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Abstract 
 
 In this paper, we have studied the transport properties of disordered four-terminal graphene nanodevice in the pres-
ence of perpendicular magnetic field, using Landauer approach and tight binding model. The results of our investi-
gation imply that in the presence of random disorder the transport of the system decreases because of Anderson lo-
calization. Furthermore, the broadening widths of landau subbands become large in the presence of random disorder 
and magnetic field.  The existence of divacancy and magnetic field creates additional band between landau levels, 
this appeared by increasing the transmission of the injected electron. In addition we found that the coupling between 
two vacancies due to “vacancy molecule” and bonding between them can be tuned by the magnetic field. These 
theoretical studies can be useful to design the electronic nanodevice. 
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1. Introduction  
 
Graphene (single layer of graphite) demonstrates in-
teresting electronic properties due to its unique struc-
ture [1]. It has been shown recently that charge carri-
ers in graphene are massless Dirac fermions with ef-
fective “velocity of light” ሺ10 ݉ ⁄ݏ ሻ [2]. The un-
usual transport properties of graphene arise from its 
liner E-k relation from low energies near the six cor-
ners of two-dimension hexagonal Brilloun zone. Simi-
lar to 2D Schrodinger electrons, states in a perpen-
dicular uniform magnetic field B form highly degener-
ated discrete Landau levels (LLs) [3]. When the mag-
netic flux is getting larger, these levels form the Lan-
dau sub bands because of the Harper broadening. In 
the presence of disorders, LLs broadening into Landau 
subbans, gives rise to the quantum Hall effects [4]. 
However, as all the other materials, real graphene de-
vice also includes some disorder. Disorder in graphene 
may have diverse source like vacancies, impurities, 
absorption of an impurity atom or random potential 
introduced by the irregularities of the gate edge [5]. 
Disorder not only acts as a source of scattering but 
also change the local distribution of charge. One of the 
important defects in graphene is a single vacancy 
caused by the loss of one or several nearest atoms; 
vacancies are natural defects in graphene lattice and 
can also be externally induced by ion-beam irradiation 
and imperfect cutting [6]. In this paper we consider 
the effects of random disorder and divacancy (two 

single vacancies) on the transport properties in four-
terminal graphene nanodevice when a perpendicular 
magnetic field is applied. Based on the critical role 
that two-dimensional four-terminal devices have 
played in semiconductor nanotechnology, four-
terminal graphene nanodevices should also play an 
important role in any graphene based electronic cir-
cuits. Due to its high electronic quality, a four-
terminal graphene nanodevice has also attracted the 
interest of technologists who see it as a way of con-
structing ballistic transistors. In addition to the practi-
cal importance of these four-terminal graphene de-
vices, these systems make a useful framework to study 
the effects of lattice defects on the electron transport 
in the device [7]. 
 
2.  Modelling 
 
We consider the system as a central   conductor   re-
gion, connected to four leads L, R, T, and B (Fig. 1). 
We describe the conductor and the leads by tight - 
binding model with one π - electron per atom. The 
tight - binding Hamiltonian of the system can be writ-
ten as: [8] 
 
ܪ ൌ  ߝ
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                (1)                       
where ࢇ and ࢇ

ା are the annihilator and creator opera-
tor of the electron, respectively and ࢿ is the ith atomic 
on-site energy interpreted as the potential part of en-
ergy and t is the hopping integral between the nearest 
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neighbours that may refer to the kinetic part of the 
energy. In the absence of defect, ࢿ is taken to be zero 
and t = 2.7 eV [9].  

 
Fig. 1. Lattice configuration of four-terminal graphene 
nanodevice. Central region (boxed) is the conductor re-
gion, C, which is attached to four leads L, T, B and R. 
 
 In the presence of defect, on-site energy can be 
changed. In the case of random disorder, v is randomly 
selected in the interval -1 eV to 1 eV for random atom 
sites and a vacancy is simulated by setting its on-site 
energy to infinity. Because of the existence of the 
magnetic field, a phase ߮ is added in the hopping 
element [4]. Where ߮ is given by the line integral of 
the vector potential from i site to j site, the magnetic 
flux through the area S in units of the flux quantum 
߶ ൌ ݄ܿ ݁⁄  is: 
 
1

߶
න ݀ܵ · ܤ ൌ

݁
݄ܿ ර ݈݀ · ܣ ൌ  ߶,

௨ௗ௦
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                (2)                                                                                   
 In what follows, we show how to calculate the 
transmission of the system. We calculate the transmis-
sion coefficient of the electron injected into the system 
using Green's function formalism [8]. The transmis-
sion coefficient of the electron from lead p to lead q is 
then expressed as: 
 
ܶ ൌ ܩ൫Γݎܶ

Γܩ
൯,                                                        ሺ3ሻ 

 
 This expression shows the electron tunnelling flux 
both from the source (p electrode) to the drain (q elec-
trode). The system has four leads, resulting in a con-
ductor Green function of the form: 
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where Σ୯ denotes the self-energy due to the coupling 
between the conductor and lead q and the coupling 
matrices are expressed as: 
 

Γ ൌ ݅  െ 







൨                                                   ሺ5ሻ 

 
                                              

In this work we have calculated all results by ignoring 
the effects of temperature, spin-orbit interaction, elec-
tron-electron correlation, electron-phonon interaction, 
etc. In this model it is also assumed that the four side-
attached leads have negligible resistance. 
 
3. Results and Discussion 
 
It is well known that in a metal or semiconductor, de-
fects play an important role: they act as scattering cen-
tres and locally modify the conduction-band carrier 
density. One of the defects in graphene is random dis-
order. We now consider a four-terminal device in the 
presence of random disorder, including impurities ran-
domly concentrated in some atoms that influence the 
on-site energy of random atoms. It is known that all 
electrons become localized in the presence of random 
disorder, a phenomenon known as Anderson localiza-
tion [10,11]. In the systems, random disorder localizes 
all states, led to the transmission coefficient to be de-
creased. 
 Fig. 2 shows the transmission coefficient of a pure 
and a disordered four-terminal junction from lead L to 
R. The fine peaks in the pure curve are Van Hov sin-
gularities (VHSs) [12] corresponding to extreme 
points in the energy bands. The new peaks in the 
transmission curve correspond to the disorder states. 
The disorder states are quasilocalized states caused by 
the random disorder. The quasilocalized states can be 
found in the scanning tunneling spectroscopy (STS) 
images or low bias scanning tunneling microscopy 
(STM) images [15]. The injected electron will be re-
flected when its energy is equal to the energy level of 
the quasilocalized states. 
 

 
 

Fig. 2. The transmission coefficient of electron injected to 
the four-terminal device. The solid line is the transmis-
sion coefficient in pure case; dotted line is transmission 
coefficient in the presence of random disorder. 
 
 In Fig. 3, magnetic field and random disorder are 
applied to the system simultaneously. In fact, both 
random disorder and the magnetic field can affect the 
transmission coefficient in the system.  
 In the presence of a magnetic field the states of 
graphene are described in terms of Landau levels. At 
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low energies, when the Dirac fermion description is 
valid, the energy levels are given by:  
 
േܧ ൌ േ√2 ݈ߜ

ିଵ√݊,                                                      ሺ6ሻ       
 
and defined ݈ ൌ ඥ ⁄ܤ݁  , ߜ ൌ ଷ௧

ଶ
 and n=1, 2,…. 

Notice that the cyclotron energy is much larger than 
the Zeeman energy, thus, we disregard the Zeeman 
energy. 

 
Fig. 3. The transmission coefficient of electron injected to 
the four-terminal device in the presence of magnetic field 
and random disorder. 
  
 Both random disorder and the magnetic field can 
affect the transport properties in the system. There are 
two important length scales: random disorder causes 
electron scattering, leading to an electron mean-free 
path ሺℓሻ and the magnetic field introduces a magnetic 
length ሺℓሻ. Electronic states in a Landau level (LL) 
can be viewed as cyclotron motions of an electron 
around orbits of radius ሺℓሻ centered at different loca-
tion. The transmission coefficient increases when the 
electron energy can receive to the energy of the Lan-
dau level, and decreases when the distribution of dis-
order sites led to Anderson localization. Generally the 
area under the transmission curve increases in compar-
ison to the pure case because Landau levels broaden 
into Landau subbands and creates additional conduc-
tion channels. One can see that the curve associated to 
the disordered system and in the presence of magnetic 
field, has an asymmetric behavior.  
 The reason for this asymmetric behavior is related 
to the anisotropic system in the presence of magnetic 
field and nonequivalence sites in the presence of ran-
dom disorder [11,13]. 
 In Fig. 4, we plot the transmission coefficient of 
electrons from lead L to R (zigzag edge) in four-
terminal device under the influence of divacancy. 
 We find that the area under the transmission curve 
that indicate the conduction of the system, decrease in 
the presence of divacancy, because removing two 
atoms in crystal affects the band structure and as a 
result affects the conduction channels and decrease the 
conduction in comparison with the pure case. We find 

that divacancy creates two peaks in the transmission 
coefficient at energies above and below the Fermi 
energy. Creating a vacancy in one site is similar to 
lowering the electronic density of states and increasing 
the electronic density on all the neighboring sites 
around the vacancy sites. This peaks appearing sym-
metrically around Fermi energy are due to the bound-
ing and anti – bounding states [14]. 

 
Fig. 4. The transmission coefficient of electron injected to 
the four-terminal device. The solid line is the transmis-
sion coefficient in pure case; dashed line is transmission 
coefficient in the presence of divacancy.  
 
 In Fig. 5, magnetic field and divacancy are applied 
to the system simultaneously. The existence of diva-
cancy along with the magnetic field creates additional 
band between landau levels. In fact the number of 
bands increase in comparison with the case that mag-
netic field is applied without divacancy. 

 
Fig. 5. The transmission coefficient of electron injected to 
the four-terminal device in the presence of magnetic field 
and divacancy 
 
 We find that two close vacancies may couple to 
each other, forming a “vacancy molecule” tuned by 
the magnetic field. The coupling between the wave 
function of two vacancies is verified to be determined 
by the distance between them and by the magnetic 
field. If the two single vacancies are introduced far 
from each other in lattice, they can’t coupled each 
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other, then we assume that inter-vacancy distance (d) 
is small (d ≈ a, where a is the distance between two 
neighboring carbon atoms). The bonding between 
these vacancies can be tuned by magnetic field; this 
effect is appeared by creating a peak in Fermi energy 
when the magnetic field and divacancy are applied to 
the system simultaneously (see Fig. 6). 

 
Fig. 6. The transmission coefficients in the vicinity of the 
Fermi energy in the presence of magnetic field and diva-
cancy. The solid line is the transmission coefficient in the 
presence of two near vacancies and magnetic field (d ≈ 
4a); the dashed line is the transmission coefficient in the 
presence of  far  vacancies and magnetic field (d ≈ a).  
 
4. Conclusion 
 
Based on Landauer approach and using  tight-binding 
model, the influence of two kinds of defects, random 
disorder and divacancy in the presence of perpendicu-
lar magnetic field, on the transport properties of a 
four-terminal graphene nanodevic, has been studied. 
We investigated the Anderson localization of fermions 
at the Dirac point in a four-terminal graphene with 
random type of disorder and found that the states in 
the system with random disorder are localized. Also 
our results suggest that the LLs degeneracy is lifted in 
the presence of random disorder, LLs are broadened 
into Landau subbands therefore the transmission coef-
ficient of electrons increases. We find that divacancy 
creates bounding and anti-bounding states around 
Fermi energy due to the increasing electronic density 
on neighboring sites. On the other hand, existence of 
two single vacancies, with small distance between 
them, in the presence of magnetic field, produce “va-
cancy molecules” by coupling between their wave 
function. This feature could make such a quasi-2D 
carbon-based junction a possible candidate for gar-
phene nanoelectronic devices such as instance elec-
tronic circuits, quantum computers and ballistic tran-
sistors. 
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