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Abstract 
                       
The purpose of this paper is to present a formulation of supersymmetry quantum mechanics on noncommutative 
space. In particular we construct Supersymmetric Quantum Mechanics (SQM) in terms of N = 2 real supercharges 
on noncommutative space in arbitrary dimensions. The exact eigenspectra of the two dimensional noncommutative 
superoscillators is obtained.  
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1. Introduction 
 
The algebraic technique of supersymmetry in quantum 
mechanics (SQM) was first introduced by witten [1,2]. 
One of the main problems which are involved in many 
physical is the difference of energy state between 
ground state and first excited state for potential wells. 
This is generally solved by using the approximation 
methods. Recently we calculated these different values 
for a five fold and seven fold potential wells using 
supersymmetry in quantum mechanics. We finally 
generalized it to find a relation for (2n+1)–fold wells 
[3,4]. We started with a free theory of a bosonic and a 
fermonic oscillator of unequal frequencies witch is not 
supersymmetry and showed that in the presence of 
interactions this theory can become supersymmetry 
[5]. In this paper we will start supersymmetry in non 
relativistic quantum mechanics (QM) and calculate the 
exact eigenspectra of the two dimensional noncom-
mutative superoscillators, using the supersymmetry 
[6]. At this critical surface, the energy-spectrum of the 
bosonic sector is infinitely degenerate, while the de-
generacy in the spectrum of the fermionic sector gets 
enhanced by a factor of two for each pair of reduced 
canonical coordinates. 
     In this paper we will make use of the momentum 
space Green's function and Clifford algebra [7]. 
Nonlinear supersymmetry is a natural generalization 
of the usual linear supersymmetry. It is realized va-
riously in such different systems as the parabosonic 
and parafermionic [8]. 
 
 

2. General Formulation 
 
Consider the noncommutative algebra: 
 
,ොݔൣ ො൧ݔ ൌ  ,ߠ݅
,̂ൣ ൧̂ ൌ  ,ܤ݅
,ොݔൣ ൧̂ ൌ ߜ݅  ݅൫1 െ  ,ܥ൯ߜ
݅, ݆ ൌ 1,2, … . , ܰ      

(1) 
where ߠ and ܤ are real, antisymmetric matrices are 
independent of the hermitian operetors  ݔො ,  . Thê
elements of the matrix ܥ are taken to be zero and its 
off diagonal elements do not depend on the space and 
momentum coordinates. We introduce 2N elements ߝ 
satisfying the following real Clifford algebra: 
 
 ൛ߝ, ൟߝ ൌ 2݃      ,      ݃ ൌ ቀെܫ 0

0                                                    ቁܫ
(2) 

where I is an  ܰ ൈ ܰ  identity matrix. The signature of 
the matrix ݃ is such that the square of the ߝ 's is 
equal to 1 or -1 depending on whether ݅  ܰ  or  
݅  ܰ, respectively. In particular: 
 
ேାଵߝ 

ଶ ൌ െߝ
ଶ ൌ 1   ,    ݅ ൌ 1,2, … . . , ܰ                                                   

(3) 
     We use a particular matrix representation of the 
Clifford algebra so that the following additional rela-
tions are also satisfied: 
 
ߝ 

ା ൌ െߝ     ,      ߝேାଵ
ା ൌ                                                                ேାଵߝ

(4) 
where ܺା denotes the hermitian adjoint of ܺ. Such a 
matrix representation of the Clifford algebra is re-
quired to construct hermitian Hamiltonian within our 
approach. We further introduce the hermitian operator  
 :[9] ߛ
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ߛ  ൌ ଶߝଵߝ … .                                                                                                                  ,ଶேߝଶேିଵߝ
(5) 

That anticommutes with all the ߝ 's and  ߛଶ ൌ 1. The 
elements of the Clifford algebra  ߝ,  ேାଵ commuteߝ
with the noncommutative bosonic variables  ݔො  and  
 :̂
 
,ොݔൣ  ൧ߝ ൌ ,̂ൣ ൧ߝ ൌ 0, ,ොݔൣ ேା൧ߝ ൌ ,̂ൣ ேା൧ߝ ൌ ,݅         ,0 ݆                                              

 (6) 
     It naturally follows that  ߛ also commutes with all 
the bosonic coordinates. 
     We now introduce the supercharges  ܳଵ and ܳଶ: 
 
 ܳଵ ൌ ଵ

√ଶ
∑ ൣെ݅ߝ̂  ேାଵߝ ܹ൧    ,      ܳଶ ൌ െ݅ܳߛଵ

ே
ୀଵ .                                                                 

(7) 
     The superpotential ܹ are real functions of the 
noncommutative coordinate ݔො and in general  
ൣ ܹ, ܹ൧ ് 0. Note that both ܳଵ and ܳଶ are con-
structed to be hermitian operators for real ܹ. 
     The supercharges ܳଵ and ܳଶ satisfy the following 
standard superalgebra: 
 
൛ܳఈ, ܳఉൟ ൌ ,ܪሾ    ,    ܪఈ,ఉߜ2 ܳఈሿ ൌ ,ߙ   ,   0 ߚ ൌ 1,2:                                                                   

(8) 
where the Hamiltonian  H  is given by: 
 
ܪ  ൌ ଵ

ଶ
∑ ൫̂

ଶ  ܹ
ଶ൯ െ 

ସ
∑ ൫ܤߝߝ ே

,ୀଵ
ே
ୀଵ

,̂ேାଵൣߝߝ2 ܹ൧  ேାൣߝேାߝ݅ ܹ, ܹ൧൯.              
 (9) 

     The Hamiltonian H  is hermitian, since it is given 
by the square of the hermitian operator  ܳଵሺܳଶሻ. 
The hermiticity of   H  can also be checked explicitly 
using Eq. (4). The term containing  ܤ  arises due to 
the noncommutativity among momentum operators. 
Similary, the last term in H that is proportional to  
ൣ ܹ, ܹ൧  arises due to the noncommutativity among 
space coordinates. Such a term is absent for super-
symmetry quantum mechanics on commutative space. 
A few comments are in order at this point: 
(i) if  we allow  ߠ,   to be functions of theܥ    andܤ
noncommutative coordinates ݔො, - instead of ĉ
number marrices, the whole analysis up to the con-
struction of the superhamiltonian (Eq. (9)) remains 
valid. It is worth mentioning here that the Jacobi iden-
tities severely restrict the choice of the operators  
, ߠ , ܤ  . for such more general theoriesܥ
(ii) In the standard construction of supersymmetric 
quantum mechanics on the commutative space, one 
usually introduces fermionic variables  ߰ and  its 
conjugate ߰

ା: 
 
 ߰ ൌ 

ଶ
ሺߝ െ ;      ேାሻߝ       ߰

ା ൌ 
ଶ

ሺߝ                                                                              ,ேାሻߝ
(10) 

So that the eigenstates can be labeled in terms of the 
total fermion number ிܰ ൌ ∑ ߰

ା߰ . However, one 
can check that H contains terms of the form  ߰߰,

߰
ା߰

ା for  ܤ , ߠ  ് 0, implying  ܰ is not a con-
servsd quantity. 
(iii) let us define another set of supercharges ݍଵ and  
 :ଶݍ
 
ଵݍ  ൌ െ ଵ

√ଶ
∑ ൫ߝேା̂  ߝ݅ ܹ൯ே

ୀଵ ଶݍ     , ൌ െ݅ݍߛଵ                                 
(11) 

These two supercharges satisfy the standard superal-
gebra (Eq. (8)) with the Hamiltonian  ݄ ؠ ଵݍ

ଶ ൌ ଶݍ
ଶ: 

 
 ݄ ൌ ଵ

ଶ
∑ ൫̂

ଶ  ܹ
ଶ൯  

ସ
∑ ൫ܤߝேାߝேା െே

,ୀଵ
ே
ୀଵ

,̂ேାൣߝߝ2 ܹ൧  ൣߝߝ݅ ܹ, ܹ൧൯.              
 (12) 

     In the commutative limit ܤ ൌ ߠ ൌ ܥ ൌ 0, the 
two Hamiltonian H and h are identical. Moreover, in 
the same limit, the pair of charges ሺܳଵ,   ଵሻ andݍ
the pair ሺܳଶ, -ଶሻ satify the superalgebra (Eq. (8)) sepaݍ
rately. Although, ሺܳଵ, ܳଶ, ,ଵݍ   ଶሻ do not close underݍ
an enlarged N = 4 superalgebra, we have the freedom  
of choosing any pair of the supercharges  
ሼሺܳଵ, ܳଶሻ, ሺݍଵ, ,ଶሻݍ ሺܳଵ, ,ଵሻݍ ሺܳଶ,  ଶሻሽ for a given N = 2ݍ
super-Hamiltonian H = h on the commutative space. 
However, if we take any of the parameters ߠ, ,ܤ   ܥ
non-zero, such a freedom is completely lost. We are 
compelled to choose either the pair ሺܳଵ, ܳଶሻ or  
ሺݍଵ, -ଶሻ and of course, in general, the superݍ
Hamiltonian H and h are not identical. 
 
3. Superoscillators 
 
We will be working with  ܳଵ, ܳଶ and H in the rest of 
the paper. We also consider  ߠ, ,ܤ   as constantܥ
matrices from now on. For the case of superoscillator 
(SO), we choose  ܹ ൌ  .ොݔ߱
     The Hamiltonian now reads: 
 
ܪ ൌ ܪ െ  ܪ
ܪ ؠ ଵ

ଶ
∑ ሺ̂

ଶ  ߱ଶݔො
ଶሻே

ୀଵ                                                                      
ܪ ؠ ఠ

ଶ
൫∑ ேାߝߝ െ ∑ ஷܥߝேାߝ

ே
ୀଵ ൯ 


ସ

∑ ൫ܤߝߝ െ ߱ଶߠߝேାߝேା൯ே
,ୀଵ .                     

(13) 
     In the limit of ܤ, ,ߠ ܥ ՜ 0, the Hamiltonian of 
the superoscillator on commutative space is recovered. 
Note that ܪ is a function of the noncommutative co-
ordinates and the momenta only, whereas  ܪ is solely 
expressed in terms of the elements of the Clifford al-
gebra. This implies that ܪ and ܪ can be diagona-
lized separately. 
     A comment is in order at this point. The N dimen-
sional superoscillator is described in terms of 2N ele-
ments of the Clifford algebra (Eq. 2). So, the Hamilto-
nian  ܪ can be expressed in terms of the linear com-
bination of the N (2N-1) generators  ∑ :ଵ,ଶ,ଷ

  

 ൌ
݅
4 ,ߝൣ ,൧ߝ

ଵ
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 ൌ
݅
4 ,ேାߝൣ ,ேା൧ߝ

ଶ


 

 ൌ
݅
4 ,ߝൣ ேା൧ߝ

ଷ


, 

                                          (14) 
of the group SO (N,N) of rank N [10]. Thus, in gener-
al, the eigenvalues of  ܪ can be expressed in terms of 
N quantum numbers. Further, in the matrix representa-
tion of the Clifford algebra (Eq. 2), both the genera-
tors  ∑ ,ଵ,ଶ,ଷ

  and the Hamiltonian ܪ can be expressed 
in terms of  2ே ൈ 2ே  dimensional matrices. Thus, 
each of the N quantum numbers can take only two 
values. 
 
4. Two dimensional superoscillator 
 
We now specialize in this section to the noncommuta-
tive plane for which the antisymmetric matrices ܤ 
and ߠ can be parametrized in terms of signal parame-
ters B and  θ, respectively. In particular: 
 
ଵଶܥ ؠ ߮ଵ  , ଶଵܥ ؠ െ߮ଶ   ,   ܤ ؠ ߳ߠ   ,  ܤ ؠ
߳ߠ   ,     ݅, ݆ ൌ 1,2.                                          

 (15) 
     With this choise for ܤ and  ߠ there are many 
physically equivalent representations [5,6] of the alge-
bra (Eq. (1)) in terms of commutative canonically con-
jugate variables ݔ and   satifying: 
 
,ݔൣ ൧ݔ ൌ 0, ,ൣ ൧ ൌ ,ݔൣ   ,0 ൧ ൌ                                                                                 .ߜ݅

(16) 
     As shown in Ref. [11,12], the Hamiltonian  ܪ 
with N = 2 can be equivalently written as a two-
dimensional anisotropic oscillator. In particular: 
 
ܪ  ൌ ଵ

ଶ
ሾΩାሺଵ

ଶ  ଵݔ
ଶሻ  Ωିሺଶ

ଶ  ଶݔ
ଶሻሿ 

 2Ωേ ൌ ඥሺ߱ଶߠ െ ሻଶܤ  4߱ଶ  ߱ଶሺ߮ଵ  ߮ଶሻଶ േ
ඥሺ߱ଶߠ  ሻଶܤ  ߱ଶሺ߮ଵ െ ߮ଶሻଶ ,    ݇  0 
 2Ωേ ൌ േඥሺ߱ଶߠ െ ሻଶܤ  4߱ଶ  ߱ଶሺ߮ଵ  ߮ଶሻଶ 
ඥሺ߱ଶߠ  ሻଶܤ  ߱ଶሺ߮ଵ െ ߮ଶሻଶ ,    ݇ ൏ 0 
 Ωା ൌ ඥሺ߱ଶߠ  ሻଶܤ  ߱ଶሺ߮ଵ െ ߮ଶሻଶ,     
 Ωି ൌ 0 ,      ݇ ൌ 0,                                

 (17) 
where the positive and the negative values of the pa-
rameter  ݇ ؠ ߱ଶሺ1 െ ߠܤ  ߮ଵ߮ଶሻ  correspond to two 
different phases of the noncommutative oscillators, 
the critical value being k = 0. The energy eigenvalues  
 :  areܪ   ofܧ
 
ܧ ൌ ቀ݊ା

  ଵ
ଶ
ቁ Ωା  ቀ݊ି

  ଵ
ଶ
ቁ Ωି,                                                                                              

(18) 
where the quantum numbers ݊േ

  can take any non-
negative integer values. 
     In order to diagonalize ܪ, we use the following 
matrix representation of the Clifford algebra: 

 
ଵߝ ൌ ;         ଶߪଵ۪ߪ݅ ଶߝ        ൌ  ,ଶߪଶ۪ߪ݅
ଷߝ ൌ െߪଷ۪ߪଶ       ; ସߝ        ൌ                                                        ,ଷߪ۪ܫ

(19) 
where  ߪଵ,ଶ,ଷ  are the three Pauli matrices and I is a  
2 ൈ 2 identity matrix. The Hamiltonian  ܪ  is a 4 ൈ 4 
matrix: 
 

ܪ ൌ ൬ߙ ߚ
ߚ  ,൰ߙ

ߙ ؠ ൮

ܤ
2

߱
2

ሺ݅  ߮ଵሻ

߱
2

ሺെ݅  ߮ଵሻ െ
ܤ
2

൲,       

ߚ ؠ ቌ
െ ఠమఏ

ଶ
ఠ
ଶ

ሺ݅  ߮ଶሻ
ఠ
ଶ

ሺെ݅  ߮ଶሻ ఠమఏ
ଶ

ቍ.                       

(20) 
The eigenvalues of  ܪ  are, 
 
ቄെ ଵ

ଶ
ሺΩା െ Ωିሻ, ଵ

ଶ
ሺΩା െ Ωିሻ, െ ଵ

ଶ
ሺΩା  Ωିሻ, ଵ

ଶ
ሺΩା 

Ωିሻቅ.                                               
  (21) 

For  Ωି ൌ 0 , there are only two independent eigenva-
lues  േ ଵ

ଶ
Ωା , each of them being doubly degenerate. 

The frequency  Ωି  vanishes only in the critical phase 
k = 0. 
 
5. Conclusions 
 
We have constructed supersymmetric quantum  
mechanics on the noncommutative space in terms of N 
= 2 real supercharges. This construction is valid in any 
arbitrary dimensions for arbitrary superpotential. 
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