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Abstract

In this paper, the kink space-time with wet dark fluid in scale invariant theory of gravitation is investigated. The
gauge function β is considered as β = β(r) and β = β(t). The matter field is assumed to be perfect fluid. It has been
found that perfect fluid does not survive in this theory in both the cases. Hence, the space-time in both the cases
reduces to Minkowskian geometry and the space-time is flat.
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Introduction
There has been considerable interest in scale invariant
theory owing to the scaling behaviour exhibited in high-
energy particle scattering experiments (Callan et al. [1]).
However, such theories are considered to be valid only
in the limit of high energies or vanishing rest masses.
This is because in elementary particle theories, rest
masses are considered constants, and the scale invari-
ance is generally valid only when the constant rest mass
condition is relaxed.
Canuto et al. [2] formulated a scale covariant theory of

gravitation by associating the mathematical operation of
scale transformation with the physics, using different dy-
namical systems to measure space-times distances. For
gravitational units, the gauge condition is chosen so that
the standard Einstein equations are recovered.
In the alternative theory proposed by Brans and Dicke

[3], there exists a variable gravitational parameter G.
Another theory which admits a variable G is the scale co-
variant theory of Canuto et al. [2]. Dirac [4,5] rebuilt
Weyl's unified theory by introducing notion of two metrics
and an additional gauge function β. A scale invariant vari-
ation principle was proposed from which gravitational and
electromagnetic field equations can be derived. It is con-
cluded that an arbitrary gauge function is necessary in all
scale invariant theories.

It is found that the scale invariant theory of gravitation
agrees with general relativity up to the accuracy of ob-
servations made of up to now. Dirac [4,5], Hoyle and
Narlikar [6] and Canuto et al. [2] have studied several
aspects of the scale invariant theories of gravitation. But
Wesson's [7] formulation is so far best to describe all the
interactions between matter and gravitation in scale-free
manner.
In the scale invariant theory of gravitation, Einstein's

equation have been written in scale-independent way by
performing the conformal or scale transformation as

�g ij ¼ β2 xk
� �

gij; ð1Þ
where the gauge function β(0 < β < 1) is in its most gen-
eral formulation of all space-time coordinates. Thus,
using the conformal transformation of the type given by
Equation 1, Wesson [7] transforms the usual Einstein
field equations into

Gij þ f ij−Λ0gij ¼ −κTij ð2Þ

βf ij ¼ 2ββ;ij−4β;iβ;j− gabβ;aβ;b−2g
abβ;ab

� �
ð3Þ

Gij≡Rij−
1
2
Rgij ð4Þ

In these equations, Gij is the conventional Einstein
tensor involving gij. Semicolon and comma, respectively,
denote covariant differentiation with respect to gij and
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partial derivatives with respect to coordinates. Rij is the
Ricci tensor and R is the Ricci scalar. The cosmological
term Λgij of Einstein theory is now transformed to
Λ0β

2gij in scale invariant theory with a dimensionless
cosmological constants Λ0. G and κ are respectively the
Newtonian and Wesson's gravitational parameters. Tij is
the energy momentum tensor of the matter field and
κ ¼ 8πG

c4 . A particular feature of this theory is that no
independent equation for β exists.
Beesham [8-10], Mohanty and Mishra [11,12], Mishra and

Mohanty [13], Mishra [14-16], Reddy and Venkateswaralu
[17] have investigated several aspects of scale invariant
theory. However, kink space-time with wet dark fluid has
not been considered, so far, in the scale invariant theory of
gravitation. Hence in this paper, we consider the kink
space-time with wet dark fluid (WDF) in the scale invari-
ant theory of gravitation. In Section ‘Wet dark fluid’, the
WDF is discussed in detail. In Section ‘Metric and field
equations’, with kink metric the field equations and its so-
lutions are obtained, when the gauge function β = β(r) and
β = β(t). Some discussions and the concluding remarks
are given in Section ‘Concluding remarks’. Finally lists of
references are mentioned at the end.

Wet dark fluid
Recently, there has been considerable interest in cosmo-
logical model with ‘Dark energy’ (DE) in general relativ-
ity because of the fact that our universe is currently
undergoing an accelerated expansion which has been
confirmed by host of observations, such as type I super-
novae (SNeIa) (Riess et al. [18]; Perlmutter et al. [19];
Bahcall et al. [20]), Sloan Digital Sky Survey (SDSS)
(Tegmark et al. [21]), and Wilkinson Microwave Anisot-
ropy Probe (WMAP) (Bennet et al. [22]; Hinshaw et al.
[23]; Nolta et al. [24]). Based on these observations, cos-
mologists have accepted the idea of dark energy. Cos-
mologists have proposed many candidates for dark
energy to fit the current observations, such as cosmo-
logical constant, tachyon, quintessence, and phantom.
Current studies to extract the properties of a dark energy
component of the universe from observational data focus
on the determination of its equation of state w tð Þ ¼ p

ρ

which is not necessarily constant. The methods for restor-
ation of the quantity w(t) from expressional data have
been developed (Sahni and Starobinsky [25]), and an ana-
lysis of the experimental data has been conducted to de-
termine this parameter as a function of cosmological time
(Sahni et al. [26]). Recently, the parameter w(t) has been
calculated with some reasoning which reduced to some
simple parameterization of the dependences by some au-
thors (Huterer and Turner [27]; Weller and Albrecht [28];
Linden and Virey [29]; Krauss et al. [30]; Usmani et al.
[31]; Chen et al. [32]).

These observations provide us a clear outline of the uni-
verse: it is flat and full of undamped form of energy density
pervading the universe. The undamped energy called DE
with negative pressure attributes to about 74% of the total
energy density. The remaining 26% of the energy density
consists of matter including about 22% dark matter density
and about 4% baryon matter density. So understanding the
nature of DE is one of the most challenging problems in
modern astrophysics and cosmology. Recent cosmological
observations contradict the matter-dominated universe
with decelerating expansion, indicating that our universe
experiences accelerated expansion. We are motivated to
use the WDF as a model for DE which seems, from an em-
pirical equation of state proposed by Tait [33] and Hayward
[34], to treat water and aqueous solution.
The equation for WDF is

pWDF ¼ γ ρWDF−ρ
�� �
; ð5Þ

where the parameters γ and ρ* are taken to be positive
and 0 ≤ γ ≤ 1.
To find the WDF energy density, we use the energy

conservation equation as

_ρWDF þ 3H pWDF þ ρWDF

� � ¼ 0: ð6Þ

Applying the equation of state 3H ¼ v̇
v , Equation 6 re-

duces to

ρWDF ¼
γ

1þ γ

� �
ρ� þ c

v 1þ γð Þ ; ð7Þ

where c is the velocity of light and v is the volume
expansion.
WDF has two components: one behaves as a cosmo-

logical constant and other as standard fluid with equa-
tion of state p = γρ. If we take c > 0 in Equation 7, this
fluid will not violate the strong energy condition:

pWDF þ ρWDF ¼ 1þ γð ÞρWDF−γρ
�

¼ 1þ γð Þ c
v 1þ γð Þ ≥0 ð8Þ

Holman and Naidu [35] used the WDF as dark energy
in the homogeneous, isotropic FRW case. Singh and
Chaubey [36] studied Bianchi type I universe with WDF.
Moreover, Chaubey [37] has investigated Bianchi type

V universe with WDF and studied the solution for con-
stant deceleration parameter, whereas in [38] studied the
Bianchi type III and Kantowski-Sachs universe filled with
dark energy from a WDF. In this paper, a new equation
of state for the dark energy component of the universe
has been used. Also Chaubey [39] investigated Bianchi
type VI0 universe filled with dark energy from a WDF
and obtained the exact solutions to the corresponding
field equations in quadrature form.
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Metric and field equations
The energy momentum tensor for perfect fluid distribu-
tion is given by

Tm
ij ¼ pWDF þ ρWDFc

2
� �

UiUj þ pWDFgij ð9Þ

together with

gijU
iUj ¼ −1; ð10Þ

where Ui is the four-velocity vector of the fluid, and
pWDF and ρWDF are the pressure and energy density of
the WDF respectively.
A formulation of the general relativity theory is given

in terms of three postulates about a mathematical model
for space-time. This model is a manifold M with a
metric g of Lorentz signature. The physical significance
of the metric (space-time) is given by the first two postu-
lates: those of local casualty and of local conservation of
energy momentum. These postulates are common to
both general and special theory of relativity and so are
supported by the experimental evidence of the latter the-
ory. The third postulate, the field equations for the
metric g, is less well experimentally established. How-
ever, most of our results will depend only on the prop-
erty of field equations that gravity is attractive for
positive matter densities. This property is common to
both general theory and alternative theories of relativity.
Recently, there has been some interest in exploring the

conditions under which space-times with Finkelstein-
Misner kinks are geodesically complete and, at the same
time, satisfy reasonably strict energy condition. Our pur-
pose in this paper is to construct this topic in relation to a
broader class of kink space-time. The class of space-time
that is under discussion is a special case of the general
spherically space-time given by Letelier and Wang [40].
The kink space-time is considered as

ds2 ¼ −cos2αc2dt2−2sin2αdrdt þ cos2αdr2 þ r2dΩ2;

ð11Þ
where dΩ2 = dθ2 + cos2θdφ2and α = α(r).
Case 1. When β = β(r). With the above assumption of

β = β(r), the field Equation 2 for the metric Equation 11
with the co-moving coordinates 0; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffi
sec2α

p� �
can be

written as

2
r2

sin2αþ 2
r
sin2αα1−2sin2αα1 1þ 2sin22α

� � β1
β

þ cos2α
β21
β2

−2 cos2α
β11
β

þ 4
r
cos2α

β1
β

þ sec2α 2
β11
β

−4
β 1

2

β2

� �
−Λ0 ¼ −κc2pWDF ð12Þ

sin2αα11 þ 2
r
sin2αα1 þ 2 cos2αα21−4sin

32αα1
β1
β

þcos2α
β21
β2

− cos2α
β11
β

þ 2
r
cos2α

β1
β
−Λ0 ¼ −κc2pWDF

ð13Þ

2
r2
sin2αþ 2

r
sin2αα1 þ 2sin2αα1 1−2sin22α

� � β1
β

þcos2α
β21
β2

−2cos2α
β11
β

þ 4
r
cos2α

β1
β
−Λ0 ¼ −κc2pWDF

ð14Þ

2
r2
sin2αþ 2

r
sin2αα1 þ 2sin2αα1 1−2sin22α

� � β1
β

þcos2α
β21
β2

−2 cos2α
β11
β

þ 4
r
cos2α

β1
β
−Λ0

¼ κc2 pWDF þ c2ρWDF

� �
sec22α−κc2pWDF: ð15Þ

Equations 14 and 15 yields

pWDF þ ρWDFc
2 ¼ 0 ð16Þ

Now Equations 12, 13, 14, and 15 are reduced to three
equations as

2
r2
sin2αþ 2

r
sin2αα1−2sin2αα1 1þ 2sin22α

� � β1
β
þ cos2α

β21
β2

−2 cos2α
β11
β

þ 2 cos2α
β1
β

sec2α 2
β11
β

−4
β 1

2

β2

� �
−Λ0

¼ −κc2pWDF ð17Þ

sin2αα11 þ 2
r
sin2αα1 þ 2cos2αα21−4sin

32αα1
β1
β

þcos2α
β21
β2

−2 cos2α
β11
β

þ 2
r
2 cos2α

β1
β
−Λ0

¼ −κc2pWDF ð18Þ

2
r2
sin2αþ 2

r
sin2αα1 þ 2sin2αα1 1−2sin22α

� � β1
β

þcos2α
β21
β2

−2cos2α
β11
β

þ 4
r
cos2α

β1
β
−Λ0

¼ −κc2pWDF ð19Þ
Due to the highly nonlinear nature of the field

Equations 17, 18, and 19, we consider
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β ¼ 1
ar þ b

; ð20Þ

where α(≠0) and b are real constants.
Now, the set of field Equations 17, 18, and 19 reduces to

2
r2

sin2αþ 2
r
sin2αα1 þ 2a

ar þ b
sin2αα1 þ 4a

ar þ b
sin32αα1

þ 3a2

ar þ bð Þ2 cos2αþ 4a
r ar þ bð Þ cos2α−Λ0 ¼ −κc2pWDF

ð21Þ

2 cos2α
β44
β

− cos2α
β 42 −
β2

−Ac ¼ −KC2pWDF

sin2αα11 þ 2
r
sin2αα1 þ 2cos2αα21−

2a
ar þ b

cos2αα1

−
4a

ar þ b
sin32αα1−

3α2

αr þ bð Þ2 cos2α−Λ0 ¼ −κc2pWDF

ð22Þ

2
r2
sin2αþ 2

r
sin2αα1−

2a
ar þ b

sin2αα1 þ 4a
ar þ b

sin32αα1

−
3a2

ar þ bð Þ2 cos2α−
4α

r αr þ bð Þ cos2α−Λ0 ¼ −κc2pWDF

ð23Þ

Equations 21 and 23 yields α = constant; hence, the
metric potential is a constant.
Case 2. When β = β (r). Again, by use of commoving

coordinates 0; 0; 0;
ffiffiffiffiffiffiffiffiffiffiffiffi
sec2α

p� �
; the field Equation 2 for

the metric Equation 11 can be written as

2
r2

sin2αþ 2
r
sin2αα1−2 sin2α tan2αα1

β4
β
þ 4

r
sin2α

β4
β

þ2 cos2α
β44
β

− cos2α
β 4

2

β2
−Λ0 ¼ −κc2pWDF ð24Þ

sin2αα11 þ 2
r
sin2αα1 þ 2cos2αα21 þ 4cos2αα1

β4
β

þ 2
r
sin2α

β4
β
þ 2 cos2α

β44
β

− cos2α
β 4

2

β2
−Λ0 ¼ −κc2pWDF

ð25Þ

2
r2

sin2αþ 2
r
sin2αα1−2 sin2αα1

β4
β
þ 4

r
sin2α

β4
β

þ2 cos2α
β44
β

− cos2α
β 4

2

β2
−Λ0 ¼ −κc2pWDF ð26Þ

2
r2

sin2αþ 2
r
sin2αα1 þ 2 sec2αþ cos2αð Þα1 β4

β

þ 4
r
sin2α

β4
β
þ 2 cos2α−sec2αð Þ β44

β

þ 4sec2α−cos2αð Þ β
2
4

β2
−Λ0 ¼ −κc4ρWDFsec

22α;

ð27Þ

where the suffixes 1 and 4 denote ordinary differenti-
ation with respect to r and t, respectively.
For a simple formulation of scale invariant theory, the

gauge function is taken as

β ¼ 1
ct

ð28Þ

Using the gauge function in Equation 28, the set of
field Equations 24, 25, 26, and 27 reduces to

2
r2
sin2αþ 2

r
sin2αα1 þ 2

sin2αtan2αα1
t

−
2
r
sin2α
t

þ 3cos2α
t2

−Λ0 ¼ −κc2pWDF ð29Þ

sin2αα11 þ 2
r
sin2αα1 þ 2cos2αα21−

4cos2αα1
t

−
2
r
sin2α
t

þ 3cos2α
t2

−Λ0 ¼ −κc2pWDF ð30Þ

2
r2
sin2αþ 2

r
sin2αα1−

2cos2αα1
t

−
4
r
sin2α
t

þ 3cos2α
t2

−Λ0

¼ −κc2pWDF ð31Þ

2
r2
sin2αþ 2

r
sin2αα1 þ 2 sec2αþ cos2αð Þα1 β4

β

−
4
r
sin2α
t

þ 5cos2α−8sec2αð Þ
t2

−Λ0

¼ −κc4ρWDFsec
22α: ð32Þ

Equations 29 and 31 yield
α1 = 0, i.e. α = constant.
Thus, the metric potential is a constant.

Concluding remarks
It is a general belief that Einstein theory of general rela-
tivity is just a leading order of more general theory of
gravity. This is due to the fact that although general rela-
tivity has passed many experimental tests, however, it
fails to explain some recent observations such as acceler-
ated expansion. Among various extensions of general
relativity, the scale invariant gravity has got much
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attention as one of promising candidates for explaining
the current accelerating phases in the evolution of the
universe.
In the formulation of scale invariant theory of gravita-

tion, Wesson assumed (1) the metric is diagonal and
spherically symmetric; (2) the gauge function β depends
only one coordinate; and (3) the energy momentum ten-
sor is that of a perfect fluid. Here, the scale invariant
theory was taken along with the WDF. The gauge func-
tion was taken as functions of r and t in two different
cases. In both the cases, it is found that space-time re-
duces to Minkowskian geometry, and the matter field
does not survive in any case in this theory. Hence, the
space-time is flat.
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