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Abstract

In this Paper, we apply two approximate analytical methods of Perturbation Method (PM) and Homotopy Perturba-
tion Method (HPM) to solve the equation of beam deformation with two fixed end and under uniform distributed
load. The presented results in this paper reveal that these two methods are very effective and can be easily extended
to other nonlinear systems and can therefore be found widely applicable in engineering and other sciences.
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1. Introduction

Nonlinear systems have been widely used in many
areas of physics and engineering and are of significant
importance in mechanical and structural dynamics for
the comprehensive understanding and accurate predic-
tion of motion and deformation. The study of nonli:
near systems is of interest to many researchers and
various methods of solution have been proposed. Sur-
veys of the literature with numerous references, and
useful bibliographies, have been given by Nayfeh [1],
Mickens [2], Jordan and Smith [3] and more recently
by He [4].

The solving of governing equations:due to limitation
of existing exact solutions have been.one of the
most time-consuming and difficult affairs -among re-
searchers of nonlinear problems.

With the rapid development of nonlinear science,
there appears an ever-increasing interest of scientists
in the analytical asymptotic techniques for nonlinear
Problems and several analytical approximate methods
have been developed to solve linear and nonlinear
ordinary and partial differential equations.

Some of these techniques include Perturbation Me-
thod (PM) [4-7], Variational Iteration Method (VIM)
[8-12], Homotopy Perturbation Method (HPM) [13-
21], Energy Balance Method (EBM) [22-26], Varia-
tional Approach Method (VAM) [27-30], Parameter-
Expansion Method (PEM) [31-37], Amplitude-
Frequency Formulation (AFF) [38-43], Iteration Per-
turbation Method (IPM) [44, 45] and etc.

Among these methods, the Perturbation and Homoto-
py Perturbation Methods are considered to be two of
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powerful methods capable of handling strongly nonli-
near behaviors and can converge to an accurate solu-
tion for smooth nonlinear systems.

One of the responsibilities of the structural design
engineer is to devise arrangements and proportions of
members that can withstand, economically and effi-
ciently, the conditions anticipated during the lifetime
of a structure. A central aspect of this function is the
calculation of the beam deformation, which has very
wide applications in structural engineering.

The main objective of this paper is to approximately
solve nonlinear differential equation of beam elastic
deformation with two fixed end and under uniform
distributed load (Fig. 1), by applying the Perturbation
Method (PM) and Homotopy Perturbation Method
(HPM) and to compare the approximate results with
formula in mechanics of materials for beams with two
fixed end and under uniform distributed load.

The results presented in this paper reveal that the
methods are very effective for solution of nonlinear
differential equations of beam elastic deformation and
can be easily extended to other nonlinear systems and
can therefore be found widely applicable in engineer-
ing and other sciences.

The equation of beam elastic deformation with two
fixed end and under uniform distributed load is in the
following form [6]:

3
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In Eq. (2):

M(x) = (% (6Lx — L* — 6x2)>.
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In this equation, M is bending moment, E is the elas-
tic modulus and | is the second moment of area. | must
be calculated with respect to axis perpendicular to the
applied load.

With the boundary conditions:

y(@) =yL) =0, y'(0)=y'L)=0
O]

Zt W (N/m) f/
é | *

¥
Fig. 1. Beam with two fixed end and under uniform
distributed load

2. Computational method
1.2. The basic idea of perturbation method

Perturbation method is based on assuming that a pa-
rameter in the system is small. The approximate solu-
tion obtained by the perturbation methods, in most
cases are valid only for small value of the small para-
meter.

Generally, the perturbation solutions are uniformly
valid as long as a scientific system parameter is small.
However, we cannot rely fully on approximations,
because there is no criterion on which the small para-
meter should exist. Thus, it is essential to‘check the
validity of approximations numerically or experimen-
tally [4-7].

For a very small € << 1, let us assume a regular per-
turbation expansion and calculate the. first three terms,
thus we assume [4]:

6 = 60+891+8292. (3)
With substituting Eq.«(3) in the nonlinear differential
equation and after expansion and rearranging based on

coefficient of s-termwe have:

Coefficient of % Differential Equation in 6,(7) =

f@. (4)
Coefficient of ¢*: Differential Equation in 8,(r) and
8o(7) = 0. ()

Coefficient of &2: Differential Equation in 6,(7),

and finally with three-term expansion:

0(7) = €969, (1) + €10, (1) + £20,(7). )
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2.2. The basic idea of homotopy perturbation method

Until recently, the application of the homotopy pertur-
bation method in nonlinear problems has been devoted
by scientists and engineers, because this method is to
continuously deform a simple problem easy to solve
into the difficult problem under study. To illustrate the
basic ideas of this method, we consider the following
equation [13]:

A(w) — f(r) =0, ren (8)
with the boundary condition of;

B(u,Z—Z)zO, req (9)

where A is a‘general differential operator, B a boun-
dary operator, f(r) a known analytical function and T
is the boundary of theddomain Q.

A canrbe divided into two parts which are L and N,
where L is-linear and N is nonlinear. Therefore, it can
be rewritten as follows:

L(u)+N@) — f(r) =0. (10)

Homotopy perturbation structure is shown as follows:

H(v,p) = (1 - p)[L() — L(up)] + p[A(v) — f()] =0,
(11)

where,

v(r,p):Qx[01] >R (12)

In Eq. (11), p € [0,1] is an embedding parameter and
U is the first approximation that satisfies the boun-
dary condition. We can assume that the solution of Eq.
(11) can be written as a power series in P, as:

v = vy + pvy + p%v, + pivg + -, (13)
and the best approximation for solution is:
v=1im,,,v=v5+v; + v, +v3 + (14)
2.3. The application of perturbation method

To solve Eq. (1) by means of perturbation method,
first we change Eq. (1) to following form:

a2 ’ w
(ﬁy(x)> - (144(51)2 H(6Lx —LF - 6x2)2)

N\ 3
1+e- (dd—xy(x)> =0.
(15)

For very small ¢, let us assume a regular perturba-
tion expansion and calculate the first three terms, thus
we assume:
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y(x) = yo(x) + ey, (x) + €2y, (x). (16)

By substituting Eq. (16) in the Eq. (15) and after ex-
pansion and rearranging based on coefficient of e-
term we have:

2
o a% (1 w2(eLx-17-6x2)"\ _
e (dxz Yo (x)> (144 (ED? =0.

17)
el:2 (j—;yo(x)) : (j—;yl(x)) -

%W) ' (%%(90)2 = 0.
(18)

2
:2( L) (L) + () -
(ﬁ - (GL?;IL)Z_GX ) ) ’ <6 (%YO(X)> (;_x}ﬁ(X)) +

3 (%%(@)4) =0. w0
19

By solving the Eq. (17), Eqg. (18) and Eq. (19), we
have:

w 1 1
yo(x) = (ﬁ) . (—Lx3 +S L% + Ex“). (20)
(" N (4 10 _%;,09 1128
y1(x) = (1152(151)3) (15x 3Lx + 4 Iy
BL3x7 + = LAx® — 215x5 + %Lﬁx‘*). (21)
—_ _ sw* 2,16 _A46; 715
Y2(x) = (663552(51)5) ) (sx Y %

D2 - 2413513 + 20 A0 — 2[5y +
7
57 16,10 28 17,9 1 30,0 B30y L j10xo),
10 3 2 7 30

(22)
According to the perturbation method, we can con-
clude that:

lim y(x) = yo )t y1 (x) + y, (). (23)

Therefore, substituting the values of y,(x), y,(x) and
y,(x) from Eq. (20), Eq. (21) and Eq. (22) into Eq.
(23) yields:

w

y(x) = (ﬁ) . (—Lx3 + %szz + %x“) +

w3 4 4 11
(—) (—xw —=Lx% +—1%x% — 3L3x7 —
1152(EDN3/ \15 3 4
3 1 s5w5 2 16
31545 _L6x4) (—) . (_xle _ 167,15
5 + 12 + 663552(EI)S 5 5 +
80 197 153
7L2x14 — 2413x13 + o [Ax'? — LSx™ +
7 26 5 3 1
L6X10 - ?L7X9 + ELSXS - ;L9X7 + 5[;103(6).

S
197
10
(24)
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2.4. The application of homotopy perturbation method

To solve Eq. (1) by means of homotopy perturbation
method, first we change Eq. (1) to following form:

(;—;y(x)) - (% (6Lx — L? — 6x2)) .
<1 + % (%y(x)y) =0. (25)

To solve Eq. (25) by means of Homotopy Perturbation
Method, we consider the following process after sepa-
rating the linear and nonlinear parts of the equation. A
Homotopy can be constructed as follows:

H@y,p) =01 7p) (:—;y(x) — . (6Lx — L* —

12EI
12EI

(1 +§(;—xy(x))2>> - 0. (26)

We can“assume that the solution of Eq. (26) can be
written as a power series in p, as:

6x2)) +p- (:—;y(x) - (6Lx — 17 — 6x2) -

¥(x) = yo(x) + py1(x) + p2y, (). @27)

By substituting Eq. (27) into Eq. (26) and after expan-
sion and rearranging based on coefficient of p-term we
have:

O wx? _ wix | WL _
P (dx2 Yo (x)> + (ZEI 20 1251) =0. (28)
d2
p: (Eyl(x)> +
3wx?  3wLx | WI?\ [ d 2 _
(451 T4kl +E) <ay0(x)> =0.
(29)
2. 4% 3wx? _ 3wix | WI*\ (d .
P '<dx2 yZ(x)> + ( 2E1 e T 451) (dxyO(x)>

(En@)=0.
(30)

By solving Eg. (28), Eq. (29) and Eq. (30), we have:

Yo(x) = (i) . (—Lx3 + %szz + %x‘*). (31)

12EI

_ w? 4 .10 _ 47,9152 8
Y2 (%) = (1152(51)3) (15x 3Lx + 4 Lx

33x7 + 2 [4x6 — 2 [5x5 + iLGx‘*). (32)
6 5 12
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_ sw5 2 16 16, 15 , 80,2 14
y2(x) = (663552(E1)5) (sx 5 Lx™ + 7 Fx

2413%13 + 2 12 — IE Syl 4 DT 16x10
6 5 10
Bp7x% +218x8 — 2197 + iLloxé).
3 2 7 30
(33)
According to the Homotopy Perturbation Method, we
can conclude that:

lim y(x) = yo(x) + y1(x) +y, (). €L
Therefore, substituting the values of y,(x), y;(x) ,
and y,(x) from Eq. (31), Eq. (32) and Eq. (33) into
Eq. (34) yields:

y(x) = (%) . (—Lx3 + %szz + %x“) +

3
(W—) (ix10 —2Lx% + 2 12x8 — 3I3x7 +
1152(EN3/ \15 3 4

11 3 1 s5W5 2
—L*x® —215x5 4+ —L6x4) + (—) (—x16 -
6 5 12 663552(EN5/ \5
a1 4 2 p2x14 2413513 4 D ax12

5 7 6

153 197 26 5 3
TLSx“ + EL‘*xlo — ?L7X9 + ELBXB — ;L9X7 +

- Lloxé). (35)

3. Results

In this section, we compare the results of Perturbation
method (PM) and Homotopy Perturbation Method
(HPM) with formula in mechanics of materials for
beams with two fixed end and under uniform-distri-
buted load.

In mechanics of materials for beams with two fixed
end and under uniform distributed load the deforma-
tion is computed by following formula [6]:

1 Wx?(L—x)?
y() =5, I - (36)
The approximate analytical results.are in good agree-
ment with the results obtained by the formula in me-
chanics of materials for beams with two fixed end and
under uniform distributed load. The results of compar-
ison between Perturbation Method (PM) with formula

Journal of Theoretical and Applied Physics, 5-2 (2011)

Table 2. Comparison of perturbation method with for-
mula in mechanics of materials for beams with two fixed
end and under uniform distributed load when (EI =
1000, L = 1m,W = 100 N)

X (displacement Perturbation Formula in Mechanics
from left support) Method (PM) of Material
0.10 0.000034 0.000034
0.20 0.000107 0.000107
0.30 0.000184 0.000184
0.40 0.000240 0.000240
0.50 0.000260 0.000260

Table 3. Comparison of perturbation method with for-
mula in mechanics of materials for beams with two fixed
end and under uniform distributed load when (EI =
1500, L = 1m,W = 100 N)

X (displacement Perturbation Formula in Mechanics
from left support) Method (PM) of Material
0.10 0.000022 0.000022
0.20 0.000071 0.000071
0.30 0.000122 0.000122
0.40 0.000160 0.000160
0.50 0.000174 0.000174

Table 4. Comparison of perturbation method with for-
mula in mechanics of materials for beams with two fixed
end and under uniform distributed load when (ET =
500-—,L = 2m,W = 100 N)

X (displacement Perturbation Formula in Mechan-
from left support) | Method (PM) ics of Material
0.10 0.0003 0.0003
0.20 0.0011 0.0011
0.30 0.0022 0.0022
0.40 0.0034 0.0034
0.50 0.0047 0.0047
0.60 0.0059 0.0059
0.70 0.0069 0.0069
0.80 0.0077 0.0077
0.90 0.0082 0.0082
1.00 0.0083 0.0083

Table 5. Comparison of perturbation method with for-
mula in mechanics of materials for beams with two fixed
end and under uniform distributed load when (EI =
500, L = 3m,W = 100 N)

in mechanics of materials for beams with two fixed X (displacement | Perturbation | Formulain Mechanics
end and under uniform distributed load are given in from left support) | Method (PM) of Material
Tables (1-5). 0.10 0.0007 0.0007
. . . 0.20 0.0026 0.0026
Table 1. Comparison of perturbation method with for- 0.30 0.0055 0.0055
mula in mechanics qf mater?als_for beams with two fixed 0.40 0.0090 0.0090
end z;\vnd under uniform distributed load when (EI = 050 00130 0.0130
5005, L=1m W =100 N) 0.60 0.0173 0.0173
X (displacement Perturbation Formula in Me- 0.70 0.0216 0.0216
from left support) Method (PM) chanics 0.80 0.0258 0.0258
of Material

0.10 0.000067 0.000067 (1)38 ggggi ggggi
0.20 0.000213 0.000213 110 0.0364 0.0362
0.30 0.000367 0.000367 1.20 0.0390 0.0390
0.40 0.000480 0.000480 1.30 0.0407 0.0207
0.50 0.000521 0.000521 1.40 0.0418 0.0218
1.50 0.0422 0.0422
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The results of comparison between Homotopy Pertur-
bation Method (HPM) with formula in mechanics of
materials for beams with two fixed end and under uni-
form distributed load are given in Tables (6-10).

Table 6. Comparison of homotopy perturbation method
with formula in mechanics of materials for beams with
two fixed end and under uniform distributed load when

(EI = 500—,L = 1m, W = 100 N)
m

Journal of Theoretical and Applied Physics, 5-2 (2011)

Table 10. Comparison of homotopy perturbation method
with formula in mechanics of materials for beams with
two fixed end and under uniform distributed load when
(EI = 5000-, L = 3m, W = 100 N)

X (displacement Homotopy Perturba- | Formulain Me-
from left support) tion Method (HPM) chanics

of Material
0.10 0.000067 0.000067
0.20 0.000213 0.000213
0.30 0.000367 0.000367
0.40 0.000480 0.000480
0.50 0.000521 0.000521

Table 7. Comparison of homotopy perturbation method
with formula in mechanics of materials for beams with
two fixed end and under uniform distributed load when
(EI = 1000%,L =1m,W = 100 N)

X(displacement Homotopy Perturba- Formula in Me-
from left support) tion Method (HPM) chanics
of Material
0.10 0.0007 0.0007
0.20 0.0026 0.0026
0.30 0.0055 0.0055
0.40 0.0090 0.0090
0.50 0.0130 0.0130
0.60 0.0173 0.0173
0.70 0.0216 0.0216
0.80 0.0258 0.0258
0.90 0.0298 0.0298
1.00 0.0334 0.0334
1.10 0.0364 0.0364
1.20 0.0390 0.0390
1.30 0.0407 0.0407
1.40 0.0418 0.0418
1.50 0.0422 0.0422

X (displacement Homotopy Perturba- Formulain
from left support) tion Method (HPM) Mechanics
of Material

0.10 0.000034 0.000034

0.20 0.000107 0.000107

0.30 0.000184 0.000184

0.40 0.000240 0.000240

0.50 0.000260 0.000260

Table 8. Comparison of homotopy perturbation.method
with formula in mechanics of materials for beams with
two fixed end and under uniform distributed load when
(EI = 1500%1 =1m,W = 100 N)

X (displacement Homotopy Perturba- Formula in
from left support) tion Method (HPM) Mechanics
of Material

0.10 0.000022 0.000022

0.20 0.000071 0.000071

0.30 0.000122 0.000122

0.40 0.000160 0.000160

0.50 0.000174 0.000174

Table 9. Comparison of homotopy perturbation method
with formula in mechanics of materials for beams with
two fixed end and under uniform distributed load when

(EI = 500-%,L =2m,W = 100 N)

m?2

X (displacement Homotopy Pertur- Formula in Me-
from left support) bation Method chanics
(HPM) of Material
0.10 0.0003 0.0003
0.20 0.0011 0.0011
0.30 0.0022 0.0022
0.40 0.0034 0.0034
0.50 0.0047 0.0047
0.60 0.0059 0.0059
0.70 0.0069 0.0069
0.80 0.0077 0.0077
0.90 0.0082 0.0082
1.00 0.0083 0.0083

4. Conclusion

In this paper, the Homotopy Perturbation Method and
Perturbation method have been successfully applied to
the nonlinear differential equation of beam deforma-
tion with two fixed end and under uniform distributed
load. These methods enable to convert a difficult prob-
lem into a simple problem which can easily be solved.
Comparisons of the results obtained here provide
more realistic solutions, reinforcing the conclusions
pointed out by many researchers about the efficiency
of these two methods. Therefore the Homotopy Per-
turbation Method and Perturbation Method are power-
ful mathematical tools that can be widely applied to
structural engineering such as beam problems.
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