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Determination of the amplitude-frequency for
strongly nonlinear oscillator by two approximate
analytical techniques
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Abstract

In this paper, we investigate two of the analytical approximate techniques, energy balance method and
amplitude-frequency formulation, and these approximate techniques are applied to solve the strongly nonlinear
differential equation of a mass attached to the center of a stretched elastic wire. We present a comparative study
between the energy balance method and amplitude-frequency formulation with exact solution. The approximate
results reveal that these methods are very effective and convenient for determining the frequencies of nonlinear
dynamical systems.
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Introduction
Nonlinear phenomena play important roles in applied
mathematics, physics and also in engineering problems
in which each parameter varies depending on different
factors. Solving nonlinear equations may guide authors
to know the described process deeply and sometimes
leads them to know some facts which are not simply
understood through common observations. Moreover,
obtaining exact solutions for these problems is a great
purpose which has been quite untouched.
With the rapid development of nonlinear science,

many different methods were proposed to solve various
nonlinear problems, such as perturbation method,
homotopy perturbation method, energy balance method,
amplitude-frequency formulation, variational iteration
method, variational approach method, etc. [1-16].
In this paper, we investigate two of the analytical ap-

proximate techniques, energy balance method and
amplitude-frequency formulation, and these approximate
techniques are applied to solve the strongly nonlinear
differential equation of a mass attached to the center of
a stretched elastic wire (Figure 1).

The differential equation of this dynamical system is in
the following form [1]:

d2

dt2
u tð Þ þ u tð Þ− λ⋅u tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u tð Þ2
q ¼ 0 ; 0 < λ≤1; ð1Þ

with initial conditions [1]:

u 0ð Þ ¼ A;
d
dt

u 0ð Þ: ð2Þ

This system oscillates between symmetric bounds [−A, A],
and its angular frequency and corresponding periodic
solution are dependent on the amplitude A.
In this paper, our main purpose is to present a com-

parative study between the energy balance method and
amplitude-frequency formulation with exact solution.

The description of energy balance method
In this section, we consider a general nonlinear oscillator
in the following form [2]:

d2

dt2
u tð Þ þ f u tð Þð Þ ¼ 0; ð3Þ

in which u and t are generalized dimensionless displace-
ment and time variables, respectively. Its variational
principle can be easily obtained:
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J u tð Þð Þ ¼ ∫
t

0 −
1
2
⋅
d
dt

u tð Þ2 þ F u tð Þð Þ
� �

dt; ð4Þ

where T = 2π/ω is the period of the nonlinear oscillator,
F(u(t)) = ∫ f(u(t))du. Its Hamiltonian can be written in
the following form:

ΔH ¼ 1
2
⋅
d
dt

u tð Þ2 þ F u tð Þð Þ ¼ F Að Þ ð5Þ

or

R tð Þ ¼ 1
2
⋅
d
dt

u tð Þ2 þ F u tð Þð Þ−F Að Þ ¼ 0: ð6Þ

Oscillatory systems contain two important physical pa-
rameters, the frequency ω and the amplitude of oscilla-
tion, A. So let us consider such initial conditions:

u 0ð Þ ¼ A;
d
dt

u 0ð Þ ¼ 0: ð7Þ

We use the following trial function to determine the
angular frequency ω:

u tð Þ ¼ A cos ω tð Þ: ð8Þ
Substituting Equation 8 into Equation 6, we obtain the

following residual equation:

R tð Þ ¼ 1
2
A2ω2 sin2 ω tð Þ þ F A cos ω tð Þð Þ−F Að Þ ¼ 0: ð9Þ

If by chance the exact solution had been chosen as
the trial function, then it would be possible to make
R zero for all values of t by appropriate choice of ω.
Since Equation 8 is only an approximation to the exact
solution, R cannot be made zero everywhere. Collocation
at ωt = π/4 gives

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 F Að Þ−F A cos ω tð Þð Þ½ �

A2 sin2 ω tð Þ

s
: ð10Þ

Its period can be written in the following form:

T ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 F Að Þ−F A cos ω tð Þð Þ½ �

A2 sin2 ω tð Þ

q : ð11Þ

Therefore, we can obtain the following approximate
solution:

u tð Þ ¼ A cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 F Að Þ−F A cos ω tð Þð Þ½ �

A2 sin2 ω tð Þ

s
⋅t

 !
: ð12Þ

The description of amplitude-frequency formulation
In this section, we consider a generalized nonlinear
oscillator in the following form [3]:

d2

dt2
u tð Þ þ f u tð Þð Þ ¼ 0; ð13Þ

with initial conditions:

u 0ð Þ ¼ A;
d
dt

u 0ð Þ ¼ 0: ð14Þ

For solving nonlinear differential equation by means of
amplitude-frequency formulations, we use two trial
functions in the following form:

u1 tð Þ ¼ A cos ω1 tð Þ ð15Þ

and

Figure 1 The oscillation of a mass attached to the center of a stretched elastic wire [1].
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u2 tð Þ ¼ A cos ω2 tð Þ ð16Þ
The residuals are

R1 tð Þ ¼ −A cos ω1 tð Þ þ f cos ω1 tð Þð Þ ð17Þ
and

R2 tð Þ ¼ −Aω2
2 cos ω2 tð Þ þ f cos ω2 tð Þð Þ: ð18Þ

The original frequency-amplitude formulation reads

ω2 ¼ ω1
2R2 tð Þ−ω2

2R1 tð Þ
R2−R1

: ð19Þ

He used the following formulation [3]; Geng and Cai
improved the formulation by choosing another location
point [4]. In other words, He solved the problem at the
point zero, and they discussed at π/3, and by this work,
they improved the method.

ω2 ¼ ω1
2R2 ω2 t ¼ 0ð Þ−ω2

2R1 ω1 t ¼ 0ð Þ
R2−R1

ð20Þ

This is the improved form by Geng and Cai:

ω2 ¼ ω1
2R2 ω2 t ¼ π

3

� �
−ω2

2R1 ω1 t ¼ π
3

� �
R2−R1

: ð21Þ

By considering cos(ω1t) = cos(ω2t) = k and substituting
the obtained ω into u(t) = cos(ωt), we can obtain the con-
stant k in ω2 equation in order to have the frequency with-
out irrelevant parameter. To improve its accuracy, we can
use the following trial function when they are required:

u1 tð Þ ¼
Xm
i¼1

Ai cosðωi tÞ; u2 tð Þ ¼
Xm
i¼1

Ai cos Ωi tð Þ;

ð22Þ
or we can use

u1 tð Þ ¼

Xm
i¼1

Ai cos ωi tð Þ
Xn
j¼1

Bj cos ωj t
� � ; u2 tð Þ

¼

Xm
i¼1

Ai cos Ωi tð Þ
Xn
j¼1

Bj cos Ωj t
� � ð23Þ

However, in most cases because of the sufficient accur-
acy, trial functions are as follows and just the first term:

u1 tð Þ ¼ A cost; u2 tð Þ
¼ a cos ω tð Þ þ A−að Þ cos 3ω tð Þ ð24Þ

and

u1 tð Þ ¼ A cost; u2 tð Þ ¼ A 1þ cð Þ cos ω tð Þ
1þ c cos 2ω tð Þ ; ð25Þ

where a and c are unknown constants. In addition, we
can set cos(t) = k in u1(t) and cos(ωt) = k in u2(t).

The application of energy balance method for the
nonlinear oscillator
In this section, we consider the nonlinear equation in
the following form [1]:

d2

dt2
u tð Þ þ u tð Þ− λ⋅u tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u tð Þ2
q ¼ 0 ; 0 < λ≤1; ð26Þ

with initial conditions [1]:

u 0ð Þ ¼ A;
d
dt

u 0ð Þ ¼ 0: ð27Þ

Table 2 Comparison of the approximate frequencies with the exact frequencies when λ = 0.5

A Energy balance method Amplitude-frequency formulation Exact solution

0.1 0.708424 0.708423 0.708423

1 0.788075 0.786524 0.786171

10 0.970480 0.968168 0.968102

100 0.9997067 0.996813 0.996812

Table 1 Comparison of the approximate frequencies with the exact frequencies when λ = 0.1

A Energy balance method Amplitude-frequency formulation Exact solution

0.1 0.948880 0.948880 0.948881

1 0.961360 0.961106 0.961098

10 0.994166 0.993715 0.993713

100 0.999414 0.999363 0.999364
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For this problem,

f u tð Þð Þ ¼ u tð Þ− λ⋅u tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u tð Þ2

q ð28Þ

and

F u tð Þð Þ ¼ 1
2
u tð Þ2−λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u tð Þ2

q
: ð29Þ

Its variational principle can be easily obtained:

J u tð Þð Þ ¼ ∫
t

0 −
1
2
⋅
d
dt

u tð Þ2 þ 1
2
u tð Þ2−λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u tð Þ2

q� �
dt:

ð30Þ
Its Hamiltonian, therefore, can be written in the fol-

lowing form:

ΔH ¼ 1
2
⋅
d
dt

u tð Þ2 þ 1
2
u tð Þ2−λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u tð Þ2

q
¼ 1

2
A2−λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
ð31Þ

or

R tð Þ ¼ 1
2
⋅
d
dt

u tð Þ2

þ 1
2
u tð Þ2−λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u tð Þ2

q
−
1
2
A2

þ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
¼ 0: ð32Þ

Substituting Equation 8 into Equation 32, we obtain

R tð Þ ¼ 1
2
A2ω2 sin2 ω tð Þ þ 1

2
A2 cos2 ω tð Þ−:

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2 cos2 ω tð Þ

q
−
1
2
A2 þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
¼ 0

ð33Þ

If we collocate at ωt = π/4, we obtain the following re-
sult:

ωEBM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2A2

p
A2 −

4λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
A2

s
: ð34Þ

Its period can be written in the following form:

TEBM ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λ

ffiffiffiffiffiffiffiffiffiffi
4þ2A2

p
A2 − 4λ

ffiffiffiffiffiffiffiffi
1þA2

p
A2

r : ð35Þ

The exact period is [1]

TExact ¼ 4∫
π
2

0 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2 sin2t

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
s !

dt:

ð36Þ

The application of amplitude-frequency formulation for
the nonlinear oscillator
In this section, we consider the nonlinear equation in
the following form [1]:

d2

dt2
u tð Þ þ u tð Þ− λ⋅u tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u tð Þ2
q ¼ 0 ; 0 < λ≤1; ð37Þ

with initial conditions [1]:

u 0ð Þ ¼ A;
d
dt

u 0ð Þ ¼ 0: ð38Þ

For small values of A, we can write

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u tð Þ2

q ¼ 1−
1
2
u tð Þ2: ð39Þ

We can write nonlinear equation in the following
form:

Table 4 Comparison of the approximate frequencies with the exact frequencies when λ = 0.95

A Energy balance method Amplitude-frequency formulation Exact solution

0.1 0.231391 0.231388 0.231367

1 0.529168 0.524765 0.520335

10 0.943122 0.938597 0.938333

100 0.994420 0.993936 0.993934

Table 3 Comparison of the approximate frequencies with the exact frequencies when λ = 0.75

A Energy balance method Amplitude-frequency formulation Exact solution

0.1 0.502788 0.502787 0.502786

1 0.656958 0.654164 0.652771

10 0.955378 0.951854 0.951696

100 0.995597 0.995215 0.995214
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d2

dt2
u tð Þ þ 1−λð Þu tð Þ þ 1

2
λu tð Þ3 ¼ 0 ð40Þ

by using two trial functions in the following form:

u1 tð Þ ¼ A cos tð Þ ð41Þ

and

u2 tð Þ ¼ A cos ω tð Þ: ð42Þ

For Equation 40, we obtain the following residuals:

R1 tð Þ ¼ −λAk þ 1
2
λA3k3: ð43Þ

By simple calculation, we obtain

R2 tð Þ ¼ −3Ak−λAk þ 1
2
λA3k3: ð44Þ

With considering cos(ω1t) = cos(ω2t) = k, we have

ω2 ¼ ω1
2R2−ω2

2R1

R2−R1
ð45Þ

ω2 ¼ −3Ak−λAk þ 1
2 λA

3k3−ω2 −λAk þ 1
2 λA

3k3
� �

−3Ak−λAk þ 1
2 λA

3k3
� �

− −λAk þ 1
2 λA

3k3
� � :

ð46Þ

Figure 3 Comparison of energy balance method and amplitude-frequency formulation with exact solution when A = 1, λ = 0.5.

Figure 2 Comparison of energy balance method and amplitude-frequency formulation with exact solution when A = 1, λ = 0.1.
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Therefore, we have

ωAFF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λþ 1

2
λA2k2

r
: ð47Þ

We can rewrite u(t) = A cos(ωt) in the following form:

u tð Þ ¼ A cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λþ 1

2
λA2k2

r
⋅t

 !
: ð48Þ

We can rewrite the main equation in the following
form:

d2

dt2
u tð Þ þ 1−λð Þ þ 1

2
λA2k2

� �
u tð Þ

¼ 1
2
λA2k2u tð Þ− 1

2
λu tð Þ3: ð49Þ

The right side of Equation 49 vanishes completely:

B ¼ ∫
T
4

0
1
2
λA2k2u tð Þ− 1

2
λu tð Þ3

� �
cos ω tð Þð Þdt

¼ 0 ; T ¼ 2π
ω

ð50Þ

B1 ¼ ∫
T
4

0
1
2
λA2k2A cos ω tð Þ

� �
cos ω tð Þð Þdt

¼ 1
2
λA3k2

π

4
ð51Þ

B2 ¼ ∫
T
4

0 −
1
2
λðA3 cos3 ω tð Þ

� �
cos ω tð Þð Þdt ¼ ‐

1
2
λA3 3π

16

ð52Þ

Figure 5 Comparison of energy balance method and amplitude-frequency formulation with exact solution when A = 1, λ = 0.95.

Figure 4 Comparison of energy balance method and amplitude-frequency formulation with exact solution when A = 1, λ = 0.75.
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So, we have

B ¼ B1 þ B2 →
1
2
λA3k2

π

4
−
1
2
λA3 3π

16
¼ 0: ð53Þ

With solving and simplifying Equation 53, we have

k2 ¼ 3
4
: ð54Þ

With substituting Equation 54 into Equation 47, we
have approximate frequency in the following form:

ωAFF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λþ 3

8
λA2

r
: ð55Þ

Its period can be written in the following form:

TAFF ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−λþ 3

8 λA
2

q : ð56Þ

The comparison of the approximate frequencies with
exact frequencies
To illustrate the accuracy of the energy balance method
and amplitude-frequency formulation, we present the
comparison results of analytical approximate tech-
niques with exact solution in Tables 1, 2, 3 and 4 and
Figures 2, 3, 4 and 5 for different values of λ.

Conclusions
In this paper, we investigated and applied two of the ana-
lytical approximate techniques, energy balance method
and amplitude-frequency formulation, for solving the
strongly nonlinear differential equation of a mass attached
to the center of a stretched elastic wire.
To illustrate the accuracy of the energy balance method

and amplitude-frequency formulation, we presented a
comparative study between the analytical approximate
techniques with exact solution. The approximate results
reveal that these methods are very effective and conveni-
ent for determining the frequencies of nonlinear dynam-
ical systems.
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