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Abstract

Nonstandard Lagrangians entitled ‘nonnaturals’ by Arnold have recently gained increasing importance both
in applied mathematics and in physical theories. These types of Lagrangians appear in some group of
dissipative dynamical systems, and they play an important role in a number of field theories. However, the
role of nonstandard Lagrangians in geometric theories like general relativity is still absent. In this
communication, we would like to discuss the relevance of nonstandard Lagrangians in general relativity
using the principles of calculus of variations. In fact, nonstandard Lagrangians came in different forms,
features, and characteristics, depending on the nature of the dynamical problem under study. In this work,
we will be concerned with time-dependent Lagrangians of the form L1 + γ(t). After deriving the modified
geodesic equation using the basic techniques of Riemannian differential geometry which will be used to
axiomatize a large part of our work, we show that many interesting consequences will be raised accordingly
when applied to FRW cosmology.
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Background
In recent years, the topic of nonstandard Lagrangians
(NSLs) has attracted attention due to its wide appli-
cations in different branches of applied mathematics
and theoretical physics. In reality, NSL is not new
and its origin dated back to 1978 when Arnold enti-
tled them ‘nonnatural’ [1]. The topic was completely
ignored until 1984 when Alekseev and Arbuzov used
NSL to describe large-distance interactions in the
field of applicability of classical theory within the
framework of Yang-Mills field theory, a problem
which is directly related to color confinement issue
[2]. In fact, in years of progress, it was realized that
NSL plays an important role in nonlinear differential
equations like the nonlinear second-order Riccati
equation [3] and the Lienard-type nonlinear differen-
tial equation [4,5]. Interest in NSL increases gradually
with time, and more applications were discussed in

dissipative dynamical systems [6-10], quantum field
theory [11,12], and cosmology [13,14].
Although the topic of NSL was addressed generally

in classical dynamical systems, its implications in dif-
ferential geometry and astrophysics are still ignored,
and to the best of our knowledge, the topic is
completely missed. This paper aims to explore how
NSL can help bridge the gap between NSL physics
and applied differential geometry. Recently, we have
discussed the problem of finding a nonstandard La-
grangian description for a large class of dynamical
systems [15-17]. A good number of NSLs which have
been overlooked in the existing literature were de-
rived and solved. For the sake of clarity, it should be
emphasized that in our approach the term NSL refers
principally to any ‘standard Lagrangian function that
modify the Euler-Lagrange equations and accordingly
Hamilton's equations of motion’. In fact, two differ-
ent types of NSL were introduced: the exponential
NSL and the power-law NSL. In this communication,
we will deal with the power-law NSL (PNSL) with
time-dependent coefficient, and we keep the second
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one for a future work. We will show that the
presence of a time-dependent coefficient in PNSL is
in fact connected to a time-dependent gravitational
potential (TDGP). In reality, an assumption that in
the universe there is a time-dependent gravitational
potential was proposed in [18,19] and discussed in
[20-23]. It is an interesting attempt as it explains the
Hubble redshift and the anomalous acceleration from
the spacecraft Pioneer 10 and 11 mainly when TDGP
decreases linearly with time. A TDGP also has many
astrophysical impacts as its change modify the
planetary orbits which were proven to be not axially
symmetric. Moreover, it was observed that if the
gravitational potential is time-dependent, the distant
galaxies' velocity is not extremely fast as it is cur-
rently considered. In fact, the change of the gravita-
tional potential is most likely caused by the change
of the dark energy density, but nothing is confirmed
about it. One naturally expects a violation of the
strong and weak equivalence principle of general
relativity. This violation was discussed in many theor-
etical aspects [24-41]. It is noteworthy that general
relativity has been systematically tested on solar sys-
tem scales. Therefore, it is unsurprising if we try to
correct the theory at galactic and cosmological scales.
One interesting recent anthropic argument suggests
that the equivalence principle is violated at a small
level [42]. This approach motivates the demand for
enhanced tests of the equivalence principle. Some in-
teresting points concerning the violation of the
equivalence principle and violation of diffeomorphism
invariance in connection with emergent gravity were
discussed in [43,44] and references therein.
The paper is organized as follows: in the section

‘PNSL and the modified geodesic equation’, PNSL
with time-dependent coefficient is revised, and the
corresponding modified geodesic equation is intro-
duced. In the section ‘A cosmological application of
G→G +H/ρa’, we discuss some main astrophysical
and cosmological consequences. Finally in the last
section, conclusions and perspectives are presented.

PNSL and the modified geodesic equation

The PNSL that will be considered in this paper is L1 þ γ tð Þ

t; _q tð Þ; q tð Þð Þ (γ is a time-dependent parameter), and the

corresponding action functional is S ¼ ∫baL
1 þ γ tð Þ

t; _q tð Þ; q tð Þð Þdt. Here t; _q; qð Þ→L t; _q; qð Þ is assumed to be
a C2 function, q ∈C1([a, b];ℝn) is the generalized coordin-
ate, _q ¼ dq=dt , and L t; _q; qð Þ∈C2 a; b½ � � ℝn � ℝn;ℝð Þ is
the Lagrangian. It is easy to check that any admissible
function q ∈ C1[a, b] subject to given boundary conditions
q(a) = qa and q(b) = qb for which the action functional

has an extremum satisfies the following Euler-Lagrange
equations [17]:

∂L
∂q

−
d
dt

∂L
∂ _q

� �
¼ γ tð Þ

L
∂L
∂ _q

∂L
∂t

þ _q
∂L
∂q

þ €q
∂L
∂ _q

� �

þ 1
1þ γ tð Þ

dγ tð Þ
dt

∂L
∂ _q

ð1Þ

We would like to apply this result to compute the
geodesics for a given metric. The mathematical trans-
lation from classical mechanics to differential geom-
etry is discussed in any graduate textbook (see [42]
for details). We use the Einstein summation conven-
tion in which we sum over repeated indices which
occur as a subscript and superscript pair. In order to
obtain the modified geodesic equation, we use natur-
ally the variational principle. In the language of differ-
ential geometry, the variational principle states that
any freely falling test particles follow a certain path
between two fixed points in curved spacetime which
extremize the proper time. This is one of the basic
postulates of Einstein's general relativity (EGR). In
what follows, we set for convenience τ the proper
time. Besides, we work in units ℏ = c = 1 with a metric
sign (−, +, +, +).
In EGR, the action is maximum for straight paths and

the path length is S = ∫Ldτ where L ¼ 1=2ð Þgμν _x
μ
_x
ν
,

where gμν is the covariant spacetime metric tensor. The
jump from classical mechanics to differential geometry
is therefore realized by making the change t; _q; qð Þ→
τ; _xμ; xμð Þ where _xμ ¼ dxμ=dτ . In this context, we can
rewrite Equation 1 as

∂L
∂xα

−
d
dτ

∂L
∂ _xα

� �
¼ γ τð Þ

L
∂L
∂ _xα

∂L
∂τ

þ _xα
∂L
∂xα

þ €xα
∂L
∂ _xα

� �

þ 1
1þ γ τð Þ

dγ τð Þ
dτ

∂L
∂ _xα

ð2Þ

After replacing L ¼ 1=2ð Þgμν _xμ _xν into Equation 2, we

find after simple algebra

€xν þ Γν
γδ _x

γ _xδ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
standard part

þ 2γ τð Þ
gμν _x

μ

1
2
gγδ;α _x

γ _xδ _xα þ €xαgγα _x
γ

� �
þ 1
1þ γ τð Þ

dγ τð Þ
dτ

_xν

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
extra‐part

¼ 0

ð3Þ
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Here Γν
αβ are the Christoffel connection coefficients of

the metric gαβ defined by [45]

Γν
αβ ¼

1
2
gνγ gαγ;β þ gγβ;α−gαβ;γ

h i
ð4Þ

where gαβ,γ = ∂gαβ/∂x
γ and so on.

Remark 1 The well-known reparametrization invari-
ance procedure is unable to bring the equations of mo-
tion (3) into the standard form even on-shell. Therefore,
we expect new physics to be obtained from the present
approach by choosing a different action for particles in
relativity.
The calculation is straightforward: in fact, from L ¼

1
2 gμν _x

μ _xν , we get ∂L=∂ _xα ¼ gγα _x
γ and ∂L=∂xα ¼ gγδ;α _x

γ _xδ=

2. After replacing into Equation 2, we find

1
2
gγδ;α _x

γ _xδ−
d
dτ

gγα _x
γ ¼ 2γ τð Þ

gμν _x
μ _xν

gγα _x
γ

� 1
2
gγδ;α _x

γ _xδ _xα þ €xαgγα _x
γ

� �

þ 1
1þ γ τð Þ

dγ τð Þ
dτ

gγα _x
γ

ð5Þ

Using dgγα=dτ ¼ gγα;δ _x
δ , multiplying both sides of

Equation 5 by gνα and using gναgγα _x
γ ¼ _xν , we find

€xν−gνα
1
2
gγδ;α−gγα;δ

� �
_xγ _xδ

þ 2γ τð Þ
gμν _x

μ _xν
_xν

1
2
gγδ;α _x

γ _xδ _xα þ €xαgγα _x
γ

� �

þ 1
1þ γ τð Þ

dγ τð Þ
dτ

_xν ¼ 0 ð6Þ

With the help of gγα;δ _x
γ _xδ ¼ gαδ;γ _x

γ _xδ and Equation 4,

we effortlessly find Equation 3 which may also be writ-
ten in the following useful form:

It is obvious that for γ = 0, Equation 7 is reduced to
the standard geodesic form. The importance of the last
term in Equation 7 which concerns the variation of γ (τ)
with time will be appreciated in the next subsection.
Remark 2 If we set γ(τ) ∝ τ− x, x > 0, then Equation 7

is reduced for a very large time to its standard form as

lim
τ→∞

γ τð Þ→0 and lim
τ→∞
x>0

1
1þγ τð Þ

dγ τð Þ
dτ ¼ lim

τ→∞
x>0

− x
1þτx

1
τ→ 0.

We consider the motion of a particle of mass m as-
sumed to be slowly moving in a time-dependent stationary
field. The limit of slow motion reduces the Christoffel
symbol to:

Γν
00 ¼

1
2
gνα g0α;0 þ gα0;0−g00;α

h i
¼ −

1
2
gνig00;i þ

1
2
gν0g00;0 ð8Þ

We follow the standard formalism and perform the
perturbation gαβ(x

i, τ) = ηαβ + hαβ(x
i, τ) (small deviation

from a Minkowski flat spacetime) with gαβ(xi, τ) = ηαβ −
hαβ(xi, τ) since gδβg

αβ = δαδ with |hαβ(x
i, τ)| < < 1. The

Minkowski metric η is constant, whereas hαβ(x
i, τ) is

time-dependent since the gravitational field is assumed
to be nonstationary. To the first order, the Christoffel
symbol takes the form

Γν
00 ¼ −

1
2
ηνih00;i þ 1

2
ην0ĥ00;0 ð9Þ

In fact we assumed that h00 xi; τð Þ ¼ h00 xið Þ þ ĥ00 τð Þ ,
where ĥ00 τð Þ is expected to be the time-dependent gravi-
tational potential correction to h00(x

i). We accordingly

find Γ0
00 ¼ 1

2η
00ĥ00;0 and Γ j

00 ¼ −1
2η

jih00;i . For ν = 0, since
dxi/dτ =O(ε), we get

1þ 2γ τð Þð Þ d
2x0

dτ2
þ −

1
2
þ γ τð Þ 1

h00−1

� �
ĥ00;0

dx0

dτ
dx0

dτ

þ 1
1þ γ τð Þ

dγ τð Þ
dτ

dx0

dτ
¼ 0

ð10Þ

dxμ

dτ
d2xν

dτ2
þ Γν

γδ

dxγ

dτ
dxδ

dτ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
standard part

0
BB@

1
CCAþ 2γ τð Þ

gμν

1
2
gγδ;α

dxγ

dτ
dxδ

dτ
dxα

dτ
þ gγα

dxγ

dτ
d2xα

dτ2

� �
þ 1
1þ γ τð Þ

dγ τð Þ
dτ

dxμ

dτ
dxν

dτ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
extra part

¼ 0

ð7Þ
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As in general |h00| < < 1, we can approximate
Equation 10 by

d2x0

dτ2
−

1
2
ĥ00;0

dx0

dτ
−

1
1þ γ τð Þð Þ 1þ 2γ τð Þð Þ

dγ τð Þ
dτ

� �
dx0

dτ
¼ 0

ð11Þ
For ν = j and then i = j, we get with |hii| < < 1

d2xi

dτ2
−
1
2
h00;i

dx0

dτ
dx0

dτ
þ 2γ τð Þ 1

2
ĥ00;0

dx0

dτ
dx0

dτ
−
d2x0

dτ2

� �

þ 1
1þ γ τð Þ

dγ τð Þ
dτ

dx0

dτ
¼ 0 ð12Þ

Using Equation 11, we can rewrite Equation 12 as

d2xi

dτ2
−

1
2
h00;i

dx0

dτ
−

4γ τð Þ þ 1
1þ γ τð Þð Þ 1þ 2γ τð Þð Þ

dγ τð Þ
dτ

� �
dx0

dτ
¼ 0

ð13Þ

Up to this stage, the situation seems complicated as
we ignore the form of γ(τ) of which we are aware from
the beginning that it may take a large number of forms.
However, one particular class of solution may be ex-
tracted from Equation 11. If we set the factor inside the
parenthesis equal to zero, then €x0≡d2t=dτ2 ¼ 0, i.e., _x0≡
dt=dτ ¼ k ¼ constant. In that case, we have

1
1þ γ τð Þð Þ 1þ 2γ τð Þð Þ

dγ τð Þ
dτ

¼ k
2
ĥ00;0 ð14Þ

and therefore, after simple integration, we get

ĥ00 τð Þ ¼ 2
k
log

2γ τð Þ þ 1
γ τð Þ þ 1

ð15Þ

where we assumed that when γ(τ) = 0, ĥ00 ¼ 0. This so-
lution seems interesting as in that case Equation 13 is
simplified directly to

d2xi

dτ2
−
1
2
h00;i þ 4γ τð Þ þ 1ð Þ k

2
ĥ00;0 ¼ 0 ð16Þ

This equation may be written in the following useful
form

d2xi

dτ2
¼ 1

2
∇ih00− 4γ τð Þ þ 1ð Þ k

2
dĥ00

dτ
≡
1
2
∇ih00 þ Δτh00

ð17Þ
where

Δτh00 ¼ − 4γ τð Þ þ 1ð Þ k
2
dĥ00

dτ
ð18Þ

is the time-dependent gravitational potential correction
to h00. It is noticeable that if h00 is time-independent,

then Equation 17 is reduced to its standard from. If now
we expect that near the spherical body the gravitational
potential in spherical symmetry is Φ(r) = − MG/r, then
we get h00 = − 2Φ(r). As discussed in the introductory
text of this work, the assumption that the time-
dependent gravitational potential correction decreases
linearly or almost linearly with time is very appealing
due to what it may explain at both the astrophysical and
cosmological levels. Motivated by this argument, we pos-
tulate that

γ τð Þ ¼ −
eτ−1
2eτ−1

ð19Þ

which gives making use of Equation 16 ĥ00 τð Þ ¼ −2τ=k
which is a linearly decreasing time-dependent gravita-
tional potential. In that case, Equation 17 is reduced to

d2xi

dτ2
−
1
2
h00;i þ 2eτ−3

2eτ−1
2
k
¼ 0 ð20Þ

To find k, we follow the arguments of [15,16]: for a
light starting from a certain star with a frequency ν0(τ =
0), then its frequency at time τ is given according to the

principle of general relativity by ν τð Þ ¼ ν τ ¼ 0ð Þ�
1þ τðdĥ00=dτÞ

� �
. Now for R = τ, we get ν τð Þ ¼ ν

τ ¼ 0ð Þ 1þ Rðdĥ00=dτÞ
� �

. If we compare this equation

with the Hubble law ν(τ) = ν(τ = 0)(1 − RH)) where H ≈
60–70 km/s/Mpc is the Hubble constant, then we find d

ĥ00 τð Þ=dτ ¼ −2=k ¼ −H , i.e., k = 2/H. In that case, we
can now write Equation 20 as

d2xi

dτ2
þ ∇iΦþ 2eτ−3

2eτ−1
H ¼ 0 ð21Þ

This equation represents the modified Newton's law in
the PNSL approach with a time-dependent coefficient.
We can define the total gravitational potential by

Φtotal x
i; τ

� � ¼ Φþ 2eτ−3
2eτ−1

Hxi ð22Þ

so that Equation 21 is reduced to

d2xi

dτ2
þ ∇iΦtotal ¼ 0 ð23Þ

At a very large time, Φtotal(x
i,∞) =Φ +Hxi, whereas at the

origin of time, we find Φtotal(x
i, 0) =Φ −Hxi. In units where

c ≠ 1, we find Φtotal(x
i,∞) =Φ +Hcxi and Φtotal(x

i, 0) =
Φ −Hcxi. During the cosmological evolution of the uni-
verse, the effective gravitational potential can change sign.
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Remark 3 In Cartesian coordinates, i.e., xi = (x, y, z),
we can write in units c ≠ 1

Φtotal x
i; τ

� � ¼ −
MG
xi

þ 2eτ−3
2eτ−1

Hcxi

¼ −
M G þ Geffectiveð Þ

xi
ð24Þ

where

Geffective ¼ −
2eτ−3
2eτ−1

cH
xixi

M
ð25Þ

If we model the universe as a ball of radius α and mass
M ∝ ρa3, then xixi ∝ a2 because the distance to an object
that is receding with the expansion of the universe is
proportional to the cosmic scale factor α. In that case
and mainly at a very large time, |Geffective| ∝Hca2/ρa3 =
Hc/ρa, i.e., ρ|Geffective| ∝Hc/a. This equation is interest-
ing as it shows that the effective gravitational constant
varies with time since it depends on the evolution of the
scale factor and the density of the universe. A cosmo-
logical implication of the effective gravitational constant
is discussed in the next section.
Remark 4 In fact, the complete dynamical descrip-

tion, i.e., the presence of matter and energy curves of
the ambient spacetime is obtained making use of Ein-
stein's field equation (EFE) which is nothing else but
the general relativity analog of the Poisson equation. In
other words, EFE reduces to Newton's law of gravity
by using both the weak-field and the slow-motion ap-
proximations, i.e., time derivatives are much smaller
than spatial derivatives and, consequently, the gravita-
tional coupling constant appears in the EFE which
takes the form [45]: Rαβ − gαβR/2 = 8πGTαβ where Rαβ is
the Riemann tensor, R is the Ricci tensor, Tαβ is the
stress energy tensor defined by Tαβ = (p + ρ)uαuβ + pgαβ
for matter component, p and ρ are respectively the
pressure of the perfect barotropic fluid, and μα is the
fluid rest frame four-velocity. In our approach, EFE is
not modified and keeps its standard form.
From an astrophysical point of view, it is recognizable

that the Schwarzschild spacetime metric is a solution of
EFE that describes a gravitational field exterior to an
isolated sphere assumed to be at rest. In fact, this spe-
cial solution has played an important role in general
relativity. It should be stressed at this stage that if we as-
sume the usual Schwarzschild spacetime characterized in
symmetric spherical coordinates by the metric ds2static ¼
−e2m rð Þdt2 þ e2n rð Þdr2 þ r2 dθ2þsin2θdϕ2

� �
; then the

metric is time-independent, and from Equation 14, it fol-
lows that γ(τ) is constant. In such a case, the system results

in the standard Schwarzschild solution. However, it was ar-
gued that a Schwarzschild spacetime with a time-
dependent metric is suitable for the description of the inter-
ior black hole solution [46]. At the interior of a black hole
Schwarzschild solution, nature changes its properties. A re-
markable switch occurs between the external spatial radial
and temporal coordinates [47-50]. That is the main reason
an interior solution is time-dependent and far from being
stationary. A singularity occurs at a space like a hypersur-
face at the origin of time, and accordingly, observing the
physical effects of this singularity is somewhat not viable.
Therefore, one expects that solutions obtained at this stage
will be practical if one would like to describe a particular
spacetime characterized by the metric ds2time‐dependent ¼
−e2m tð Þdt2 þ e2n tð Þdr2 þ t2 dθ2 þ sin2θdϕ2

� �
[46] which is

suitable for the description of the interior black hole solu-
tion. It is not the aim of the present work to discuss the
physics inside a black hole, yet it is an interesting topic that
deserves a future analysis.

A cosmological application of G→ G + H/ρa
To illustrate, we discuss briefly for completeness the gravi-
tational relaxation on the flat Friedmann-Robertson-
Walker (FRW) metric given by ds2 = − dτ2 + a2(τ)[dr2 + r2

(dθ2 + sin 2θdφ2)] where α(τ) is the scale factor. Mainly, we
will concentrate on the late-time dynamics. We stress
that our aim is not to discuss the whole cosmological
scenario but simply to present the basic consequences
of G→G +H/ρa.
With the replacement G→G +H/ρa, the first of the

Friedmann equation in the presence of a time-dependent
cosmological constant Λ(τ) is [51]

H2 ¼ _a2

a2
¼ 8πGρ

3
þ Λ τð Þ

3
þ 8πH

3a
ð26Þ

where H ¼ _a=a is the Hubble parameter, and ρ is the en-
ergy density of the (perfect) cosmological fluid. The dot
represents the derivative with respect to τ. We shall assume
that the equation of state for the cosmological matter is
p = γρ, where γ is a constant and p is the corresponding
pressure. To leading order, the corrections to the Friedmann
equation can be parameterized −H/a. In what follows, we
conjecture that the cosmological constant varies as Λ =
8πH/a. There exist in the literature lots of phenomeno-
logical ansatzs for the variation of the cosmological con-
stant with time ([52] and references therein). However, to
the best of our knowledge, the ansatz introduced here is
completely new. The usual conservation of the energy-

momentum tensor Tαβ
;β ¼ 0 results in two useful relations:

_ρ þ 3H pþ ρð Þ ¼ 0 and _Λ þ 8π _Gρ ¼ 0. The first equation
gives ρ(a) = ρ0(a/a0)

− 3(1 + γ) where ρ0 = ρ(a = a0), whereas
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the second equation may be written after performing the
following replacement:

_G→−
_H
ρa

þ H _ρ

ρ2a
−
H _a
ρa2

; ð27Þ

as

2
_H
H

−2
_a
a
−
_ρ

ρ
¼ 0 ð28Þ

Equation 28 after simple integration gives H2 = Cρa2

where C is an integration constant. The cosmological
constant varies subsequently as Λ ¼ 8πH=a∝

ffiffiffi
ρ

p
. Ac-

cordingly, Equation 26 takes the form

_a2

a2
¼ 8πGρ

3
þ A

ffiffiffi
ρ

p ð29Þ

where A = 16πC/3. This equation is interesting as it is
similar to the Cardassian model proposed by Freese and
Lewis to explain the current accelerated expansion of
the universe [53]. The effective gravitational constant is
then replaced by G→G +Cρ−1/2. Now with the help of
ρ(a) = ρ0(a/a0)

− 3(1 + γ), we can write Equation 29 as

_a2 ¼ Ba− 1þ3γð Þ þ Aa 1−4γð Þ=2 ð30Þ

where B = 8πGρ0(1/a0)
− 3(1 + γ). We set for convenience

A = B = 1. This equation seems interesting as for γ = 0
(pressureless matter), the solution of _a2 ¼ a−1 þ a1=2

with the initial condition α(0) = 0 is a(τ) ∝ τ4/3 which
corresponds to an accelerated universe without the need
of the dark energy component. In general, one expects
that the term A

ffiffiffi
ρ

p
is initially negligible, but it dominates

the universe at redshift z ≈O(1), as indicated by supernova
observations [54,55]. Once it dominates, the universe
starts it accelerated expansion, and in that case, we can
neglect the first term on the RHS of Equation 29 with re-
spect to A

ffiffiffi
ρ

p
. Therefore, the scale factor evolves like _a2∝

a 1−4γð Þ=2. For γ = 0, we find a(t) ∝ τ4/3 as it is expected. Ac-
cordingly, the energy density decays like ρ ∝ a− 3 = τ− 4,
whereas the cosmological constant and the effective
gravitational constant vary respectively as Λ ∝ τ− 2 and
Geffective ∝ τ 2. In reality, a number of authors have ar-
gued in favor of the decaying law Λ ∝ τ− 2 ([52] and ref-
erences therein). The time variation of the gravitational
constant is not new and is well discussed largely in lit-
erature ([52] and references therein).
It is interesting to fall into the Cardassian model from

nonstandard Lagrangians and mainly the PNSL with a
time-dependent coefficient. This model has been con-
fronted largely by cosmic observations, and for recent
result, the authors are referred to [56].

Conclusions and perspectives
In this work, we have tried to prove that nonstandard
Lagrangians are extremely important and deserve special
attention. Starting from a power-law nonstandard La-
grangian characterized by a time-dependent coefficient,
we have applied the basic machinery of the calculus of
variations to differential geometry and in particular to
general relativity. We have derived the modified geodesic
equation and have proven that the presence of a time-
dependent coefficient is directly connected to a time-
dependent gravitational potential. As a TDGP is typical
for the description of the interior black hole solution, we
expect that our approach will have a large number of ap-
plications. We have proven as well that for the case of
an expanding universe, the gravitational constant is re-
placed by G→G +H/ρa and that the resulting FRW
cosmological model is similar to the Cardassian cosmol-
ogy without referring to quantum corrections or brane
approach. We anticipate that our formalism can be ap-
plied effectively to a wide range of astrophysical and
cosmological problems. It is noteworthy that nonstan-
dard Lagrangians introduced in this manuscript as well
as by other authors are simply generating functions of
different equations of motions. One naturally asks if they
have any obvious meaning, and therefore it seems that
they are more interesting for mathematicians than for
physicists. In fact, this is an open problem which is still
in its infancy and much work is required. Obtaining
most dynamical equations through generating Lagran-
gian functions have been shown by mathematicians, who
have also demonstrated that there is an infinite number
of such functions. In this work, we have just found one
of them out of an infinite set.
It would be interesting to consider in a future work more

generalized forms of NSL, to discuss their implications in
different approaches in cosmology and astrophysics,
and to compare them with new approaches [57-61]. Fi-
nally, it was observed that nonstandard Lagrangians re-
sult in the violation of the weak equivalence principle. It
is notable at the end that in [62], it was argued that non-
conservative gravitational field equations result in a
cosmological model with a locally varying Einstein's
lambda. A number of phenomenological theories do not
hold this property; however, they are also motivating
[63]. This problem should be addressed carefully as well
in the future.
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