(cm) | Nodes/<br>main<br>stem | Internode length(cm) | Flowers/ | Capsules / plt | No. of seeds/capsule | seed<br>weight(gm) | Seed<br>yield(gm) |
|-------------|---------------------|-----------|--------------|-----------------|----------------|------------------------|----------------------|----------|----------------|----------------------|--------------------|-------------------|
| Cluster I   | 25.9                | 4.90      | 60.95        | 3.28            | 0.988          | 4.55                   | 3.52                 | 39.96    | 39.43          | 70.48                | 2.59               | 4.80              |
| ClusterII   | 26.8                | 4.62      | 67.47        | 3.78            | 1.104          | 4.66                   | 3.55                 | 39.67    | 38.89          | 55.51                | 2.64               | 5.17              |
| ClusterIII  | 23.2                | 2.45      | 61.91        | 2.60            | 0.930          | 2.38                   | 3.92                 | 31.63    | 30.87          | 60.95                | 2.81               | 4.54              |
| ClusterIV   | 24.0                | 4.83      | 80.17        | 3.57            | 1.469          | 4.11                   | 3.78                 | 29.20    | 27.83          | 46.43                | 2.63               | 3.49              |
| ClusterV    | 26.5                | 4.43      | 79.80        | 3.48            | 1.053          | 3.91                   | 3.56                 | 51.93    | 51.46          | 61.29                | 2.83               | 8.41              |
| ClusterVI   | 25.5                | 3.49      | 69.66        | 3.14            | 1.079          | 3.00                   | 3.98                 | 41.88    | 40.77          | 43.11                | 2.73               | 4.84              |
| ClusterVII  | 24.9                | 4.47      | 68.09        | 3.28            | 1.067          | 4.04                   | 4.03                 | 54.10    | 53.75          | 36.97                | 2.67               | 5.91              |
| ClusterVIII | 27.6                | 4.20      | 86.85        | 3.35            | 1.053          | 3.74                   | 3.39                 | 54.88    | 57.54          | 41.80                | 2.76               | 6.43              |
| Mean        | 25.6                | 4.06      | 72.31        | 3.29            | 1.082          | 3.68                   | 3.74                 | 43.86    | 43.48          | 50.90                | 2.72               | 5.63              |
| TreatMSS    | 14.7                | 4.72      | 571.6        | 0.87            | 0.138          | 4.26                   | 0.46                 | 655.89   | 772.24         | 899.52               | 0.052              | 17.98             |
| ErrMSS      | 7.76                | 1.38      | 230.22       | 0.18            | 0.021          | 1.35                   | 0.16                 | 31.83    | 28.61          | 29.17                | 0.017              | 1.40              |
| F Ratio     | 1.88                | 3.43      | 2.48         | 4.81            | 6.46           | 3.14                   | 2.91                 | 20.60    | 26.98          | 30.83                | 3.01               | 12.8              |
| Probability | 0.09                | 0.00      | 0.02         | 0.00            | 0.00           | 0.00                   | 0.01                 | 0.00     | 0.00           | 0.00                 | 0.01               | 0.00              |

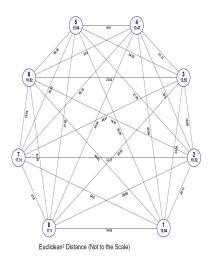



Figure 2. Cluster diagram representing diversity for 60 Sesamum genotypes

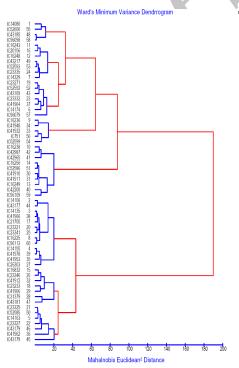



Figure 3. Ward's minimum variance dendrogram

96

www.SID.ir

Table 7. Average intra (bold) and inter Euclidean cluster distances

|              | Cluster I | Cluster II | Cluster<br>III | Cluster<br>IV | Cluster V | Cluster<br>VI | Cluster<br>VII | Cluster<br>VIII |
|--------------|-----------|------------|----------------|---------------|-----------|---------------|----------------|-----------------|
| Cluster I    | 12.540    | 20.131     | 23.357         | 45.941        | 30.589    | 44.831        | 64.196         | 54.660          |
| Cluster II   |           | 10.318     | 16.875         | 22.901        | 21.350    | 18.615        | 33.374         | 29.877          |
| Cluster III  |           |            | 12.521         | 27.734        | 24.222    | 23.623        | 45.509         | 39.550          |
| Cluster IV   |           |            |                | 13.473        | 45.598    | 22.603        | 45.176         | 45.437          |
| Cluster V    |           |            |                |               | 13.940    | 28.391        | 36.924         | 27.629          |
| Cluster VI   |           |            |                |               |           | 10.816        | 19.537         | 21.628          |
| Cluster VII  |           |            |                |               |           |               | 17.315         | 21.796          |
| Cluster VIII |           |            |                |               |           |               |                | 17.304          |

#### **DISCUSSION**

The diversity analysis of 60 accessions of *S. indicum* L. carried out by using morphological and the data was analyzed by Cluster analysis.

The Ward's minimum variance dendrogram based on morphological characters showed that accessions of same origin did not group in same cluster. The first cluster showed more subclusters than the second cluster thus showing considerable phenotypic variation of morphological characters indicum. The phenotypic differences may be due to genetic diversity which may in turn be due to allelic diversity. Genetic variability among Indian sesame accessions is very high as shown both for the morphological (Bisht et al., 1998; Baneriee and Kole. 2006) and molecular markers (Bhat et al., 1999; Laurentin and Karlovsky, 2006). The aim of this study was to bring results that could help sesame breeders to select suitable parental material for crossing and increase the efficiency of selection in combination with other diversity data. Number of flowers per leaf axil is one of the mportant characters for plant breeding programs. Most of the varieties had one flower per axil (96.6%). Of the sixty sesame

accessions, only two varieties, IC31379 (Punjab), IC21705 (M.P) bear two flowers per axil as there is not much variation this character is not included for relative contribution of characters towards divergence study. As the number of capsules per plant is one of important contributing character to seed yield of sesame (Ibrahim *et al.*, 1983; Osman, 1989), plants with two flowers per leaf axil are important resources for plant breeding programs.

Variation was least for qualitative characters like leaf shape, flower colour, seed colour and type of capsule beak. There was only one flower colour i.e white with purple shading. This type of flower colour was quite similar in Indian sesame collection. The analysis of variance revealed significant difference among the each genotypes for character, indicating the existence of variability among the genotypes for the character studied. The cluster analysis based on agro-morphological traits assigned the sixty sesame germplasm accessions into eight main clusters. A dendogram grouped the sesame accessions into individual groups. The cluster analysisdid not separate the germplasm based on their geographical origins. This result was in agreement with findings of Dixit and Swain (2000) and Gupta et al. (2001). This might be

migration of the sesame materials from one region to another in collection sites through farmer to farmer exchange of seeds. Although sesame has been described as an autogamous plant, recent evidence raises the possibility of natural outcrossing in sesame (Pathirana, 1994, Baydar and Gurel, 1999). Some ecological conditions could also lead to gene flow between from populations different geographical origins.

Sixty genotypes were grouped into eight clusters based on D<sup>2</sup> values. The pattern of group constellations proved that significant amount of variability existed. It is interesting to note that genotypes representing some differences in their origin were grouped in the same cluster. This was an indication for the absence of relationship between genetic diversity geographic diversity. Similar results have been reported by Ganesh and Thangavelu (1996), Manivannan and Nadarajan (1996), Swain and Dikshit (1997), Johnjoel *et al.* (1998) and Gupta *et al.* (2001).

The number of seeds per capsule contributed highest towards divergence followed by number of capsules per plant. The remaining characters showed negligible contribution. Similar observations have been recorded by Alarmelu and Ramanathan (1998) and Sudhakar et al. (2006). In sesame, Solanki and Gupta (2002) reported that seed yield, number of capsules per plant, plant height and 1000 seed weight are the important contributing factors.

There was a wide range of variation in the cluster mean values for most of the characters under study. Therefore a crossing program should be initiated between the genotypes belonging different clusters. The greater the distance between two clusters, the wider the genetic diversity among the parents to be included in hybridization program.

#### REFERENCES

- Arriel N.H.C., Mauro A.O.D., Arriel E.F., Trevisoli S. H.U., Costa M.M., Bárbaro I.M. and F.R.S. Muniz. 2007. Genetic divergence in sesame based on morphological and agronomic traits. Crop Breeding and Applied Biotechnology, 7: 253-261.
- Alarmelu S. and T. Ramanathan 1998. Genetic divergence and heterosis in sesame (*Sesamum indicum* L.). Journal of Oil Seeds Research, 15: 25-31.
- Banerjee P.P. and P.C. Kole. 2006. Genetic variability for some physiological characters in sesame (*Sesamun indicum* L.) Sesame and Safflower Newsletter, 21: 20–24.
- Baydar H. and F. Gurel.1999. The effects of honey bees on cross-pollination and hybrid seed production in sesame (Sesamum indicum L.). Turkish Journal of Field Crops, 4:21-24.
- Bhat V., P. Babrekar and S. Lakhanpaul. 1999. Study of genetic diversity in Indian and exotic sesame (*Sesamum indicum*) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica, 110: 21-33.
- Bisht I., R. Mahajan, T. Loknathan and R. Agrawal. 1998. Diversity in Indian sesame collection and stratification of germplasm accessions in different diversity groups. Genetic Resources and Crop Evolution, 45: 325-335.
- Burton G. W. and E.H. Devane. 1953. Estimating heritability in tall fescue (*Festuca arundinacea*) from replicated clonal material. Agronomy Journal, 45: 478-481.
- Dixit U.N. and D. Swain. 2000. Genetic divergence and heterosis in sesame. Indian Journal of Genetic, 60:213-219.
- Ganesh S. K. and S. Thangavelu. 1996. Genetic divergence in sesame. Madras Agricultural Journal, 82: 263-265.

- Geleta M., T. Bryngelsson and E. Bekele. 2007. Genetic diversity of *Guizotia abyssinica* (L. f.) Cass. (Asteraceae) from Ethiopia as revealed by random amplified polymorphic DNA (RAPD). Genetic Resources Crop Evolution, 54: 601–614.
- Geleta M., T. Bryngelsson and E. Bekele. 2008. Assessment of genetic diversity of *Guizotia abyssinica* (L.f.) Cass. (Asteraceae) from Ethiopia using amplified fragment length polymorphism. Plant Genetic Resources Characterization Utilization, 6: 41–51.
- Gupta R. R., B.M.S. Parihar and P.K. Gupta. 2001. Genetic diversity for some metric characters in sesame(*Sesamum indicum L.*). Crop Research, 21:350-354.
- Ibrahim A.F., D.A.E. Ahmed and S.A. Sharief. 1983. Interrelationships and path-coefficient analysis for some characters in sesame (*Sesamum indicum* L.). Journal of Agronomy Crop Science, 152: 454-459.
- Johnjoel A., S. Alarmelu and S. Thangavelku. 1998. Genetic diversity in sesame (*Sesamum indicum* L.). Journal of Oilseeds Research, 15: 71-75.
- Kobayashi T. 1981. The wild and cultivated species in the genus *Sesamum*. In: Sesame: Status and Improvement. Proceedings of Expert Consultation, Rome, Italy, 8-12 December, 1980. FAO, Rome, Italy. pp: 157-163.
- Laurentin H.E. and P. Karlovsky. 2006. Genetic relationship and diversity in sesame (*Sesamum Indicum* L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genetics, 7:10.
- Liu C.J. 1997 Geographical distribution of genetic variation in *Stylosanthes scabra* revealed by RAPD analysis. Euphytica, 98: 21–27.
- Mahalanobis P.C. 1936. On the generalized distances in statistics. Proc. Nation. Inst. Sci., India, 2:49-55.
- Manivannan N. and N. Nadarajan 1996, Genetic divergence in sesame. Madras Agricultural Journal, 83: 789-790.
- Nayar N.M. and K.L. Mehra. 1970. Sesame its uses, botany, cytogenetic and origin. Economic Botany, 24:20-31.
- Osman H.E. 1989. Heterosis and path coefficient analysis in sesame (*Sesamum indicum L.*). Acta Agronomy Hungry, 38:105-112.
- Panse V.G. and P.V. Sukhatme. 1957. Statistical methods for agricultural workers, Indian Council of Agricultural Research Publication, New Delhi, pp. 87-89.
- Pathirana R .1994. Natural cross-pollination in sesame (Sesamum indicum L.). Plant Breeding, 112:167-170.
- Rao C.R. 1952. Advanced Statistical Methods In Biometrical Research. John Wiley and Sons, New York, U.S.A.
- Solanki Z.S. and D. Gupta. 2002. Genetic divergence for seed yield and other characters in sesame (*Sesamum indicum* L.). Journal of Oilseeds Research, 19: 35-37.
- Sudhakar N., O. Sridevi and P.M. Salimath. 2006. Genetic divergence in sesame (*Sesamum indicum* L.). Journal of Oilseeds Research, 23:295-296.
- Swain D. and U.N. Dikshit. 1997 Genetic divergence in rabi sesame (Sesamum indicum L.).Indian Journal of Genetic, 57: 296-300.

99