# RESEARCH

# **Open Access**

# Density functional investigation of structures and energetics of pure and Sn-doped small lithium clusters

Masoud Ansarino<sup>\*</sup> and Shahab Zorriasatein

# Abstract

Ground state geometry, energetics, and bonding of pure  $Li_n(n=2-9)$  and impure  $Li_n Sn(n=1-8)$  small clusters are investigated using the density functional theory. Introducing a single Sn impurity significantly changes the geometry of the host clusters for n > 5. Although the Sn atom is not trapped inside the cluster, it has the greatest coordination number among other atoms in the cluster. The analyses showed that the nearest neighbor bond lengths in Sn are approximately 10% shorter than those in Li. The results elucidate that the binding energy per atom in impure clusters is greater than that in pure clusters. Finally, it is shown that for  $Li_8$  and  $Li_4Sn$  clusters that each have with eight valence electrons, the greater gap in the highest occupied molecular orbital and the lowest unoccupied molecular orbital results in a more stable cluster.

**Keywords:** Cluster, *ab initio*, DFT, MD, Ground state **PACs:** 61.46. + w, 31.15.Ew, 31.15.Qg, 36.40.Qv

## Background

The physical and chemical properties of materials such as melting point, heat capacity, flexibility, thermal and electrical conductivity, and magnetic and optical properties are known to be different in the nano field and the bulk state, and a strong dependence between these properties and the cluster's size has been established. This issue motivates the study of variation in geometry and energy in addition to the effects of cluster impurity on these parameters. Past studies on binary clusters that are composed of two types of elements revealed a number of interesting aspects including trapping of an impurity, changes in the equilibrium geometry, electronic structure, energetic properties, as well as bonding characteristics and stability of the doped clusters compare to the pure host.

Pure lithium and its metallic impurities are used in a wide range of applications, including batteries and accumulators, manufacturing of conductors, optical glasses,

\* Correspondence: m\_ansarino@azad.ac.ir

Department of Physics, Faculty of Science, Islamic Azad University-South Tehran Branch, Tehran, Iran

increasing brilliance of pigments, photographic industry, and synthesis of pharmaceutical and organic industry, which motivates additional investigation to better understand behavior of lithium nanoclusters.

Experimental studies on lithium clusters using photo ionization [1], evaporation [2], and Raman spectroscopy [3] have reported stability alternation in  $\text{Li}_n$  depending on even or odd value for *n*, with even-sized clusters being more stable. Also, the  $\text{Li}_8$  and  $\text{Li}_{20}$  clusters (with 8 and 20 valence electrons) are shown to be more stable than other clusters.

Several properties of  $Li_n$  clusters, such as ground state (GS) and excited state (ES) geometries, electronic structure, binding and dissociation energies, ionization potentials, highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO) gap, and thermodynamics for different values of n, have been studied in the past [4-12]. Theoretical studies of lithium clusters with impurities such as Sn, Al, B, Na, Be, Mg, H, K, F, Si, C, and O have also been performed in the literature [13-39]. Most of these studies consider the lithium cluster as the host and investigate the effect of impurities. The results from studying impurity of Be in  $Li_n$  host cluster [33,34], Li in the Na<sub>n</sub> clusters [29,30,32],



© 2012 Ansarino and Zorriasatein; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Al in  $Li_n$  [12,17], and B in  $Li_n$  [23-25] indicate that, in general, an impurity with a smaller ionic radius and larger electronegativity prefers to be trapped in the host cluster [14]. On the other hand, the results from studying impurities of Mg in the host cluster of  $Li_n$  [33,34], Na in Li<sub>n</sub> [29,31,33], K in Li<sub>n</sub> [31,32], H in Li<sub>n</sub> [36], Li in  $Si_n$  [38], Li in Al<sub>n</sub> [18,22], Li in B<sub>n</sub> [26], Li in Be<sub>n</sub> [13], and Sn in  $Li_n$  [14-16] suggest that when the impurity stays on the surface of the host cluster, there is no relation between the atomic radius and the electronegativity of the guest and host atoms. Using molecular dynamic (MD) simulations, Joshi and Kanhere [7] studied the geometry of GS and ES as well as the thermodynamics of the Li<sub>7</sub> and Li<sub>6</sub>Sn clusters. They observed a charge transferring from Li to Sn because of the significant difference in their electronegativity. Joshi and Kanhere [14], and Lee et al. [15] used DFT to study several properties of Li<sub>n</sub>Sn(n=1-9) clusters including the geometry of GS and ES, energetics, HOMO-LUMO gap, and electronic structure. They concluded that, among the cited clusters, Li<sub>4</sub>Sn is the most stable cluster, that the Sn atom in the  $Li_n$  cluster is not trapped, and that charge transfer from Li to Sn is significant. Lee et al. [16] used MD to study the geometry, energetics, and bonds of  $Li_{10-n}Sn(n=0-10)$ clusters and observed that a slight increase in Sn can alter the geometry of Li-rich clusters significantly.

The objective of this article is twofold. First, the geometry of GS and ES of pure  $\text{Li}_n$  clusters in the range of n = 2 to 9 are obtained to study energetics, bonds, and shapes of these clusters. Second, by substituting one tin atom in these clusters, we follow the same procedure that is performed for  $\text{Li}_n \text{Sn} (n = 1 - 8)$  clusters to examine the effect of impurity on geometry, energy, and bonds of pure clusters.

## **Results and discussion**

Figures 1 and 2 show the GS, the first and one of the interesting ES geometries for  $\text{Li}_n (n = 3 - 9)$  and

 $\text{Li}_n \text{Sn} (n = 2 - 8)$  clusters, respectively. The bond length of Li<sub>2</sub> and are 2.71 A and 2.76 A, respectively. The GS geometry of Li<sub>3</sub>, an isosceles triangle with sides of 2.78 Å and a base of 3.31 Å, have been reported in the works of Gardet et al. and Jones et al. [4,5]. The ES structure of this cluster, which has 0.18 eV energy greater than GS, is linear [14,15]. The lowest lying structure of Li<sub>2</sub>Sn cluster is an isosceles triangle with the Sn on its vertex. The bond length of Sn with Li atoms is 2.72 Å, while the bond length between Li atoms is 3.38 Å. In addition, the first ES of this cluster is linear.

The GS of  $Li_4$  cluster [4,5,8] has the shape of a planar rhombus with sides of 3.00 Å. Replacing the Li atom with a single Sn atom in this cluster changes the shape of Li<sub>3</sub>Sn to a deformed rhombus, in which the bond length of Sn with two Li atoms is 2.60 Å, with the third one being 2.69 A. This is a planar cluster with the first ES shape of a regular tetrahedron with a binding energy greater than 0.07 eV. The second ES of this cluster has the shape of an asterisk with a binding energy that is 0.25 eV greater than the GS. In this cluster, we observed the GS of Joshi and Kanhere [14] as the first ES. After Li<sub>4</sub> and Li<sub>3</sub>Sn, the clusters are three-dimensional. The GS of  $Li_5$  [4,5,9] has the shape of a triangular bipyramid, and its ES is planar with  $\Delta E = 0.17 \text{eV}$  [9]. The lowest lying structure of Li<sub>4</sub>Sn is a slightly distorted triangular bipyramid. This GS geometry has been reported in the works of Joshi and Kanhere and Shetty et al. [14,15]. Its first ES is a rectangular pyramid with 0.08 eV greater than GS. The GS of Li<sub>6</sub> [4,5,8,9,11] is a rectangular bipyramid and includes two rhombi that are perpendicular to each other. The first ES of this cluster is a pentagonal pyramid, while the second ES is planar with  $\Delta E = 0.42 \text{eV}$  [9,11].

The lowest lying structure of  $Li_5Sn$ , which is a rectangular bipyramid, and its first ES with a 0.02eV greater energy have been reported [15]. The second





ES with 0.18eV energy more than that in GS is a caped rectangular pyramid. Up to this stage, the geometry of either pure or impure clusters is almost similar, and the substitution of Sn atom has only slightly changed the shape of the host cluster. Hereafter, the existence of impure atom changes the geometry of the host cluster significantly. The GS of Li<sub>7</sub> cluster is a pentagonal bipyramid [4,5,7,9]. Its first ES with  $\Delta E = 0.21$  eV has been reported by Joshi and Kanhere [7]. The GS of Li<sub>6</sub>Sn is a caped rectangular bipyramid and reported in the works of Joshi and Kanhere and Shetty et al. [7,14,15]. We observe that the first ES of this cluster with a 0.06eV greater energy has two tetrahedrons that connect through the vertex of Sn. Its tertiary ES with a binding energy of 0.16eV greater than the GS (the second ES is not shown in the figure) has been reported as the first ES [7]. The lowest lying geometry of  $Li_8$  has the structure of  $Li_6$  with two atoms added to the bottom. The same cluster with one trapped atom in it has been reported by Fournier et al. [6]. The Li<sub>7</sub>Sn GS that has the same structure of Li<sub>6</sub>Sn with one additional caped atom has not been reported so far. The Li<sub>9</sub> GS has the form of two rectangular pyramids that are connected through the vertex, creating a cage with an atom trapped in it [6]. The Li<sub>8</sub>Sn GS has the same structure as Li<sub>7</sub>Sn with another Li atom added to it. In fact, this cluster consists of two trigonal bipyramids that are connected through the vertex of Sn. The GS reported by Joshi and Kanhere [14] is one of the ES of this cluster. This ES has an additional 0.17eV energy relative to its GS and the shape of a bicaped pentagonal bipyramid.

It can be seen that  $Li_8$  and  $Li_9$  have trapped atoms. The comparison between Figures 1 and 2 shows that when the impurity of Sn is added to pure  $Li_n$  clusters, this impurity sets on the surface of the host cluster and changes its geometry. This change is especially significant for clusters with seven or more atoms.

The calculated coordination numbers (CN) for all atoms in impure  $\text{Li}_n$ Sn clusters are shown in Table 1. To determine the CN, we assume the nearest neighbor distance of 3.3 Å. Up to  $\text{Li}_6$ Sn, the value of CN for the Sn atom is equal to the number of Li atoms in each cluster. For  $\text{Li}_7$ Sn and  $\text{Li}_8$ Sn, the Sn atom assume the maximum CN. The average value of bond length for the nearest

Table 1 Coordination numbers for the atoms in the GS geometries of  $Li_n Sn(n = 1-8)$ 

|                    | Coordination numbers |    |        |        |        |    |  |  |  |
|--------------------|----------------------|----|--------|--------|--------|----|--|--|--|
| Cluster size       | 1                    | 2  | 3      | 4      | 5      | 6  |  |  |  |
| Li <sub>1</sub> Sn | 1 + Sn               | 0  | 0      | 0      | 0      | 0  |  |  |  |
| Li <sub>2</sub> Sn | 2                    | Sn | 0      | 0      | 0      | 0  |  |  |  |
| Li <sub>3</sub> Sn | 0                    | 2  | 1 + Sn | 0      | 0      | 0  |  |  |  |
| Li <sub>4</sub> Sn | 0                    | 0  | 2      | 2 + Sn | 0      | 0  |  |  |  |
| Li₅Sn              | 0                    | 4  | 0      | 0      | 1 + Sn | 0  |  |  |  |
| Li <sub>6</sub> Sn | 0                    | 0  | 6      | 0      | 0      | Sn |  |  |  |
| Li <sub>7</sub> Sn | 0                    | 0  | 3      | 3      | 1      | Sn |  |  |  |
| Li <sub>8</sub> Sn | 0                    | 0  | 2      | 4      | 2      | Sn |  |  |  |

www.SID.ir

To analyze the stability of  $\text{Li}_n$  and  $\text{Li}_n\text{Sn}$  clusters, the binding energy per atom (Eb), dissociation energy ( $\Delta_1 E$ ), and second-order difference energy ( $\Delta_2 E$ ) are calculated from the following equations:

$$E_{\rm b}[{\rm Li}_n{\rm Sn}] = \frac{nE[{\rm Li}] + E[{\rm Sn}] - E[{\rm Li}_n{\rm Sn}]}{n+1} \tag{1}$$

$$\Delta_1 E[\mathrm{Li}_n \mathrm{Sn}] = E[\mathrm{Li}_{n-1} \mathrm{Sn}] + E[\mathrm{Li}] - E[\mathrm{Li}_n \mathrm{Sn}]$$
(2)

$$\Delta_2 E[\mathrm{Li}_n \mathrm{Sn}] = E[\mathrm{Li}_{n+1} \mathrm{Sn}] + E[\mathrm{Li}_{n-1} \mathrm{Sn}] - 2E[\mathrm{Li}_n \mathrm{Sn}],$$
(3)

where  $E[\text{Li}_n]$  is the total energy of the Li<sub>n</sub> cluster. For pure clusters, Sn must be removed from all the terms. These energies for both pure and impure clusters have been reported in Tables 2 and 3. Figure 3 presents  $E_b$  for the GS of Li<sub>n</sub> and Li<sub>n</sub>Sn as a function of the cluster size. The  $E_b$  increases by increasing the size of clusters. The  $E_b$  for impure clusters starts from 0.99eV and increases to 1.694 eV for Li<sub>4</sub>Sn and, after a slight reduction, fluctuates in the range of 1.668 to 1.619eV.

It can be seen that the  $E_{\rm b}$  for impure clusters is greater than that for pure clusters. The maximum difference between the  $E_{\rm b}$  for pure and impure clusters is 0.69 eV, which is associated with the transition from Li<sub>5</sub> to Li<sub>4</sub>Sn.

The energy differences  $\Delta_1 E$  and  $\Delta_2 E$  are sensitive indicators of relative stability. Figures 4 and 5 show  $\Delta_1 E$  and  $\Delta_2 E$  for pure and Sn-doped lithium clusters. As expected, with increasing cluster sizes,  $\Delta_1 E$  and  $\Delta_2 E$ show an odd-even behavior depending on the valance electrons. All clusters with even (odd) valence electron numbers have positive (negative)  $\Delta_2 E$  values. Therefore, clusters with even valence electron numbers are more

Table 2 Binding energy per atom ( $E_b$ ), dissociation energy ( $\Delta_1 E$ ), second-order difference energy ( $\Delta_2 E$ ), and HOMO-LUMO gap of Li<sub>n</sub> clusters

| Lin             | E <sub>b</sub> (eV/atom) | $\Delta_1 E(eV)$ | $\Delta_2 E(eV)$ | HOMO-LUMO gap(eV) |
|-----------------|--------------------------|------------------|------------------|-------------------|
| Li <sub>2</sub> | 0.729                    | 0.726            | 0.718            | -                 |
| Li <sub>3</sub> | 0.737                    | 0.753            | -0.865           | 0.249             |
| Li <sub>4</sub> | 0.957                    | 1.617            | 0.423            | 0.820             |
| Li <sub>5</sub> | 1.004                    | 1.194            | -0.598           | 0.119             |
| Li <sub>6</sub> | 1.136                    | 1.792            | 0.183            | 0.648             |
| Li <sub>7</sub> | 1.203                    | 1.608            | -0.513           | 0.545             |
| Li <sub>8</sub> | 1.318                    | 2.121            | 1.366            | 1.301             |
| Li <sub>9</sub> | 1.255                    | 0.755            | -                | 0.077             |

Table 3 Binding energy per atom ( $E_b$ ), dissociation energy ( $\Delta_1 E$ ), second-order difference energy ( $\Delta_2 E$ ), and HOMO-LUMO gap of Li<sub>n</sub>Sn clusters

| Li <sub>n</sub> Sn | E <sub>b</sub> (eV/atom) | $\Delta_1 E(eV)$ | $\Delta_2 E(eV)$ | HOMO-LUMO gap(eV) |
|--------------------|--------------------------|------------------|------------------|-------------------|
| Li <sub>1</sub> Sn | 0.987                    | 0.978            | 0.635            | -                 |
| Li <sub>2</sub> Sn | 1.332                    | 2.017            | -0.055           | 0.137             |
| Li <sub>3</sub> Sn | 1.517                    | 2.072            | -0.330           | 0.759             |
| Li <sub>4</sub> Sn | 1.694                    | 2.402            | 0.879            | 1.058             |
| Li₅Sn              | 1.666                    | 1.523            | -0.158           | 0.575             |
| Li <sub>6</sub> Sn | 1.668                    | 1.681            | 0.405            | 0.720             |
| Li <sub>7</sub> Sn | 1.619                    | 1.276            | -0.462           | 0.310             |
| Li <sub>8</sub> Sn | 1.632                    | 1.738            | -                | 1.001             |
|                    |                          |                  |                  |                   |

stable. The maximum value of  $\Delta_2 E$  belongs to Li<sub>8</sub> for pure clusters and to Li<sub>4</sub>Sn for impure clusters.

Another important indicator of cluster stability is the gap between HOMO-LUMO; with a larger HOMO-LUMO gap indicating higher stability. Figure 6 shows the HOMO-LUMO gap for pure and impure clusters of lithium. It can be verified that the even-odd fluctuation is dominant and that the HOMO-LUMO gap is greater for the clusters that do not have even valence electron numbers with unpaired electron. The pure and impure clusters  $Li_8$  and  $Li_4Sn$  have the greatest HOMO-LUMO gap.

A comparison of Figures 4, 5, and 6 shows that  $Li_8$ , among the pure clusters;  $Li_4Sn$ , among the pure clusters; and  $Li_4Sn$ , among the impure clusters, are the most stable clusters. The relative stability of  $Li_8$  and  $Li_4Sn$  clusters (both with eight valence electrons) is compatible with predictions from the shell model of clusters.

### Conclusions

The *ab initio* density functional method was applied to investigate systematic evolutionary trends in ground and



excited state geometries and energies of  $\text{Li}_n (n = 2 - 9)$ and  $\text{Li}_n \text{Sn} (n = 1 - 8)$  nanoclusters. The following conclusions are drawn from the results obtained:

3

4 5

Figure 4 The dissociation energy for Lin and Lin-1Sn(n=2-9)

- 1. The tetravalent Sn impurity changes the geometry of the host clusters. These changes become more significant after Li<sub>5</sub>Sn. Since the Sn atom does not get trapped inside of the cluster, it was shown that the Sn atom prefers to go in a maximum coordination number. The average bond length for Sn-Li is 10% less than it is for Li-Li;
- 2. The introduction of Sn atom enhances the binding energy per atom as compared to the host clusters;
- 3. For pure and impure clusters, the odd-even behavior governs,  $\Delta_1 E$ ,  $\Delta_2 E$  and HOMO-LUMO gap. The Li<sub>8</sub> and Li<sub>4</sub>Sn clusters are most stable as they assume the highest HOMO-LUMO gaps and  $\Delta_2 E$  values.



 $Li_{n-1}Sn$  \_\_\_\_ 1.2 HOMO.LUMO Gap (eV)  $Li_n$ 1 0.8 0.6 0.4 0.2 0 2 3 4 6 7 8 a 10 Size(n) Figure 6 The HOMO-LUMO gap for Lin and Lin-1Sn(n=3-9) clusters.

## **Methods**

1.4

We have carried out ab initio density functional simulations using Vanderbilt's ultrasoft pseudo potentials within the generalized gradient approximation (GGA) approach, as implemented in the VASP package. We have optimized approximately 150 geometries for each of  $\text{Li}_n(n=2-9)$  clusters, 200 geometries for n < 6, and 400 for n>=6 for each impure  $Li_n Sn(n=1-8)$  clusters. To obtain different initial configurations, we have carried out the following procedure. Constant temperature ab initio MD runs were carried out at five different temperatures, 300, 450, 600, 750, and 900 K. For pure clusters, each run simulated 45 ps that was completed in 15,000 MD steps of 3 fs. For impure clusters, 60 and 120 ps simulations were performed in 20,000 and 40000 MD steps of 3 fs for n < 6 and  $n \ge 6$ , respectively. These structures were then optimized using ab initio density functional method. For convergence in total energy, force, and cubic super cell length, we used 0.0001eV, 0.005 eV/Å, and 20 Å, respectively.

#### **Competing interests**

The author did not provide this information.

#### Acknowledgments

The support of this work, 'Effects of impurity on the Lithium cluster', is provided by the Islamic Azad University-South Tehran Branch.

Received: 10 May 2012 Accepted: 1 July 2012 Published: 30 August 2012

#### References

- 1. Dugourd, P, Rayane, D, Labastie, P, Vezin, B, Chevaleyer, J, Broyer, M: Chem Phys 197, 433 (1992)
- Brechignac, C, Bush, H, Cahuzac, P, Leygnier, J: J Chem Phys 101, 6992 2 (1994)
- Kornathand, A, Kaufmann, A: J Chem Phys 118, 6957 (2003) 3.
- 4 Gardet, G, Rogemond, F, Chermette, H: J Chem Phys 105, 9933 (1996)
- 5. Jones, RO, Lichtenstein, Al, Hutter, J: J Chem Phys 106, 4566 (1997)
- Fournier, R, Cheng, JBY, Wong, A: J Chem Phys 119, 9444 (2003) 6.
- 7. Joshi, K, Kanhere, D.G: J Chem Phys 119, 12301 (2003)



 $Li_{n-1}Sn$ Lin

6

Size(n)

9 10

2.4

2.2

2

1.8

1.6 1.4

1.2

0.8 0.6

clusters.

1

 $\Delta_1 E(eV)$ 



- Grassi, A, Lombardo, GM, Angilella, GGN, March, NH, Pucci, R: J Chem Phys 120, 11615 (2004)
- 9. Alexandrova, AN, Boldyrev, Al: J Chem Theory Comput 1, 566 (2005)
- 10. Wheeler, SE, Schaefer, HF: J Chem Phys 122, 204328 (2005)
- 11. Temelso, B, Sherrill, CD: J Chem Phys 122, 064315 (2005)
- 12. Lee, MS, Gowtham, S, He, H, Lau, KC, Pan, L, Kanhere, DG: Phys Rev B 74, 245412 (2006)
- 13. Lei, XL, Zhao, WJ, Ge, GX, Yang, Z, Yan, YL, Luo, YH: Physica B **403**, 653 (2008)
- 14. Joshi, K, Kanhere, DG: Phys Rev A 65, 043203 (2002).
- 15. Shetty, S, Pal, S, Kanhere, DG: J Chem Phys 118, 7288 (2003)
- 16. Lee, MS, Kanhere, DG, Joshi, K: Phys Rev A 72, 015201 (2005)
- 17. Cheng, HP, Barnett, RN, Landman, U: Phys Rev B. 48, 1820 (1993)
- Majumder, C, Das, GP, Kulshrestha, SK, Shah, V, Kanhere, DG: Chem Phys Letter 261, 515 (1996)
- 19. Chacko, S, Deshpande, M, Kanhere, DG: Phys Rev B 64, 155409 (2001)
- 20. Akola, J, Manninen, M: Phys Rev B 65, 245424 (2002)
- 21. Chacko, S, Kanhere, DG, Paranjape, W: Phys Rev A 70, 023204 (2004)
- 22. Tai, T.B., Nhat, P.V., Nguyen, M.T.: Phys Chem Chem Phys 12, 11477 (2010)
- 23. Li, Y, Wu, D, Sun, CC: J Comput Chem 28, 1677 (2007)
- 24. Li, Y, Liu, YJ, Wu, D, Li, ZR: Phys Chem Chem Phys 11, 5703 (2009)
- 25. Tai, TB, Nguyen, MT: Chem Phys Letter 489, 75 (2010)
- 26. Tai, TB, Nguyen, MT: Chem Phys 375, 35 (2010)
- 27. Dahlseid, TA, Kappes, M, Pople, JA, Ratner, MA: J Chem Phys 96, 4924 (1992
- 28. Koutecky, VB, Gaus, J, Guest, MF, Koutecky, J: J Chem Phys 96, 4934 (1992)
- 29. Deshpande, MD, Kanhere, DG, Panat, PV, Vasiliev, I, Martin, RM: Phys Rev A 65, 053204 (2002)
- 30. Deshpande, MD, Kanhere, DG, Vasiliev, I, Martin, RM: Phys Rev A 65, 033202 (2002)
- 31. Jiang, ZY, Lee, KH, Li, ST, Chu, SY: Int J Mass Spec 253, 104 (2006)
- 32. Fournier, R: J Comput MethodSc Eng 8, 331 (2008)
- Deshpande, M, Dhavale, A, Zope, RR, Chacko, S, Kanhere, DG: Phys Rev A 62, 063202 (2000)
- 34. Baruah, T., Kanhere, D.G., Zope, R.R.: Phys Rev A 63, 063202 (2001)
- 35. Fuentealba, P, Savin, A: J Phys Chem A 105, 11531 (2001)
- Wheeler, SE, Sattelmeyer, KW, Schleyer, PVR, Schaefer, HF: J Chem Phys 120, 4683 (2004)
- Hakete, N, Yokoyama, K, Tanaka, H, Kudo, H: J Molec Struc (Theochem) 577, 55 (2002)
- 38. Wang, H, Lu, WC, Li, ZS, Sun, CC: J Molec Struc (Theochem) 730, 263 (2005)
- 39. Li, G, Li, X, Wang, C, Ma, G: J Molec Struc (Theochem) 910, 50 (2009)

#### doi:10.1186/2251-7235-6-18

**Cite this article as:** Ansarino and Zorriasatein: **Density functional investigation of structures and energetics of pure and Sn-doped small lithium clusters.** *Journal of Theoretical and Applied Physics* 2012 **6**:18.