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Abstract

The "massless” vector field equation in de Sitter (dS) 4-dimensional space is gauge invariant under some special
gauge transformations. It is also gauge invariant in ambient space notations in which the field equation is written in
terms of the Casimir operators of dS group. In this paper the "massless” vector field equation has been solved in the
physical case. It has been shown that the solution can be written as the multiplication of a generalized polarization
vector and a "massless” conformally coupled scalar field in the ambient space notations. The physical vector two-
point function has been calculated using ambient space formalism and its zero-curvature limit has been considered.
It is shown that the physical vector two-point can be written in terms of the conformally coupled massless scalar
two-point function in the ambient space notations. The two-point function is.expressed in terms of dS intrinsic coor-
dinates from its ambient space counterpart, which is dS-invariant and is free from any divergences.
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1. Introduction

The recent observational data are strongly in favor of a
positive acceleration of the present universe. There-
fore, in a first approximation, the space-time might be
considered as a dS space-time and the quantization of
the massless vector field (spin-1) on dS -space,
presents an excellent modality for further researches.

In dS space-time, a field is called "massless” if it
propagates on the dS light-cone and corresponds to a
massless Poincare' field at H = 0 and a field.is 'mas-
sive" if it propagates inside the light-cone and corres-
ponds to a massive Poincare' field in the zero curva-
ture limit.

In the previous studies, the:"'massless™ vector field
was considered in flat coordinates system covering
only the one-half of the.dS hyperboloid [1]. Allen and
Jacobson [2] calculated the "massless" vector two-
point function in terms of the geodesic distance. The
two-point function contains a logarithmic divergent
term [2]. "Massive'“and "massless" free vector fields
are considered in [3,4], respectively and "massive"
and "massless" free tensor fields are investigated in
[5,6] respectively. In this article, the physical sector
(i.e. divergenceless) of the "massless"” spin-1 field in
dS ambient space has been considered. It is the only
part, which appears in the interacting fields.

The organization of this paper is based on the fol-
lowing order. In Section 2, we recall the dS vector
field equation. The field equation is written in terms of
the Casimir operators of dS group and its gauge inva-
riance is considered. The solution to the field equa-
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tion, in ambient space notations is presented in Section
3. It is shown that the solution can be written as the
multiplication of a generalized polarization vector and
a "massless” conformally coupled scalar field in am-
bient space notations. Section 4 is devoted to the cal-
culation of the physical "massless" vector two-point
function W ,p,15(x,x") in the ambient space nota-
tions, and its flat limit is considered. The two-point
function is expressed in terms of the dS intrinsic coor-
dinates from its ambient space counterpart. The two-
point functions are free from the logarithmic diver-
gence.

2. Notation

The dS space-time is made identical to the four di-
mensional one-sheeted hyperboloid:

Xy ={x€R% x?= Napx®xF = -H7%},  ap,
=0,1,2,3,4
@
where 145 = diag (1,—1,-1,—1,—1). The dS me-
tric is:

ds? = naﬁdx“dxﬁ|xz=_H_2 = g25dX*dXxP?,
ab,---=01,2,3,

)
where X%'s are the 4-space-time intrinsic coordinates
in dS hyperboloid. Different coordinate systems can
be chosen [7]. Any geometrical object in this space
can be written in terms of the four local intrinsic coor-
dinates X or in terms of the five global ambient space
coordinates x*. The metric (2) is a solution to Eins-
tein's field equation with the cosmological constant
A =3H%
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The Lagrangian density for free "massless" vector
fields A, (X) propagating on dS space reads (h = 1)
[2]:

1FabF 4
L= Z ab»

where F,, = 0,4, — 0pA, is the electromagnetic
stress tensor. The variational principle applied to (4)
yields the field equation:

Vo F =V, (Ve4P — VP A%) = 0. (5)
Since [Vq,VplAc = —H?(gacAb
tains the wave equation:

— JpcApa), One ob-

(V2 4+ 3H2)A,(X) =V V-A(X) = 0. (6)

This field equation is identically satisfied by the
gauge vector fields of the form A, = V,¢ because of
the property (V2V, — V,V?)¢@ = —3H?V ¢. Thus (6)
is invariant under gauge transformation:

Ay - A’a =4+ V.0, @)

where ¢ is an arbitrary scalar field. The wave equation
with gauge fixing parameter c reads:

(V2 + 3HY)A,(X) — cV,V - A(X) = 0. (®)

Our aim is now to write the field equation (6) in
terms of the Casimir operatorof the.dS group
S0,(1,4). For this purpose we:introduce a transverse
vector field K,(x)(i-e-x-K =0) defined on the
ambient space, which is related to 4, (X) through:

ax*
Aa(X) = 52 Ko (x(X)): ©

The kinematical‘group of the dS space is the 10-
parameter group Soy(1,4) (connected component of
the identity in 0(1,4)), which is one of the two possi-

ble deformations of the Poincare' group. There are two
Casimir operators:

(1) 1 L thﬁ (2)

-3 —W,we, (10)
where
W, = —%saﬁy,;nLﬁVL‘s’?, with 10 infinitesimal genera-
tors:
Lo = Myg + Sap. (11)
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The subscript 1 in Q" and @ reminds that the
carrier space is constituted by vectors. The orbital part
Mg, and the action of the spinorial part S,z on a vec-
tor field K, (x) defined on the ambient space read re-
spectively [5]:

M“B = —l(xaaﬁ — Xﬁaa),
Sapky = —i(napKy = NpyKo)- (12)

The symbol &44,5, holds for the usual anti-
symmetrical tensor. The action of the Casimir operator

f) on K,(x) can be written in the more explicit
form:

(@M= 2)K, (x)
=2x0-K(x) —

Qil)Ka(x) = _
20x - K, (x),

(13)
where, Q3" = —%MaﬁMaﬁ = —H%(3)", is the sca-
lar .Casimir operator and aa=éaﬁaﬁ and Bqp =
Nap + H?XoXp 15 a transverse projector. It is easily

shown that the metric g& corresponds to the trans-
verse projector 6,4, that is:

_ax doxB

( ) Xa aXb aB

(x(X)). (14)

We are now in position to express the wave equa-
tion (6) by using the Casimir operators. The d'Alem-
bertian operator becomes

€&
VeV A, = VA, aXa(H2 o Ko+ H?K,
+ 2H%x,0 - K),

(15)
and the Eq. (6) with this new notation reads

(QV — 2)Kq(x) + 2x3 - K(x) + D;d - K(x) + D;d
-K(x) =0, D, = H™?0.
(16)
Finally using (13) one obtains the field equation
formulated in terms of the Casimir operator Q(l)

VK, () + D10 - K(x) =0, (17)
which is invariant under the gauge transformation [6]:
Ko(x) > K'(x) = K(x) + 0,0(x).

(18)

Because of the gauge freedom mentioned in Eg.
(18), the field equation (17) can be written as

K, (x) +cDyd - K(x) =0, (19)
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On the physical "massless" vector ...

The case ¢ =1 corresponds to the conformally
invariant vector field equation, which has been dis-
cussed extensively in [8].

By physical state we mean the vector fields satisfying
the divergenceless condition:

9-K(x) = 0. (20)

This condition is equivalente to the choice ¢ =0
for the gauge-fixing parameter. In this case the field
equation (19) reduces to:

QKL () = 0 = (QF — 2)K(x). (1)

In the following sections, the solution of this field
equation is given and its physical two-point function is
calculated, using ambient space formalism.

3. Solution to the physical vector field equation

The goal of this section is to give a solution for the
physical field equation (21). Its general solution can
be written as [8]:

K (x)=|Z, + a%fa ¢ (x). x-&=0,
(22)
Where Z,, is a constant 5-vector, Z, = BaﬁZﬁ, &is
a light-like 5-vector and ¢(x) = (Hx - €)? is a scalar
field, @ is a constant coefficient to be determined.
The condition Z - & = 0 makes the degrees of freedom
of the 5-vector Z to reduce from 5 to 4.
Implementation of K,(x) in the wave equation (21)
and using the divergenceless condition (20) we obtain:

(a+1)(c+4)=0, 0))
2@+ 1D+ (0+1)(c=2)=0, (1N
20(a+1)+alc+1)(c=2)=0. (110

(23)

Solution to the above system of equations can be
written as:

a=-—1,
{0 =-1,-2. (24)

These mean that ¢p(x) = (Hx - £)? is a massless

conformally coupled scalar field in dS space and satis-
fies the following field equation [8, 9]:

(Y -2)p =0, (25)

and the explicit form of the physical vector fields
K, (x) are:

K,(x) = [Za - %Ea] (Hx-8°.  o=-1,-2.
(26)
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Eq. 26 shows that the solution can be written as the
multiplication of a generalized polarization vector
£,(x,Z,&) and a massless conformally coupled scalar
field in ambient space notations. This result is consis-
tent with that of [8]. An important difference with the
Mincowskian case is that the polarization vectors
£, (x, Z, &) are functions of the space-time variable X .
Moreover, unlike the Mincowskian case these two
solutions are not the complex conjugate of each other.
The polarization vectors satisfy following properties

&(x,Z,§) = go(ax, Z, %),
Sa(x’Z’ f) = Ea(x,Z, af)l

@7)
and the dS waves K,(x) are homogeneous with de-
gree o. The solution presented by Eq. 26 is the same
as that given in [8].

4. The physical two-point function

Thevector two-point function W, (x,x") whichis a
solution to the wave equation (14) with respect to X
or x', can be written in the following general form [5,
8]:

Wea(%,x") = 04 - 0'q,F(Z)
+ H%(x - 0,)(x" - 0,)G(2),

(28)
where W,,,(x, x") is a transverse bi-vector, F( Z) and
G(Z) are two arbitrary functions of Z = —H?%x - x'.
Comparing with the vector field (26), the two-point
function (28) can be written as

Wea (6, x") =16, -0 1 f(Z)
+ H%(x-0,)(x’
029 (Z)We (x, "),
(29)
where W,.(x,x") is the conformally coupled scalar
two-point function [8-10] and:

W, (x,x") = —% =7 ime(x® — x"°)85(1 - Z)],
(30)
with:
1 x0 > x'°,
e(x—x"°) =40 x0=x"°
-1 x0 < x'°,

The two-point function (30) satisfies the confor-
mally coupled scalar field equation:

(e = 2)W,. = 0. (31)

It is easy to show that (Appendix):

d 1
d—Zch(Z) =chc(Z)- (32)
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By imposing the two-point function (29) to obey
Eqg. (21) with respect to x and using the divergenceless
condition d,W** (x,x') = 0 it is easy to show that
the new functions f(Z) and f(Z) satisfy the following
system of differential equations

(Zf(Z) 229(Z) — 2(1 Z)f’(2)+(zz—1)f”(2)=o, 1))

= f(Z) 2f(Z)+ Zg(Z) 20-30g @D+ (22 -1)g" @ =0,(D)

4 -(Z-1)g@=0. din
(33)

To obtain the above equations, the formulas given
in [6] have been used. We suppose the following par-
ticular solutions to the above system of differential
equations:

AZ +B
1-2"°

CZ+D
(1-2)*
(34)

with constant coefficients A, B, C and D which must
be determined. Substituting these particular solutions
in the above system of differential equations we leave
with the following system of equations:

f@) =

9(2) =

{(A+C)ZZ+(D+B—A)Z+2A+B=O, )
2044+ 0)Z+2B+A+2D+3C) =0, an
—3(A+0)Z*+(5A—2B+3C—2D)Z+4B+C+3D=0. ()
(35)
which results in
Cc=-A
;B = —24, (36)
D = 3A.

Now using Egs. 36 and 34 in Eq. 29 we obtain:

W, (xx) = A[@ Baf ;
+H2(x 60 )(x

60) - Z)Z] Wee(x.x),

@37)
with an arbitrary constant coefficient A. It may be
fixed through the flat limit and requirement that it
must coincide on ‘the Minkowsian vector two-point
function. Through' the zero curvature limit we have
A=-1.

Now returning to Eq. 37, the explicit form of the
physical vector two-point function is:

.  2—-Z
W, (xx)= [ea 0017
+H? (x 6 ) (x
(I) (1 Z)z] WCC(x x)
(38)
which is ds-invariant and free of any logarithmic di-
vergence.
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The two-point function (38) is the physical sector
of the massless vector two-point function in ambient
space notations. It can be expressed in terms of the dS
intrinsic coordinates [5, 6]:

Qe X X =
L2 D9,y + 7~ Snang|We(x,x),

(39)
The two-point functions W,y (x,x) and Q. (X, X"
are related by:

0x% ox'%

Qua X, X") = & W (6, x7).

(40)
5. Conclusion

The "massless”. vector field equation in dS 4-
dimensional space is.gauge invariant under some spe-
cial gauge transformations. It is also gauge invariant in
ambient space notations in which the field equation is
written‘in terms of the Casimir operators of dS group.
In this article the physical dS "massless” vector wave
field equation is solved using ambient space notations.
It is shown that the solution can be written as the mul-
tiplication of a generalized polarization vector and a
"massless” conformally coupled scalar field. Unlike
the Minkowskian case, the generalized polarization
vector is a function of space-time variables. The Phys-
ical "massless" vector two-point function is calculated
in terms of the "massless" conformally coupled scalar
two-point function. The explicit form of the two-point
is given in terms of the basic bi-vectors of the flat 5-
dimensional ambient space. The two-point function is
expressed in terms of the dS intrinsic coordinates from
its ambient space counterpart. The two-point functions
are dS-invariant and free of any theoretical problem.

Appendix
Details of derivations of Egs. 31 and 32

As mentioned in the text, the conformally coupled
scalar two-point function is:

1

Wee(x,x') = — 871[1 1Z ms(x —x )6(1 Z)]

(A1)
Taking its derivative we have:
d n
az Ve X) = —go [(1 —7)2
d
_i 0_ N L 51—
ine (x x )dZ(S(l Z)].

(A.2)
Using the relation:

f f (08 (x)dx = f Lef (0)]'6(x)dx,
(A3)
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we have x6'(x) = —6(x) and returning to Eq. (A.2)
we have

d w1 1
d_ZWCC(x'x) - _%I:(l _Z)z
. 0\ 6(1—2)
—lTl.'S(xO—x )ﬁ .
(A.4)
Therefore:

d N 1 !
ﬁWCC(x,x) = mWCC(x,x ) (A 5)

Eg. (A.5) is not anything other than Eq. 32.

Now Eg. (A.5) can be used to confirm the validity of
Eq. 31. For this purpose one must note that, the scalar
Casimir operator Q(()l) can be written in the following
form [6]:

(1)=(1—22)d—2—4zi (4.6)
0 dz? dz’ '

Therefore:

r dZ !
0§ Wee ) = (1= 27) — 5 Weclox)

d '
- 4Zd_ZWCC(x'x ).
(A7)
From (A.5) we have:
d* , 2 :
EWCC(x,x )= mwcc(x,x ). (A.8)
Substituting (A.5) and (A.8) in (A.7). we have:
2(1-2%)
1 N — ’
Qp ' Weelx, x) a=7¢ We(6x)
47 )
— 1=z Weel,x)
2(1-7%) 4z
=[ (1—Z)2 _1_Z WCC(x’x)
= 2W .(x,x").
(A.9)
This means that:
(QV — 2)W,.(x,x") = 0. (A.10)

Eg. (A.10) is not anything other than Eq. 31.
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