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Abstract

In the framework of fractional action cosmology, we have reconstructed the scalar potentials and scalar
fields, namely, quintessence, phantom, tachyon, k-essence, Dirac-Born-Infeld-essence, hessence, dila-
ton field, and Yang-Mills field. To get more physical picture of the variation of the scalar field and
potential with time, we express a scale factor in emergent, logamediate, and intermediate scenarios,
under which the universe expands differently.
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Background

Fractional action cosmology (FAC) is based on the principles and formalism of the fractional calculus
applied to cosmology. The fractional derivative and fractional integrals are the main tools in fractional
calculus, where the order of differentiation or integration is not an integer. The fractional calculus is
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immensely useful in various branches of mathematics, physics, and engineering [1]. In doing FAC,
one can proceed in two different ways [2,3]: the first one is quite easy as one has to replace the partial
derivatives in the Einstein field equations with the corresponding fractional derivatives [2]; the second
technique involves deriving the field equations and geodesic equations from a more fundamental way,
namely starting with the principle of least action and replacing the usual integral with a fractional inte-
gral. In the framework of FAC, the gravitational field is represented by an affine connection on a curved
manifold, and the free fall for a particle of mass m corresponds to a geodesic motion with an action
given by [4,5]:

S = − m

2Γ(ξ)

∫
ẋµẋνgµν(x)(t− τ)ξ−1dτ. (1a)

Here Γ(ξ) =
∫∞
0 tξ−1e−tdt is the gamma function, 0 < ξ ≤ 1, 0 < τ < t, m = constant, and

ẋµ = dxµ

dτ . The gµν is the metric tensor. The variation yields an extra term in the field equations which
he termed as ‘variable gravitational constant G’. Moreover, when the weight function in the fractional
time integral is replaced with a sinusoidal function, then the solution of the corresponding field equations
yields a variable cosmological constant and an oscillatory scale factor [6]:

S =
m

2

∫ τ

0
ẋµẋνgµν(x)e

−χ sin(βt)dt, (1b)

where χ = 0 reduces to the standard action. In [7], the authors extended the previous study by working
out with a general weight function:

S =
m

2

τ∫
0

gµν(x)ẋ
µẋνµ(χ, t)dt. (1c)

Several examples were studied, and cosmological parameters were calculated in there. An interesting
feature of FAC is that it yields an expanding universe, the scale factor of which goes like a power law
form or exponential form depending on the choice of the weight function. Hence, cosmic acceleration
can be modeled in FAC. It should also be mentioned that FAC modeled not only late acceleration but
also graviton field [4].

Reconstruction of potentials has been done by several authors in various cases [8-16]. Also, various
scenarios of the universe have been considered in the works of [17-22]. Capozziello et al. [23] con-
sidered scalar-tensor theories and reconstruct their potential and coupling by demanding a background
ΛCDM cosmology. In the framework of phantom quintessence cosmology, [24] used the Noether sym-
metry approach to obtain general exact solutions for the cosmological equations. In the present paper,
we are going to reconstruct the potentials and scalar fields, namely, quintessence, phantom, tachyonic,
k-essence, Dirac-Born-Infeld (DBI)-essence, hessence, dilaton field, and Yang-Mills field. Such re-
constructions have been studied previously in other gravitational setups [8-16]. To get more physical
insight into the model, we express scale factor in three useful forms [17-22] (emergent, logamediate,
and intermediate scenarios) under which the universe expands differently. Such expansion scenarios are
consistent with the observations with some restrictions on their parameters [17-22].

Fractional action cosmological model

For a Friedmann-Robertson-Walker (FRW) spacetime, the line element is

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (2)
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where a(t) is the scale factor, and k (= 0,±1) is the curvature scalar. We consider that the universe
contains normal matter and dark energy. From Equation (1a), the Einstein equations for the space-time
given by Equation (2) are [4,5]

H2 +
2(ξ − 1)

T1
H +

k

a2
=

8πG

3
ρ, (3)

Ḣ − (ξ − 1)

T1
H − k

a2
= −4πG(ρ+ p), (4)

where T1 = t − τ , ρ = (ρm + ρϕ), and p = (pm + pϕ). Here, ρm and pm are the energy density and
pressure of the normal matter connected by the equation of state (EoS)

pm = wmρm , − 1 ≤ wm ≤ 1, (5)

and ρϕ and pϕ are the energy density and pressure due to the dark energy, respectively.

Now, consider there is an interaction between normal matter and dark energy. Dark energy interacting
with dark matter is a promising model to alleviate the cosmic coincidence problem. In [25], the authors
studied the signature of such interaction on large scale cosmic microwave background (CMB) temper-
ature anisotropies. Based on the detailed analysis on perturbation equations of dark energy and dark
matter when they are in interaction, they found that the large scale CMB, especially the late integrated
Sachs Wolfe effect, is a useful tool to measure the coupling between dark sectors. It was deduced that in
the 1σ range, the constrained coupling between dark sectors can solve the coincidence problem. In [26],
a general formalism to study the growth of dark matter perturbations when dark energy perturbates and
interacts between the dark sectors were presented.

They showed that the dynamical stability on the growth of structure depends on the form of coupling
between dark sectors. Moreover, due to the influence of the interaction, the growth index can differ
from the value without interaction by an amount up to the observational sensibility, which provides an
opportunity to probe the interaction between dark sectors through future observations on the growth of
the structure.

Due to this interaction, the normal matter and dark energy are not separately conserved. The energy
conservation equations for normal matter and dark energy are

ρ̇m + 3H(pm + ρm) = −3δHρm, (6)

and
ρ̇ϕ + 3H(pϕ + ρϕ) = 3δHρm, (7)

respectively, where H = ȧ/a is the Hubble parameter.

From Equation (6), we have the expression for energy density of matter as

ρm = ρ0a
−3(1+wm+δ), (8)

where ρ0 is the integration constant.

Emergent, logamediate, and intermediate scenarios

• Emergent scenario: For emergent universe, the scale factor can be chosen as [27,28]

a(T1) = a0
(
λ+ eµT1

)n
, (9)
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where a0, µ, λ, and n are positive constants. (1) a0 > 0 for the scale factor a to be positive; (2)
λ > 0, to avoid any singularity at finite time (big rip); (3) a > 0 or n > 0 for expanding model of
the universe; (4) a < 0 and n < 0 imply big bang singularity at t = −∞.

So, the Hubble parameter and its derivatives are given by

H =
nµeµT1

(λ+ eµT1)
, Ḣ =

nλµ2eµT1

(λ+ eµT1)2
, Ḧ =

nλµ3eµT1(λ− eµT1)

(λ+ eµT1)3
. (10)

Here, H and Ḣ are both positive, but Ḧ changes sign at T1 = 1
µ log λ. Thus H , Ḣ , and Ḧ all

tend to zero as t → −∞. On the other hand, as t → ∞, the solution gives asymptotically a de
Sitter universe.

• Logamediate scenario: Consider a particular form of logamediate scenario, where the form of the
scale factor a(t) is defined as [17-22]

a(T1) = eA(lnT1)α , (11)

where Aα > 0 and α > 1. When α = 1, this model reduces to a power law form. The
logamediate form is motivated by considering a class of possible cosmological solutions with
indefinite expansion which results from imposing weak general conditions on the cosmological
model. Barrow and others [17-22] have found that, in their model, the observational ranges of
the parameters are as follows: 1.5 × 10−92 ≤ A ≤ 2.1 × 10−2 and 2 ≤ α ≤ 50. The Hubble
parameter H = ȧ

a and its derivative become

H =
Aα

T1
(lnT1)

α−1 , Ḣ =
Aα

T 2
1

(lnT1)
α−2(α− 1− lnT1). (12)

• Intermediate scenario: Consider a particular form of intermediate scenario, where the scale factor
a(t) of the Friedmann universe is described as [17-22]

a(t) = eBTβ
1 , (13)

where Bβ > 0, B > 0, and 0 < β < 1. Here, the expansion of universe is faster than the power
law form, where the scale factor is given as a(T1) = Tn

1 (where n > 1 is a constant). Also, the
expansion of the universe is slower for standard de Sitter scenario, where β = 1. The Hubble
parameter H = ȧ

a and its derivative become

H = BβT β−1
1 , Ḣ = Bβ(β − 1)T β−2

1 . (14)

Various candidates of dark energy models

Quintessence or phantom field

Quintessence is described by an ordinary time-dependent and homogeneous scalar field ϕ which is
minimally coupled to gravity but with a particular potential V (ϕ) that leads to the accelerating universe.
The action for quintessence is given by [29]

S =

∫
d4x

√
−g

[
−1

2
gij∂iϕ∂jϕ− V (ϕ)

]
.
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The energy momentum tensor of the field is

Tij = − 2√
−g

δS

δgij
,

which gives

Tij = ∂iϕ∂jϕ− gij

[
1

2
gkl∂kϕ∂lϕ+ V (ϕ)

]
.

The energy density and pressure of the quintessence scalar field ϕ are as follows:

ρϕ = −T 0
0 =

1

2
ϕ̇2 + V (ϕ),

pϕ = T i
i =

1

2
ϕ̇2 − V (ϕ).

The EoS parameter for the quintessence scalar field is given by

ωϕ =
pϕ
ρϕ

=
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
.

For ωϕ < −1/3, we find that the universe accelerates when ϕ̇2 < V (ϕ). The energy density and
the pressure of the quintessence (phantom field) can be represented by the minimally coupled spatially
homogeneous and time-dependent scalar field ϕ having positive (negative) kinetic energy term given by

ρϕ =
ϵ

2
ϕ̇2 + V (ϕ) (15)

and
pϕ =

ϵ

2
ϕ̇2 − V (ϕ), (16)

where V (ϕ) is the relevant potential for the scalar field ϕ; ϵ = +1 represents quintessence, while ϵ = −1
refers to phantom field.

Scalar field models of phantom energy indicate that it can behave as a long range repulsive force [30].
Moreover, the phantom energy has few characteristics different from normal matter, for instance, the
energy density ρ(t) of the phantom field increases with the expansion of the universe. It can be used as
a source to form and stabilize traversable wormholes [31-35]. The phantom energy can disrupt all grav-
itationally bound structures, i.e, from galaxies to black holes [36-41]. It can produce infinite expansion
of the universe in a finite time, thus causing the ‘big rip’ [42,43]. In Equations (3) and (4), we put the
forms of pϕ and ρϕ expressed above. The Hubble parameter (H) is obtained based on the form of the
scale factor. First, we separate the scalar field and potential as follows:

ϕ̇2 = −(1 + wm)

ϵ
ρm +

1

4πϵG

[
−Ḣ +

(ξ − 1)

T1
H +

k

a2

]
, (17)

and

V =
(wm − 1)

2
ρm +

1

8πG

[
Ḣ + 3H2 +

5(ξ − 1)

T1
H +

2k

a2
.

]
(18)

Similar approach would be adopted for other scalar field models of dark energy. Now, we consider the
various choices of scale factor:
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• For emergent scenario, we get the expressions for ϕ and V as

ϕ =

∫ √√√√− (1 + wm)ρ0a
−3(1+wm+δ)
0

ϵ (λ+ eµT1)
3n(1+wm+δ)

+
1

4πϵG

{
− nλµ2eµT1

(λ+ eµT1)
2 +

(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)
2n

}
dT1,

(19)
and

V =
(wm − 1)ρ0a

−3(1+wm+δ)
0

2 (λ+ eµT1)3n(1+wm+δ)
+

1

8πG

{
nµ2eµT1(λ+ 3neµT1)

(λ+ eµT1)2
+

5(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

2k a−2
0

(λ+ eµT1)2n

}
.

(20)

• For logamediate scenario, we get the expressions for ϕ and V as

ϕ =

∫ √
− (1 + wm)ρ0

ϵ
e−3A(1+wm+δ)(lnT1)α +

1

4πϵG

{
Aα

T 2
1

(lnT1)α−2(1− α+ ξ lnT1) + k e−2A(lnT1)α

}
dT1

(21)
and

V =
(wm − 1)ρ0

2
e−3A(1+wm+δ)(lnT1)

α

+
1

8πG

[
Aα

T 2
1

(lnT1)
α−2{α− 1 + (5ξ − 6) lnT1 + 3Aα(lnT1)

α}+ 2k e−2A(lnT1)
α

]
.

(22)

• For intermediate scenario, we get the expressions for ϕ and V as

ϕ =

∫ √
−(1 + wm)ρ0

ϵ
e−3B(1+wm+δ)Tβ

1 +
1

4πϵG

{
Bβ(ξ − β)T β−2

1 + k e−2BTβ
1

}
dT1,

(23)
and

V =
(wm − 1)ρ0

2
e−3B(1+wm+δ)Tβ

1 +
1

8πG

[
BβT β−2

1 (5ξ + β + 3BβT β
1 ) + 2k e−2BTβ

1

]
. (24)

In Figures 1, 2, and 3, we have plotted the potentials versus the scalar fields for the quintessence and
phantom fields in emergent, logamediate, and intermediate scenarios of the universe, respectively, in
fractional action cosmology. It has been observed in Figure 1 that after gradual decay, the potential
starts increasing with scalar field for quintessence as well as phantom field models of dark energy in the
emergent scenario of the universe irrespective of its type of curvature. On the contrary, when logamedi-
ate scenario is considered, the Figure 2 exhibits a continuous decay in the potential V with increase in
the scalar field ϕ. A different behavior is observed in Figure 3 that depicts the behavior of the potential
V versus scalar field ϕ in the case of intermediate scenario of the universe. The blue lines in this figure
show a continuous decay in V with increase in ϕ for quintessence model. However, the red lines exhibit
an increasing pattern of V with scalar field ϕ.

Figure 1 Variations of V against quintessence or phantom field ϕ in the emergent scenario. Solid,
dash, and dotted lines represent k = −1, k = +1, and k = 0, respectively. Blue and red lines represent
quintessence field (ϵ = +1) and phantom field (ϵ = −1), respectively.

Figure 2 Variations of V against quintessence or phantom field ϕ in the logamediate scenario.
Solid, dash, and dotted lines represent k = −1, k = +1, and k = 0, respectively. Blue and red lines
represent quintessence field (ϵ = +1) and phantom field (ϵ = −1), respectively.
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Figure 3 Variations of V against quintessence or phantom field ϕ in the intermediate scenario.
Solid, dash, and dotted lines represent k = −1,k = +1, and k = 0, respectively. Blue and red lines
represent quintessence field (ϵ = +1) and phantom field (ϵ = −1), respectively.

Tachyonic field

A rolling tachyon has an interesting equation of state, the state parameter of which smoothly interpolates
between −1 and 0 [44]. Thus, tachyon can be realized as a suitable candidate for the inflation at high
energy [45-47] as well as a source of dark energy, depending on the form of the tachyon potential
[48-51]. Therefore, it becomes meaningful to reconstruct tachyon potential V (ϕ) from some dark energy
models. An action for tachyon scalar ϕ is given by Born-Infeld-like action

S = −
∫

d4x
√
−gV (ϕ)

√
1− gij∂iϕ∂jϕ, (25)

where V (ϕ) is the tachyon potential. Energy-momentum tensor components for tachyon scalar ϕ are
obtained as

Tij = V (ϕ)

[
∂iϕ∂jϕ√

1− gij∂iϕ∂jϕ
+ gij

√
1− gkl∂kϕ∂lϕ

]
. (26)

The energy density ρϕ and pressure pϕ due to the tachyonic field ϕ have the expressions

ρϕ =
V (ϕ)√
1− ϵϕ̇2

, (27)

pϕ = −V (ϕ)

√
1− ϵϕ̇2, (28)

where V (ϕ) is the relevant potential for the tachyonic field ϕ. It is to be seen that pϕ
ρϕ

= −1+ ϵϕ̇2 > −1

or < −1 accordingly as normal tachyon (ϵ = +1) or phantom tachyon (ϵ = −1).

From above, we get

ϕ̇2 =

[
−(1 + wm)

ϵ
ρm +

1

4πϵG

{
−Ḣ +

(ξ − 1)

T1
H +

k

a2

}]

×
[
−ρm +

3

8πG

{
H2 +

2(ξ − 1)

T1
H +

k

a2

}]−1

(29)

and

V =

[
wmρm +

1

8πG

{
2Ḣ + 3H2 +

4(ξ − 1)

T1
H +

k

a2

}] 1
2

×
[
−ρm +

3

8πG

{
H2 +

2(ξ − 1)

T1
H +

k

a2

}] 1
2

. (30)
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• For emergent scenario, we get the expressions for ϕ and V as

ϕ =

∫ [
−(1 + wm)ρ0a

−3(1+wm+δ)
0

ϵ (λ+ eµT1)3n(1+wm+δ)
+

1

4πϵG

{
− nλµ2eµT1

(λ+ eµT1)2
+

(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}] 1
2

×

[
− ρ0a

−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

3

8πG

{
n2µ2e2µT1

(λ+ eµT1)2
+

2(ξ − 1)nµeµt

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}]− 1
2

dT1

(31)
and

V =

[
wmρ0a

−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

1

8πG

{
nµ2eµT1(2λ+ 3neµT1)

(λ+ eµT1)2
+

4(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}] 1
2

×

[
− ρ0a

−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

3

8πG

{
n2µ2e2µT1

(λ+ eµT1)2
+

2(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}] 1
2

.

(32)

• For logamediate scenario, we get the expressions for ϕ and V as

ϕ =

∫ [
−(1 + wm)ρ0

ϵ
e−3A(1+wm+δ)(lnT1)α +

1

4πϵG

{
Aα

T 2
1

(lnT1)
α−2(1− α+ ξ lnT1) + k e−2A(lnT1)α

}] 1
2

×
[
−ρ0 e

−3A(1+wm+δ)(lnT1)α +
3

8πG

{
Aα

T 2
1

(lnT1)
α−1{Aα(lnT1)

α−1 + 2(ξ − 1)}+ k e−2A(lnT1)α
}]− 1

2

dT1

(33)
and

V =

[
−ρ0 e

−3A(1+wm+δ)(lnT1)α +
3

8πG

{
Aα

T 2
1

(lnT1)
α−1{Aα(lnT1)

α−1 + 2(ξ − 1)}+ k e−2A(lnT1)α
}] 1

2

×
[
wmρ0 e

−3A(1+wm+δ)(lnT1)α +
1

8πG

{
Aα

t2
(lnT1)

α−2{2(α− 1) + 2(ξ − 3) ln t+ 3Aα(lnT1)
α}+ k e−2A(lnT1)α

}] 1
2

.

(34)

• For intermediate scenario, we get the expressions for ϕ and V as

ϕ =

∫ [
−(1 + wm)ρ0

ϵ
e−3B(1+wm+δ)Tβ

1 +
1

4πϵG

{
Bβ(ξ − β)T β−2

1 + k e−2BTβ
1

}] 1
2

×
[
−ρ0 e

−3B(1+wm+δ)Tβ
1 +

3

8πG

{
BβT β−2

1 (2(ξ − 1) +BβT β
1 ) + k e−2BTβ

1

}]− 1
2

dT1 (35)

and

V =

[
−ρ0 e

−3B(1+wm+δ)Tβ
1 +

3

8πG

{
BβT β−2

1 (2(ξ − 1) +BβT β
1 ) + k e−2BTβ

1

}] 1
2

×
[
wmρ0 e

−3B(1+wm+δ)Tβ
1 +

1

8πG

{
BβT β−2

1 (2(2ξ + β − 3) + 3BβT β
1 ) + k e−2BTβ

1

}] 1
2

.

(36)
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In Figure 4, the V -ϕ plot for normal tachyon and phantom tachyon models of dark energy is presented for
emergent scenario of the universe. The potential of normal tachyon exhibits decaying pattern. However,
it shows an increasing pattern for phantom tachyonic field ϕ. It happens irrespective of the curvature
of the universe. In the logamediate scenario (Figure 5) the potentials for normal tachyon and phantom
tachyon exhibit increasing and decreasing behavior, respectively, with the increase in the scalar field ϕ.
From Figure 6, we see a continuous decay in the potential for normal tachyonic field in the intermediate
scenario. However, in this scenario, the behavior of the potential varies with the curvature of the universe
characterized by interacting phantom tachyonic field. For k = −1 and k = 1, the potential increases
with phantom tachyonic field; for k = 0, it decays after increasing initially.

Figure 4 Variations of V against tachyonic field ϕ in the emergent scenario. Solid, dash, and dotted
lines represent k = −1, k = +1, and k = 0, respectively. Blue and red lines represent normal tachyonic
field (ϵ = +1) and phantom tachyonic field (ϵ = −1), respectively.

Figure 5 Variations of V against tachyonic field ϕ in the logamediate scenario. Solid, dash, and
dotted lines represent k = −1, k = +1, and k = 0, respectively. Blue and red lines represent normal
tachyonic field (ϵ = +1) and phantom tachyonic field (ϵ = −1), respectively.

Figure 6 Variations of V against tachyonic field ϕ in the intermediate scenario. Solid, dash, and
dotted lines represent k = −1, k = +1, and k = 0, respectively. Blue and red lines represent normal
tachyonic field (ϵ = +1) and phantom tachyonic field (ϵ = −1), respectively.

k-essence

In the kinetically driven scalar field theory, we have non-canonical kinetic energy term with no potential.
Scalars modelling this theory are popularly known as k-essence. Motivated by Born-Infeld action of
String Theory, it was used as a source to explain the mechanism for producing the late time acceleration
of the universe. This model is given by the action [52-57]

S =

∫
d4x

√
−gL̃(ϕ̃, X̃), (37)

with
L̃(ϕ̃, X̃) = K(ϕ̃)X̃ + L(ϕ̃)X̃2, (38)

ignoring the higher order terms of

X̃ =
1

2
gij∂iϕ̃∂jϕ̃. (39)

Using the following transformations, ϕ =
∫
dϕ̃

√
|L(ϕ̃)|/K(ϕ̃), X = |L|

K X̃ , and V (ϕ) = K2/|L|, the
action can be rewritten as

S =

∫
d4x

√
−gV (ϕ)L(X), (40)

with
L(X) = X −X2. (41)

From the action, the energy-momentum tensor components can be written as

Tij = V (ϕ)

[
dL
dX

∂iϕ∂jϕ− gijL
]
. (42)
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The energy density and pressure of k-essence scalar field ϕ are given by

ρk = V (ϕ)(−X + 3X2) (43)

and
pk = V (ϕ)(−X +X2), (44)

where ϕ is the scalar field having a kinetic energy X = 1
2 ϕ̇

2, and V (ϕ) is the k-essence potential.

From above, we get

ϕ̇2 =

[
2(wm − 1)ρm +

1

2πG

{
Ḣ + 3H2 +

5(ξ − 1)

T1
H +

2k

a2

}]

×
[
(3wm − 1)ρm +

3

4πG

{
Ḣ + 2H2 +

3(ξ − 1)

T1
H +

k

a2

}]−1

, (45)

and

V =

[
(3wm − 1)ρm +

3

4πG

{
Ḣ + 2H2 +

3(ξ − 1)

T1
H +

k

a2

}]2

×
[
2(wm − 1)ρm +

1

2πG

{
Ḣ + 3H2 +

5(ξ − 1)

T1
H +

2k

a2

}]−1

. (46)

• For emergent scenario, we have

ϕ =

∫ [
2(wm − 1)ρ0a

−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

1

2πG

{
nµ2eµT1(λ+ 3neµT1)

(λ+ eµT1)2
+

5(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

2k a−2
0

(λ+ eµT1)2n

}] 1
2

×

[
(3wm − 1)ρ0a

−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

3

4πG

{
nµ2eµT1(λ+ 2neµT1)

(λ+ eµT1)2
+

3(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}]− 1
2

dt,

(47)
and

V =

[
(3wm − 1)ρ0a

−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

3

4πG

{
nµ2eµT1(λ+ 2neµT1)

(λ+ eµT1)2
+

3(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}]2

×

[
2(wm − 1)ρ0a

−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

1

2πG

{
nµ2eµT1(λ+ 3neµT1)

(λ+ eµT1)2
+

5(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

2k a−2
0

(λ+ eµT1)2n

}]−1

.

(48)

• For logamediate scenario, we get the expressions for ϕ and V as

ϕ =

∫ [
2(wm − 1)ρ0 e

−3A(1+wm+δ)(lnT1)
α

+
1

2πG

{
Aα

T 2
1

(lnT1)
α−2(α− 1 + (5ξ − 6) lnT1 + 3Aα(lnT1)

α) + 2k e−2A(lnT1)
α

}] 1
2

×
[
(3wm − 1)ρ0 e

−3A(1+wm+δ)(lnT1)
α

+
3

4πG

{
Aα

T 2
1

(lnT1)
α−2(α− 1 + (3ξ − 4) lnT1 + 2Aα(lnT1)

α) + k e−2A(lnT1)
α

}]− 1
2

dT1,

(49)
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and

V =

[
(3wm − 1)ρ0 e

−3A(1+wm+δ)(lnT1)
α

+
3

4πG

{
Aα

T 2
1

(lnT1)
α−2(α− 1 + (3ξ − 4) lnT1 + 2Aα(lnT1)

α) + k e−2A(lnT1)
α

}]2

×
[
2(wm − 1)ρ0 e

−3A(1+wm+δ)(lnT1)
α

+
1

2πG

{
Aα

T 2
1

(lnT1)
α−2(α− 1 + (5ξ − 6) lnT1 + 3Aα(lnT1)

α) + 2k e−2A(lnT1)
α

}]−1

.

(50)

• For intermediate scenario, we get the expressions for ϕ and V as

ϕ =

∫ [
2(wm − 1)ρ0 e

−3B(1+wm+δ)Tβ
1 +

1

2πG

{
Bβ(5ξ + β − 6 + 3BβT β

1 )T
β−2
1 + 2k e−2BTβ

1

}] 1
2

×
[
(3wm − 1)ρ0 e

−3B(1+wm+δ)Tβ
1 +

3

4πG

{
Bβ(3ξ + β − 4 + 2BβT β

1 )T
β−2
1 + k e−2BTβ

1

}]− 1
2

dT1,

(51)
and

V =

[
(3wm − 1)ρ0 e

−3B(1+wm+δ)Tβ
1 +

3

4πG

{
Bβ(3ξ + β − 4 + 2BβT β

1 )T
β−2
1 + k e−2BTβ

1

}]2

×
[
2(wm − 1)ρ0 e

−3B(1+wm+δ)Tβ
1 +

1

2πG

{
Bβ(5ξ + β − 6 + 3BβT β

1 )T
β−2
1 + 2k e−2BTβ

1

}]−1

.

(52)

From Figures 7, 8, and 9, we see that for interacting k-essence, the potential V always decreases with the
increase in the scalar field ϕ in all of the three scenarios. It happens for open, closed, and flat universes.

Figure 7 Variations of V against k-essence field ϕ in the emergent scenario. Red, green, and blue
lines represent k = −1, k = +1, and k = 0, respectively.

Figure 8 Variations of V against k-essence field ϕ in the logamediate scenario. Red, green, and
blue lines represent k = −1, k = +1, and k = 0, respectively.

Figure 9 Variations of V against k-essence field ϕ in the intermediate scenario. Red, green, and
blue lines represent k = −1, k = +1, and k = 0, respectively.

Dirac-Born-Infeld-essence

Consider that the dark energy scalar field is a DBI scalar field. In this case, the action of the field be
written as [58-61]

SD = −
∫

d4xa3(t)

T (ϕ)
√

1− ϕ̇2

T (ϕ)
+ V (ϕ)− T (ϕ)

 , (53)

where T (ϕ) is the warped brane tension, and V (ϕ) is the DBI potential. The energy density and pressure
of the DBI-essence scalar field are, respectively, given by

ρD = (γ − 1)T (ϕ) + V (ϕ) (54)

and
pD =

γ − 1

γ
T (ϕ)− V (ϕ), (55)
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where γ is given by

γ =
1√

1− ϕ̇2

T (ϕ)

. (56)

Now, we consider here a particular case γ = constant. In this case, for simplicity, we assume T (ϕ) =

T0ϕ̇
2 (T0 > 1). So, we have γ =

√
T0

T0−1 . In this case, the expressions for ϕ, T (ϕ), and V (ϕ) are given
by

ϕ̇2 =

√
T0 − 1

T0

[
−(1 + wm)ρm +

1

4πG

(
−Ḣ +

ξ − 1

T1
H +

k

a2

)]
(57)

T =
√

T0(T0 − 1)

[
−(1 + wm)ρm +

1

4πG

(
−Ḣ +

ξ − 1

t
H +

k

a2

)]
, (58)

and

V =
[(

T0 −
√
T0(T0 − 1)

)
(1 + wm)− wm

]
ρm − 1

8πG

[(
1− T0 +

√
T0(T0 − 1)

)
Ḣ + 3H2

+2
(
T0 −

√
T0(T0 − 1) + 2

) ξ − 1

T1
H +

(
2T0 − 2

√
T0(T0 − 1) + 1

) k

a2

]
. (59)

• For emergent scenario, we get the expressions for ϕ, T , and V as

ϕ =

(
T0 − 1

T0

) 1
4
∫ [

−(1 + wm)ρ0a
−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

1

4πG

{
− nλµ2eµT1

(λ+ eµT1)2
+

(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}] 1
2

dT1,

(60)

T =
√

T0(T0 − 1)

[
−(1 + wm)ρ0a

−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

1

4πG

{
− nλµ2eµT1

(λ+ eµT1)2
+

(ξ − 1)nµeµt

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}]
,

(61)
and

V =
[(

T0 −
√
T0(T0 − 1)

)
(1 + wm)− wm

] ρ0a
−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
− 1

8πG

[(
1− T0 +

√
T0(T0 − 1)

) nλµ2eµT1

(λ+ eµT1)2

+
3n2µ2e2µT1

(λ+ eµT1)2
+ 2

(
T0 −

√
T0(T0 − 1) + 2

) (ξ − 1)

T1

nµeµT1

(λ+ eµT1)
+

(
2T0 − 2

√
T0(T0 − 1) + 1

) k a−2
0

(λ+ eµT1)2n

]
.

(62)

• For logamediate scenario, we get the expressions for ϕ, T , and V as

ϕ =

(
T0 − 1

T0

) 1
4
∫ [

−(1 + wm)ρ0 e
−3A(1+wm+δ)(lnT1)α +

1

4πG

{
Aα

T 2
1

(lnT1)
α−2(1− α+ ξ lnT1) + k e−2A(lnT1)α

}] 1
2

dT1,

(63)

T =
√

T0(T0 − 1)

[
−(1 + wm)ρ0 e

−3A(1+wm+δ)(lnT1)α +
1

4πG

{
Aα

T 2
1

(lnT1)
α−2(1− α+ ξ lnT1) + k e−2A(lnT1)α

}]
,

(64)
and

V =
[(

T0 −
√

T0(T0 − 1)
)
(1 + wm)− wm

]
ρ0 e

−3A(1+wm+δ)(lnT1)α − 1

8πG

[
2
(
T0 −

√
T0(T0 − 1) + 2

) (ξ − 1)Aα

T 2
1

(lnT1)
α−1
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+
3A2α2

T 2
1

(lnT1)
2α−2 +

(
1− T0 +

√
T0(T0 − 1)

) Aα

T 2
1

(lnT1)
α−2(α− 1− lnT1) +

(
2T0 − 2

√
T0(T0 − 1) + 1

)
k e−2A(lnT1)α

]
.

(65)

• For intermediate scenario, we get the expressions for ϕ, T , and V as

ϕ =

(
T0 − 1

T0

) 1
4
∫ [

−(1 + wm)ρ0 e
−3B(1+wm+δ)Tβ

1 +
1

4πG

{
Bβ(ξ − β)T β−2

1 + k e−2BTβ
1

}] 1
2

dT1,

(66)

T =
√

T0(T0 − 1)

[
−(1 + wm)ρ0 e

−3B(1+wm+δ)Tβ
1 +

1

4πG

{
Bβ(ξ − β)T β−2

1 + k e−2BTβ
1

}]
,

(67)
and

V =
[(

T0 −
√

T0(T0 − 1)
)
(1 + wm)− wm

]
ρ0 e

−3B(1+wm+δ)Tβ
1 − 1

8πG

[(
1− T0 +

√
T0(T0 − 1)

)
Bβ(β − 1)T β−2

1

+3B2β2T 2β−2
1 + 2

(
T0 −

√
T0(T0 − 1) + 2

) (ξ − 1)

T1
BβT β−1

1 +
(
2T0 − 2

√
T0(T0 − 1) + 1

)
k e−2BTβ

1

]
.

(68)

When we consider an interacting DBI-essence dark energy, we get a decaying pattern in the V -ϕ plot
for emergent and intermediate scenarios in the Figures 10 and 11, respectively. However, from Figure
12, we see an increasing plot of V -ϕ for interacting DBI-essence in the logamediate scenario.

Figure 10 Variations of V against DBI field ϕ in the emergent scenario. Solid, dash, and dotted
lines represent k = −1, k = +1, and k = 0, respectively.

Figure 11 Variations of V against DBI field ϕ in the intermediate scenario. Solid, dash, and dotted
lines represent k = −1, k = +1, and k = 0, respectively.

Figure 12 Variations of V against DBI field ϕ in the logamediate scenario. Solid, dash, and dotted
lines represent k = −1, k = +1, and k = 0, respectively.

Hessence

Wei et al. [62,63] proposed a novel non-canonical complex scalar field named ‘hessence’ which plays
the role of quintom. In the hessence model, the so called internal motion θ̇, where θ is the internal
degree of freedom of hessence, which plays a phantom-like role. The phantom divide transitions are
also possible. The Lagrangian density of the hessence is given by

Lh =
1

2
[(∂µϕ)

2 − ϕ2(∂µθ)
2]− V (ϕ). (69)

The pressure and energy density for the hessence model are given by

ph =
1

2
(ϕ̇2 − ϕ2θ̇2)− V (ϕ), (70)

and
ρh =

1

2
(ϕ̇2 − ϕ2θ̇2) + V (ϕ), (71)

with
Q = a3ϕ2θ̇ = constant, (72)
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where Q is the total conserved charge, ϕ is the hessence scalar field, and V is the corresponding potential.
Equation (71) is conserved, but in FAC (proposed in [4,5]), there is a violation of energy, charge, and
the Noether symmetry theorem. For reference, see [64-66].

From above, we get

ϕ̇2 − Q2

a6ϕ2
= −(1 + wm)ρm +

1

4πG

(
−Ḣ +

ξ − 1

T1
H +

k

a2

)
, (73)

and

V =
1

2
(wm − 1)ρm +

1

8πG

(
Ḣ + 3H2 +

5(ξ − 1)

T1
H +

2k

a2

)
. (74)

• For emergent scenario, we get the expressions for ϕ and V as

ϕ̇2− Q2

a60 (λ+ eµT1)6n ϕ2
= −(1 + wm)ρ0a

−3(1+wm+δ)
0

(λ+ eµT1)3n(1+wm+δ)
+

1

4πG

{
− nλµ2eµT1

(λ+ eµT1)2
+

(ξ − 1)nµeµt

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}
,

(75)
and

V =
(wm − 1)ρ0a

−3(1+wm+δ)
0

2 (λ+ eµT1)3n(1+wm+δ)
+

1

8πG

{
nµ2eµT1(λ+ 3neµT1)

(λ+ eµT1)2
+

5(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

2k a−2
0

(λ+ eµT1)2n

}
.

(76)

• For logamediate scenario, we get the expressions for ϕ and V as

ϕ̇2−Q2e−6A(lnT1)α

ϕ2
= −(1+wm)ρ0 e

−3A(1+wm+δ)(lnT1)α+
1

4πG

{
Aα

T 2
1

(lnT1)
α−2(1− α+ ξ lnT1) + k e−2A(lnT1)α

}
(77)

and

V =
(wm − 1)ρ0

2
e−3A(1+wm+δ)(lnT1)α+

1

8πG

[
Aα

T 2
1

(lnT1)
α−2{α− 1 + (5ξ − 6) lnT1 + 3Aα(lnT1)

α}+ 2k e−2A(lnT1)α
]
.

(78)

• For intermediate scenario, we get the expressions for ϕ and V as

ϕ̇2 − Q2e−6BTβ
1

ϕ2
= −(1 + wm)ρ0 e

−3B(1+wm+δ)Tβ
1 +

1

4πG

{
Bβ(ξ − β)T β−2

1 + k e−2BTβ
1

}
,

(79)
and

V =
(wm − 1)ρ0

2
e−3B(1+wm+δ)Tβ

1 +
1

8πG

[
BβT β−2

1 (5ξ + β + 3BβT β
1 ) + 2k e−2BTβ

1

]
. (80)

For interacting hessence dark energy, Figure 13 shows an increase in the potential with scalar field.
Figures 14 and 15 show decay in the potential with scalar field. This means that the potential for
interacting hessence increases in the emergent universe and decays in logamediate and intermediate
scenarios.
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Figure 13 Variations of V against hessence field ϕ in the emergent scenario. Red, green, and blue
lines represent k = −1, k = +1, and k = 0, respectively.

Figure 14 Variations of V against hessence field ϕ in the logamediate scenario. Red, green, and
blue lines represent k = −1, k = +1, and k = 0, respectively.

Figure 15 Variations of V against hessence field ϕ in the intermediate scenario. Red, green, and
blue lines represent k = −1, k = +1, and k = 0, respectively.

Dilaton field

Phantom field with a negative kinetic term has a problem with quantum instabilities [29]. Copeland et
al. [29] reviewed the issues that led to the introduction of dilaton dark energy. The energy density and
pressure of the dilaton dark energy model are given by [29]

ρd = −X + 3CeλϕX2 (81)

and
pd = −X + CeλϕX2, (82)

respectively, where ϕ is the dilaton scalar field having a kinetic energy X = 1
2 ϕ̇

2, λ is the characteristic
length which governs all non-gravitational interactions of the dilaton, and C is a positive constant.

We get

ϕ =

∫ [
1

2
(3wm − 1)ρm +

3

8πG

(
Ḣ + 2H2 +

3(ξ − 1)

T1
H +

k

a2

)] 1
2

dT1. (83)

• For emergent scenario, we have

ϕ =

∫ [
(3wm − 1)ρ0a

−3(1+wm+δ)
0

2 (λ+ eµT1)3n(1+wm+δ)
+

3

8πG

{
nµ2eµT1(λ+ 2neµT1)

(λ+ eµT1)2
+

3(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}] 1
2

dT1.

(84)

• For logamediate scenario, we get

ϕ =

∫ [
3

8πG

{
Aα

T 2
1

(lnT1)
α−2(α− 1 + (3ξ − 4) lnT1 + 2Aα(lnT1)

α) + k e−2A(lnT1)α
}

+
1

2
(3wm − 1)ρ0 e

−3A(1+wm+δ)(lnT1)α
] 1

2

dT1. (85)

• For intermediate scenario, we get

ϕ =

∫ [
1

2
(3wm − 1)ρ0 e

−3B(1+wm+δ)Tβ
1 +

3

8πG

{
Bβ(3ξ + β − 4 + 2BβT β

1 )T
β−2
1 + k e−2BTβ

1

}] 1
2

dT1.

(86)

For interacting dilaton field, the scalar field ϕ always increases with cosmic time T1, irrespective of
the scenario of the universe we consider. This is displayed in Figures 16, 17, and 18 for emergent,
logamediate, and intermediate scenarios, respectively.
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Figure 16 Variations of dilaton field ϕ against time T1 in the emergent scenario. Red, green, and
blue lines represent k = −1, k = +1, and k = 0, respectively.

Figure 17 Variations of dilaton field ϕ against time T1 in the logamediate scenario. Red, green,
and blue lines represent k = −1, k = +1, and k = 0, respectively.

Figure 18 Variations of dilaton field ϕ against time T1 in the intermediate scenario. Red, green,
and blue lines represent k = −1, k = +1, and k = 0, respectively.

Yang-Mills dark energy

Recent studies suggest that Yang-Mills field can be considered as a useful candidate to describe the dark
energy. As in the normal scalar models, the connection of field to particle physics models has not been
clear so far, and the weak energy condition cannot be violated by the field. In the effective Yang-Mills
condensate (YMC) dark energy model, the effective Yang-Mills field Lagrangian is given by [67-69]

LYMC =
1

2
bF (ln

∣∣∣∣ FK2

∣∣∣∣− 1), (87)

where K is the re-normalization scale of dimension of squared mass. F plays the role of the order
parameter of the YMC where, F is given by F = −1

2F
a
µνF

aµν = E2 − B2. The pure electric case we
have is B = 0, i.e., F = E2.

From the above Lagrangian, we can derive the energy density and the pressure of the YMC in the flat
FRW spacetime as

ρy =
1

2
(y + 1)bE2 (88)

and
py =

1

6
(y − 3)bE2, (89)

respectively, where y is defined as,

y = ln

∣∣∣∣E2

K2

∣∣∣∣ . (90)

We get

E2 =

[
1

2b
(3wm − 1)ρm +

3

8πGb

(
Ḣ + 2H2 +

3(ξ − 1)

T1
H +

k

a2

)]
. (91)

• For emergent scenario, we have

E2 =

[
(3wm − 1)ρ0a

−3(1+wm+δ)
0

2b (λ+ eµT1)3n(1+wm+δ)
+

3

8πbG

{
nµ2eµT1(λ+ 2neµT1)

(λ+ eµT1)2
+

3(ξ − 1)nµeµT1

T1(λ+ eµT1)
+

k a−2
0

(λ+ eµT1)2n

}]
.

(92)

• For logamediate scenario, we get

E2 =

[
3

8πbG

{
Aα

T 2
1

(lnT1)
α−2(α− 1 + (3ξ − 4) lnT1 + 2Aα(lnT1)

α) + k e−2A(lnT1)α
}

+
1

2b
(3wm − 1)ρ0 e

−3A(1+wm+δ)(lnT1)α
]
. (93)

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

• For intermediate scenario, we get

E2 =

[
1

2b
(3wm − 1)ρ0 e

−3B(1+wm+δ)Tβ
1 +

3

8πbG

{
Bβ(3ξ + β − 4 + 2BβT β

1 )T
β−2
1 + k e−2BTβ

1

}]
.

(94)

When we consider Yang-Mills dark energy, we find that E2 is always increasing with cosmic time
T1. This is displayed in Figures 19, 20, and 21 for emergent, logamediate, and intermediate scenarios,
respectively.

Figure 19 Variations of E2 against time T1 in the emergent scenario. Red, green, and blue lines
represent k = −1, k = +1, and k = 0, respectively.

Figure 20 Variations of E2 against time T1 in the logamediate scenario. Red, green, and blue lines
represent k = −1, k = +1, and k = 0, respectively.

Figure 21 Variations of E2 against time T1 in the intermediate scenario. Red, green, and blue lines
represent k = −1, k = +1, and k = 0, respectively.

Conclusion

This paper is dedicated to the study of the reconstruction of scalar fields and their potentials in a newly
developed model of fractional action cosmology by El-Nabulsi [4,5]. The FAC was constructed by
means of Riemann-Liouville fractional integral. Also, it is possible to construct FAC by means of
Erdeyi-Kober fractional integral for example or hyperdifferential non-local operators. Detailed discus-
sion on these are available in [70-73]. The fields that we used are quintessence, phantom, tachyonic,
k-essence, DBI-essence, hessence, dilaton field, and Yang-Mills field. We assumed that these fields
interact with the matter. These fields are various options to model dark energy which is varying in den-
sity and pressure, the so called variable dark energy. Different field models possess various advantages
and disadvantages. The reconstruction of the field potential involves solving the Friedmann equations
in the FAC model with the standard energy densities and pressures of the fields, thereby solving for
the field and the potential. For simplicity, we expressed these complicated expressions explicitly in
time-dependent form. We plotted these expressions in various figures throughout the paper.

In plotting the figures for various scenarios, we choose the following values: For the emergent scenario,
the values are ξ = 0.6, n = 4, λ = 8,µ = 0.4, a0 = 0.7, and G = 1 (all DE models); for logamediate
ξ = 0.6, α = 3, A = 5, and G = 1 (all DE models); and for intermediate ξ = 0.6, β = 0.4, B = 2, and
G = 1 (all DE models). 0 Moreover, in all cases δ = 0.05, wm = 0.01. In Figures 1, 2, and 3, we show
the variations of V against ϕ in the emergent, logamediate, and intermediate scenarios, respectively for
phantom and quintessence field. In the first two cases, the potential function is a decreasing function of
the field. For the quintessence field, the potential is almost constant, while for the phantom field, the
potential increases for different field values. Figures 4, 5, and 6 show the variations of V against ϕ in
the emergent, logamediate, and intermediate scenarios, respectively for the tachyonic field. In Figure 4,
the V -ϕ plot for normal tachyon and phantom tachyon models of dark energy is presented for emergent
scenario of the universe. Potential of normal tachyon exhibits decaying pattern. However, it shows an
increasing pattern for phantom tachyonic field ϕ. It happens irrespective of the curvature of the universe.
In the logamediate scenario (Figure 5), the potentials for normal tachyon and phantom tachyon exhibit
increasing and decreasing behaviors, respectively, with increase in the scalar field ϕ. From Figure 6, we
see a continuous decay in the potential for normal tachyonic field in the intermediate scenario. However,
in this scenario, the behavior of the potential varies with the curvature of the universe characterized by
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interacting phantom tachyonic field. For k = −1 and k = 1, the potential increases with phantom
tachyonic field, and for k = 0, it decays after increasing initially.

Similarly, Figures 7, 8, and 9 show the reconstructed potentials for the k-essence field. We have seen
that for interacting k-essence, the potential V always decreases with the increase in the scalar field ϕ
in all of the three scenarios, and it happens for open, closed, and flat universes. When we consider
an interacting DBI-essence dark energy, we get a decaying pattern in the V -ϕ plot for emergent and
intermediate scenarios in the Figures 10 and 11. However, from Figure 12, we see an increasing plot
of V -ϕ for interacting DBI-essence in the logamediate scenario. For interacting hessence dark energy,
Figure 13 shows an increase in the potential with scalar field, and Figures 14 and 15 show decay in
the potential with scalar field. This means that the potential for interacting hessence increases in the
emergent universe and decays in logamediate and intermediate scenarios. Figures 16, 17, and 18 discuss
the dilaton field, while Figures 19, 20, and 21 show the behavior of the Yang-Mills field in the FAC.
For interacting dilaton field, the scalar field ϕ always increases with cosmic time T1, irrespective of
the scenario of the universe. When we consider Yang-Mills dark energy, we find that E2 is always
increasing with cosmic time T1.

Since the emergent, logamediate, and intermediate expansions derive accelerating model of the universe,
different types of dark energy models give the nature of their scalar field and potential in different
phases of the expansion. For the emergent scenario, the potentials are increasing for hessence and
tachyonic fields, but are decreasing for quintessence, phantom, k-essence, and DBI-essence models. For
the logamediate scenario, the potentials are increasing for tachyon and DBI-essence models. However,
in this scenario, the potentials are decreasing for quintessence, phantom, and k-essence models. For the
intermediate scenario, the potentials are increasing for phantom and tachyonic field, but are decaying
for k-essence, hessence, and DBI-essence models. Thus, the increasing or decreasing nature of the
potentials of all dark energy models completely depend on the expansion nature of the universe.
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