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Abstract

In this paper, we construct a methodology for separating divergencies due to different topological manifolds dual to
Feynman graphs in a colored group field theory. After having introduced the amplitude bounds using propagator
cuts, we show how Graph-Encoded Manifold (GEM) techniques can be used in order to factorize divergencies related
to different parts of the dual topologies of the Feynman graphs in the general case. We show the potential of the
formalism in the case of three-dimensional solid torii in the colored Boulatov model.
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Introduction
Recently, there has been a growth of interest in group
field theories [1-3], and there are many reasons for this
to happen, first of all because these are connected with
spin foams [4]. Spin foams are a formalization of covari-
ant time evolution in Loop Quantum Gravity, and group
field theories can be seen as a formalization of their parti-
tion function expansion. In this sense, group field theories
(GFTs) can be formalized as a quantum field theory over a
group manifold and are a generalization of matrix models
to higher dimensions [5,6]. It is known that matrix models
have a topological expansion in which the genus, the only
topological invariant needed to characterize two surfaces,
plays the role of a parameter of this expansion.

Roughly speaking, an n-dimensional GFT has a vertex
associated to an n-simplex and a propagator which glues
the n-simplices along their (n − 1)-dimensional boundary
faces. The Feynman diagrams of an n-dimensional GFT,
in their dual, can be interpreted as gluings of simplices
and then have the interpretation of piecewise linear (PL)
manifolds. However, generic GFTs in three dimensions
have the problem that the gluings are too arbitrary, in the
sense that the generated simplicial complexes are not even
pseudo-manifolds since they present wrapping singulari-
ties [7]. As in an ordinary φ4 theory, a three-dimensional
GFT can generate an ‘8’ diagram of which the dual has no
obvious topological interpretation in the continuum limit.
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This phenomenon does not happen in two dimensions,
and the hope is that these singularities can be removed
in the continuum limit. For this reason, a colored ver-
sion of group field theory (cGFT) was introduced in an
arbitrary number of dimensions (see [2,8] and references
therein), not to mention a generalization of group field
theory to tensor [9], for which a universality theorem
has been proven in the case of independent fluctuations
[10]. The challenge in these models is to obtain a topo-
logical expansion as in the two-dimensional case [11-15].
It has been shown in [16], and in an arbitrary number
of dimensions, that diagrams whose dual topology is a
sphere dominates the partition function in the limit of
the cutoff being removed. In order to achieve this result,
techniques from the theory of crystallizations [17,18] have
been used. Colored n-graphs are well known in mathe-
matics as graph-encoded manifolds (GEMs) [17,18]. In a
previous paper [19], we used GEM techniques in order to
prove the orientability of pseudo-manifolds generated in
a cGFT in any dimensions, based on the fact that these
generate only bipartite graphs. In this paper, we base our
methodology on another theorem proven in the field of
crystallizations, which puts in relation dipole contractions
and the connected sum of manifolds.

In order to further clarify the background, we briefly
give a review of the context. There is a class of graphs
which plays a special role in cGFT. These are called mel-
onic graphs. The simpler of these is a two-node graph
in which all but two of the propagators are connected,
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which are of the same color. Now, we can construct any
type of melonic graph from this by inserting a melonic
graph inside each of the propagators in all possible com-
binations. It is easy to see that this type of graphs can
be classified in terms of trees. It has been shown in [16]
that this class of graphs, remarkably, dominate the par-
tition function in the limit in which the cutoff goes to
infinity, and in particular, their duals are always associated
to spheres. In fact, within each perturbative order, mel-
onic graphs have the highest divergence. Initiated by [16],
a series of studies [20-24] has elucidated the structure of
the divergencies in many cases, and a class of renormal-
izable theories have been introduced in [25,26]. However,
as noted in [27] and further studied in [28], spheres are
combinatorially not favored for other topologies in the
perturbative expansion. For this reason, we believe it is
important to have an understanding of the corrections to
the path integral given by Feynman graphs whose duals
correspond to topologies other than spheres, and tech-
niques like those we will introduce in the body of this
paper could be potentially useful.

We will try to address this in a framework of ‘topolog-
ical’ cuts. How do we separate the divergencies coming
from spheres and those coming from other topologies?
In other terms, how do we factorize these divergencies?
A step towards this type of problem will be put for-
ward in this paper, where we will argue that performing
the cuts strategically factorizes graphs whose duals are
spheres. When these cuts are performed, the graphs com-
bine into connected sums, and thus, the remaining graphs
is actually a well-defined surgery operation in topology.

For the case of a 3-manifold, a theorem [29] ensures
that that every compact and orientable 3-manifold can be
decomposed uniquely into the connected sum of prime
manifolds. Although a group field theory generates only
pseudo-manifolds, their orientability has been shown in
[19]. Thus, if we were able to eliminate pseuso-manifolds
from the partition function, the techniques developed in
this paper could be very useful. In the following, we will
focus on a three-dimensional cGFT, in particular the col-
ored Boulatov model, as the theorem we will make use of
is based on a three-dimensional topology.

The paper is organized as follows: in the section ‘The
colored Boulatov model and 3-GEMs,’ we recall the col-
ored Boulatov model and its standard interpretation. In
the section ‘Topological bounds from cuts,’ we develop
the cut strategy and the main result of this paper, and in
the section ‘Solid torus decomposition,’ we apply it to the
connected sum of solid torii as an example. Conclusions
follow.

The colored Boulatov model and 3-GEMs
We now introduce the colored Boulatov model [8,30].
Consider a compact Lie group G, denote h its elements,

e the unit element, and
∫

dh the integral with respect to
the Haar measure of the group.

In three dimensions, we introduce two fields, ψ̄ i and
ψ i, and let i = 0, 1, 2, 3 be four couples of complex scalar
(or Grassmann) fields over four copies of G, ψ i : G × G ×
G × G → C.

In a generic number of dimensions, i = 0, . . . , n + 1
where n is the number of dimensions, and the ψ and ψ̄

are functions of n copies of the group. We define e as the
identity element of the group, and we denote δ�(h) as the
regularized delta function over G with some cutoff � such
that δ�(e) is finite but diverges when � goes to infinity. A
feasible regularization is given, for instance for the group
G = SU(2), by

δ�(h) =
�∑

j=0
(2j + 1)χ j(h) (1)

where χ j(h) is the character of h in the representation
j and preserves the composition properties. The path
integral for the colored Boulatov model over G is

Z(λ, λ̄) = e−F(λ,λ̄) =
∫ ∏3

i=0
dμP(ψ̄ i, ψ i) e−Sint(ψ̄ i,ψ i) ,

(2)

where the Gaussian measure dμP, with P being its covari-
ance, is chosen such that∫ 4∏

i=0
dμP(ψ̄ i, ψ i) = 1 ,

and

Ph0h1h2;h′
0h′

1h′
2

=
∫

dμP(ψ̄ i, ψ i) ψ̄ i
h0h1h2

ψ i
h′

0h′
1h′

2
=

=
∫

dh δ�
(
h0h(h′

0)
−1) δ�

(
h1h(h′

1)
−1)

× δ�
(
h2h(h′

2)
−1) .

The colored model has two interactions, a ‘clockwise’
and an ‘anticlockwise,’ and one is obtained from the other
one by complex conjugation in the internal group color,
one for each face of the 3-simplex. We fix the notation
for shortage of space, ψ(h, p, q) = ψhpq. There are two
interaction terms:

Sint = λ√
δ�(e)

∫ ∏
i,j

dhi,j ψ0
h03h02h01

ψ1
h10h13h12

ψ2
h21h20h23

ψ3
h32h31h30

+ λ̄√
δ�(e)

∫ ∏
i,j

dhi,j ψ̄0
h03h02h01 ψ̄

1
h10h13h12 ψ̄

2
h21h20h23 ψ̄

3
h32h31h30

(3)

where hij = hji. In order to make the notation clearer, we
call ‘red’ the vertex involving the ψ ’s and ‘black’ the one
involving the ψ̄ ’s (Figure 1). Thus, any line coming out of
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Figure 1 Colored GFT red and black vertices.

a cGFT vertex has a color i. The group elements hij in
Equation 3 are associated to a field and glue two vertices
with opposite orientation.

In the body of this paper, we will consider only vacuum
graphs, i.e., all the vertices of all the graphs are 4-valent
(no open lines) and we will only deal with connected
graphs. The strands of a vacuum cGFT graph � have a
natural orientation given by the fact that only vertices of
opposite orientations can be glued. It is easy to see that a
vacuum cGFT graph must have the same number of black
and red vertices. For any graph �, consider the set V� of
its vertices, |V�| = 2n, and the set L� as its edges; and we
define as faces F� (not to be confused with the faces of the
tetrahedron!) as any closed line in the Feynman graph of a
GFT.

A generic vacuum Feynman amplitude of the theory can
be written as

A = (λλ̄)
n
2

[δ�(e)]n

∫ ∏
l∈L�

dhl
∏

f ∈F�

δ�
f (

→∏
l0∈f

hσ l0 | f
l0 ) , (4)

where the notation l0 ∈ f means that the line 
 belongs to
the face f and σ l0 | f = 1 (respectively −1) if the orienta-
tions of 
 and f coincide (are respectively opposite). In the
following, we will assume that an orientation is fixed. The
δ� functions are invariant under cyclic permutations and
conjugation of their arguments. Hence, the amplitude of a
graph does not depend on the orientation of the faces.

We now recall few facts about three graph-embedded
pseudo-manifolds, which are strictly related to the colored
Boulatov model and enlight the topological properties of
the Feynman graph duals. Let � be a finite, edge-colored
graph. A k-bubble in the spinfoam literature of �, k ∈ N
is a connected component of subgraph of � induced by k
colors.

These graphs represent a piecewise linear pseudo-
complex in the following sense [31]. Let � be a 4-regular
graph and γ its coloring. To a couple (�, γ )n+1, there
is an associated pseudo-complex K(�) given by the fol-
lowing construction. Take an n-simplex σ n for each V�

and label its vertices �n. If xi,yj in V� are joined by an
edge, then we glue also the related (n − 1)-simplices. In
the case of a tetrahedron, this means gluing the faces of
the tetrahedron, which are triangles, of the same color.
We denote with |�| the pseudo-complex associated with
the colored graph �. It is the color that makes this pro-

cedure unambiguous as there is only one color for each
face of the tetrahedron. This is the same interpretation
given to connecting vertices (of opposite orientation) in a
(colored) n-dimensional GFT. This is also the reason why
colored group field theories have a clear interpretation as
orientable pseudo-manifolds [19]. Thus, given the above
description of a pseudo-complex, cGFTs are associated to
complexes in the following sense: a vertex can be seen as
the dual of a tetrahedron and, its propagators represent
gluings of the triangles which form the tetrahedron of the
same color.

Each propagator is actually decomposed into three
parallel strands which are associated to the three argu-
ments (group elements) of the fields, i.e., the one-
dimensional elements of the 1-skeleton of the tetrahedron
which bound every face. A line represents the gluing of
two tetrahedra (of opposite orientations) along triangles
of the same color as in Figure 2.

Face gluing

Propagator

3-gem
Figure 2 Gluing through a propagator.
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Another operation which we need to introduce is the
connected sum of two manifolds, denoted by the sym-
bol #. The connected sum of the two manifolds M1
and M2 is given by M � M1 # M2. If both man-
ifolds are oriented, there is a unique connected sum
operation. Consider two balls, one in M1 and one in
M2. Carve the two balls and glue their boundaries with
opposite orientation. The points where the two balls
have been carved denotes the two points which char-
acterize the operation, which is then #p1,p2 . The result
is unique up to homeomorphisms, and thus when the
base points will be omitted, the result will not be
ambiguous.

We now introduce dipole contractions and creations.
Dipole contraction is an operation performed between
two nodes of a Feynman colored graph, as described in
Figure 3 for the case of a 4-colored graph.

We call two dipoles degenerate if they belong to the
same bubble and nondegenerate otherwise. We now intro-
duce the main theorem which will be central to our
analysis hereafter [18].

Theorem 1. (Dipole contraction) Let u and v be vertices
in a 4-graph connected by an m-dipole, and �1 and �2 be
two colored 4-graphs. If Sn is the n-dimensional sphere, we
have

a. |�1 #uv �2| � |�1| # |�2|
b. If u and v are not contained in the same 3-bubble of

�1 and �2 is obtained from �1 by fusion on u and v,
then |�2| � |�1| # S1 ⊗ S2

c. If �1 is obtained from �2 by removing a degenerate
2-dipole, then |�2| � |�1| # S1 ⊗ S2

d. If �1 is obtained from �2 by removing a degenerate
1-dipole, then one of the following cases hold:

(i) |�1| � |�2| if u and v are contained in a
2-bubble

(ii) |�1| � |�2| # S1 ⊗ S2 if u and v are contained
in two different 2-bubbles

(iii) |�1| � |�2| # S1 ⊗ S2 # S1 ⊗ S2 if three such
2-bubbles and �2 are connected

(iv) |�1| � |�′
1| # |�′

2| # S1 ⊗ S2 if three such
2-bubbles and �2 has two connected
components �′

1 and �′
2

depending on whether the endpoints u and v of the dipole
are both contained on exactly (i) one 2-bubble with col-
ors other than that of edge {u,v}, (ii) two such 2-bubbles,
(iii) three such 2-bubbles and �′ that is connected, or (iv)
three such 2-bubbles and �′ tha has two connected com-
ponents �′

1 and �′
2. This theorem is fundamental in order

to have a clear understanding of the topology associated
with graphs generated by a cGFT, and it will be extensively
used in the rest of the paper as it also makes clear the
role of the connected sum operation in relation to dipole
moves.

Let us first make some remarks. The first thing we note
is that the connected sum of the spheres is given by only
2- and 3-dipoles. Thus, by a subsequent contraction of
these, we can always return to a graph with two nodes,
and according to the theorem above, this will be homeo-
morphic to the sphere. This is true, for instance, for the
graphs in Figure 4. As we will see later, however, the diver-
gencies of the two graphs shown in Figure 4 are different.
These are two examplicative cases. The reason is that
2-dipoles in ‘parallel’ generate divergencies, while 2-
dipoles in series do not. This is the reason why 2-dipoles
are quite bad to handle, while 3-dipoles are not (they
always produce a divergence and contract to a line). More-
over, this is the main difference between two-dimensional
matrix models and their generalizations in higher dimen-
sions. In the case of two-dimensional matrix models,
adding a sphere does not produce any divergence because
of the 3-dipoles. The reason is that S2 # S2 still has the
same genus and thus, in the ’t Hooft, limit the scale in the
same fashion. The three-dimensional case is, as we have
just remarked, quite different. We would like to make the
point that genus zero manifolds in three dimensions are
unique: adding or not a sphere does not change the topol-
ogy at all. Moreover, amplitudes are indipendent under the
change of orientation of the manifold as this is the same
as acting through the color symmetry of the group field
theory [19].

Figure 3 Dipole contraction and creation on a 4-regular 4-edge colored graph of 1-, 2-, and 3- dipoles, respectively.
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Figure 4 Connected sum of spheres S3. The graph on top has a divergence degree proportional to the number of vertices, while the graph at the
bottom has a divergence degree independent from the number of vertices.

The first connected sum we construct is that of the
sphere, shown in the graph in Figure 4, which is

S3 � [S3]n = S3 # S3 # . . . # S3︸ ︷︷ ︸
n−times

(5)

and the amplitude associated with the graph is

A2n(S3) ∼ λnλ̄n[δ�(e)]n+2 . (6)

This is topologically an identity, but from the point of
view of divergencies, it is not. This can be seen from the
two graphs in Figure 4. Evaluating these amplitudes is
an exercise, and they can be evaluated using the rules in
Figures 5 and 6.

Definition 1. A 4-edge-colored 4-graph is said to be
minimal for the topological 3-manifold M if it is a 3-GEM
representation of M with the minimal number of vertices.
For instance, the minimal graph for the sphere is made of

two vertices, while the minimal graph for the solid 3-torus
is in Figure 7.

Topological bounds from cuts
Sphere amplitudes
As it has been shown recently [16], 3-spheres play a spe-
cial role in three-dimensional group field theories, a role
played indeed by 2-spheres in matrix models. It is true
that 3-balls (in the case of vacuum graphs) dominate the
partition function of cGFT in the limit in which the cutoff
� goes to infinity, but if we do not keep the cutoff finite,
other topologies contribute to the partition function. The
result, a posteriori, is not surprising for the following argu-
ment. For a generic 4-colored graph G of 2n-vertices in
a D-dimensional GFT, the following bound holds on its
associated amplitude [32]:

A(G) ≤ K2n�3(D−1)(D−2)n/2+3(D−1) (7)

G1 G2
dG1 dG2 === G1

dG1

Figure 5 The integration rule for 2-dipoles.
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....... .......
n

dG1 dG2 ===
G1 G2

C
G2

Figure 6 The integration rule for the reduction of concentric strands. The constant C is infinite and, regularized, is [δ�(e)]n−1.

where � is the cutoff and K is a constant. For D = 3, this
bound reduces to

A(G) ≤ K2n�3n/2+6. (8)

In particular, it is easy to prove that the following upper
and lower bounds are valid for the sphere:

c1�
6 ≤ A2n(S3)

λnλ̄n ≤ c2�
3(n+2). (9)

Figure 7 The minimal graph of the solid torus S1 ⊗ S2.

In a certain sense, these bounds are trivial because the
lower bound is (8) with no vertices and the upper bound
is exactly the upper bound for a generic graph. These
bounds are less trivial, however, because for the 3-sphere,
these are saturated by the two graphs in Figure 4, the
upper by the graph above, and the lower by the graph
below. Here, however, we want to stress that it is this pecu-
liar feature of divergencies itself which make the analysis
of graphs associated with manifolds of higher dimension
much more complicated. For this reason, in what follows,
we will put forward a procedure in order to factorize
diverging terms due to the sphere. We now introduce few
identities which will be useful later. These are in Figures 8
and 9.

dG1 dG2

G1

G2

= dG2

Figure 8 A graphical representation of the identity in
Equation 10.
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dG1 dG2 dG3 = C dG3

Figure 9 The integration rule for the contraction of a 3-dipole. The constant C is infinite and, regularized, is δ�(e).

We first notice two identities. The first is the one in
Figure 8, which comes from the following identity:

∫ ∫
dg1dg2δ(A1g1g−1

2 B1)δ(A2g1g−1
2 B2)δ(A3g1g−1

2 B3)

=
∫

dg1δ(A1g1B1)δ(A2g1B2)δ(A3g1B3)

(10)

Cuts, bounds, and spheres
Before going into the body of the paper, let us recall the
technique of the cuts studied in [32]. For simplicity, we
discuss colored vacuum graphs, but some of the argu-
ments can be generalized to noncolored graphs with open
lines. Let us consider here vacuum graphs of a GFT in
D dimension over the group G. Consider two graphs, A
and B, which are connected by a series of propagators

p1, . . . , pn with group elements g1, . . . , gn ∈ G. The total
amplitude can be written as

A =
∫ ∏

i
dgiA(g1, . . . , gn)B∗(g1, . . . , gn) (11)

where dgi represents the Haar measure over the group.
Since the functions A, B are real, it is easy to see that (11)
has all the properties of a distance and so can be consid-
ered as a scalar product between the functions A and B,
(A, B). Since (11) is a scalar product, then it is bounded by
the Cauchy-Schwarz inequality

(A, B)2 ≤ (A, A) (B, B).

We will call cut over the propagators p1, . . . , pn the
bound given by the Cauchy-Schwarz inequality referred
to the two parts of the graph, A and B, as depicted in
Figure 10 for the colored model. In the colored Boulatov
model, the complex structure requires the change of the

Figure 10 Cut rule for amplitudes. The cut can be done over all possible propagators. Here we focus on the case in which it cuts off only pieces of
graphs homeomorphic to the sphere.
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Figure 11 A sphere cut. Cut four propagators along the connected sum of the manifold with a piece of graph homeomorphic to a sphere and
insert two opposite vertices.

orientation of every vertex that is changing the color
of the vertex (black ↔ red). The complex amplitude is
then glued with its conjugate, as the star represents in
Figure 10.

Let us now discuss the sphere decomposition of graphs
and what we will call sphere cuts. Consider a graph gener-
ated by the colored Boulatov model which can be decom-
posed as in Figure 11, where two parts of the graphs
are connected by a propagator. We call topological cut
an insertion of two disconnected vertices with different
orientations in the propagator where a manifold is con-
nected to the boundary of a 3-ball. Since the amplitudes
are invariant under color conjugation, we can always rede-
fine the amplitude in such a way that the insertion is
as in Figure 11. We say that we are cutting a sphere if
one of the graphs can be reduced through nondegener-
ate fusion/contractions of 1- and/or 2-dipoles to a 3-ball
(a vertex). This can be extended to more general graphs,
where we decompose the graph into multi-spheres and
consider their cuts. In order to see the result of our
topological cuts on a concrete example, we apply this to
the case of the connected sum of solid torii. The reason
why we introduce this is that the solid torus is an easier
example due to its structure and the structure of its core
graph.

Solid torus decomposition
Consider now the graph in Figure 7 for the solid torus
[33,34]. For a finite number of vertices, we can build the
following decomposition by means of a connected sum of
solid tori T3 = S1 ⊗ S2:

Th
3 = T3 # T3 # . . . # T3︸ ︷︷ ︸

h−times

. (12)

We now show that the divergence of this manifold with
h − handles is related to the number of handles.

Lemma 1. The divergence of the connected sum in (12)
is for h ≥ 1:

A ∼ λ1+3hλ̄1+3h[δ�(e)]2(h+1) . (13)

Proof. Consider the graph in Figure 7. This graph rep-
resents a solid torus built with the minimal number of
vertices. By the theorem on the contraction of dipoles
introduced antecedently, we can then construct the con-
nected sum of solid 3-tori by joining two graphs as in
Figure 12. In order to prove this fact, consider the dia-
gram in Figure 13, and then the generic connected sum
is an easier generalization of this one. In the top diagram
of Figure 13, consider the 2-bubbles labeled with num-
bers from 1 to 7. Using the integration rule for 2-dipoles
as in Figure 8, the diagram can be transformed with fewer
integration over propagators, as in the second step of
Figure 13. We now notice that there are concentric strands
for each of the part of the diagram labeled by capital latin
letters, labeled from A to E. Extract the divergence and put
it aside using the integration rule for the reduction of con-
centric strands, as in Figure 6. For each latin letter, there is
one power because there are two concentric strands. Hav-
ing extracted the divergence, it is easy to notice that what
is left is a ribbon graph generated by a two-dimensional
GFT. Pick a maximal tree as in the green shadowed line as

Figure 12 The composition rule for torii graphs: T2
3 = T3 # T3.
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Figure 13 The evaluation of the minimal diagram for T3 # T3.

in the second step of Figure 13 and set the propagators to
one. What is left is a diagram as in step 3 of Figure 13. It is
easy to see that this diagram is finite. All the steps, also the
use of the maximal tree, can be generalized to several con-
nected sums. It is then also easy to see, at this point, that
the number of divergencies is related to the parts of the
graph labeled with latin letters, and that can be counted

easily for generic connected sums. From here, it follows
Equation 13.

Evaluating the bounds
We can now make a bound on generic genus-h manifolds
as follows. We first recall the following norm as a cut over
the propagators of a Feynman graph. Consider a graph
split into two graphs by a series of cuts, as in Figure 10.
Then the amplitude square is bounded by the norms of the
left and right graphs contracted with themselves by con-
verting a red vertex to a black vertex and vice versa. We
can now use this trick in a clever way. It is well known in
topology that every manifold is homotopic to itself mod-
ulo cutting off S3. We can then think of any manifold in
a simplicial setting in which this manifold is constructed
by 2k vertices, as a minimal one, made of 2j vertices then
a connected sum of 3-spheres by a connected sum as
explained in this section and leaving 2j−2k vertices to this
part. In the simplest case in which the simplicial complex
is a minimal one and the connected sum of a sphere, we
can consider the cut along the two vertices which make
the connected sum, as in Figure 14. We now evaluate a
bound on the divergence of graph representing Th

r using
Figure 10. It is well known in topology that every manifold
is homotopic to itself modulo cutting off S3 (Figure 15).

Following our the previous discussion, the bounds come
from taking cuts [32] over edges on the connected sum of
the minimal torus.

A2
2k(T3) ≤ A14(T3 # T3)A2(k−7)(S3) (14)

where, however, the divergence of the graph of T3 # T3 is
now minimal and has been evaluated in (13) for generic
genus. Thus, the bound is on the divergence of the sphere,
for which we can use the bounds introduced before. This
kind of homeomorphic bounds can be generalized to other
types of homeomorphic manifolds as, for instance, con-
nected sums of torii, as we will do later in the paper. In this
case, the bound takes the following form:

A2
2k(T3 # T3# . . . # T3︸ ︷︷ ︸

n−times

) ≤

≤ A6n+2(T3 # T3# . . . # T3︸ ︷︷ ︸
2n−times

)A2k−6n−2(S3) (15)

Figure 14 The cut applied on the connected sum of a minimal torus and a sphere. This procedure put the uncertainty of the divergence of the
graph on the graph of the sphere, which is easier to study.
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Figure 15 Multiple cuts to get the terms homeomorphic to S3 cut off. The result is the same as the one with a single S3 cut off.

where you cut only one sphere. In this case, each con-
nected sum of torii with h handles is bounded by a canon-
ical 2h handle, which is evaluated in general, and multiple
amplitudes on the spheres, depending on whether there
are one or more cuts, as in Figure 14. This identity is
related to the well-known fact M � M # S3. This for-
mula shows that the ‘uncertainty’ of the divergencies of a
generic triangulation of a 3-manifold can be split into a
canonical decomposition, thanks to the theorem on the
contraction of 1-dipoles, and put in relation with solid

tori, and put the uncertainty into a different graph home-
omorphic to the spheres. There is, however, a subtlety
due to the fact that in general a manifold can be seen as
many connected sums of the same manifold with spheres.
In this case, a feasible cut should be on multiple propa-
gators connecting spheres, as in Figure 16. However, it is
easy to understand that each time you make a single cut
between an h-handle diagram and a sphere, the diagram
for the handle part is a connected sum of the same two h-
handles and thus becomes a 2h handle diagram. However,

Figure 16 The multiple cut for T3 # M1 # M2, where M2 and M1 are two other manifolds.
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when there are multiple cuts, the same diagram is con-
nected multiple times with itself. It is easy to understand
that making a unique cut along all the pieces homeomor-
phic to the spheres can glue the torii with themselves more
than once, making them noncanonical, and thus making it
difficult to recognize the handle decomposition. In prin-
ciple, this should be performed one cut at time. However,
performing one cut at time doubles the number of pieces
homeomorphic to the sphere. A possible trick would be to
make this an infinite number of times:

A2(T3 # . . . # T3︸ ︷︷ ︸
k−times

# S3 # . . . # S3︸ ︷︷ ︸
p−vertices

) ≤

≤ limn→∞{A(T3 # . . . # T3︸ ︷︷ ︸
2nk−times

# S3 # . . . # S3︸ ︷︷ ︸
the rest

)} 1
n ·

·
√

Ain(S3)

√
. . .

√
Ai2(S3)

√
Ai1(S3)Ai0(S3) (16)

Now you would expect that in the n → ∞ limit,

A(T3 # . . . # T3︸ ︷︷ ︸
2nk−times

# S3 # . . . # S3︸ ︷︷ ︸
the rest

)

becomes a canonical connected sum of torii, which we
know how to evaluate. However, a careful thought will
show that this cannot happen. The reason is that while the
number of cuts increases linearly, the number of spheres
increases as 2n. Thus, in order to extract the divergencies
due to the sphere in the bound, neat sequences of cuts
have to be made. In the following, we will, for simplic-
ity, represent a propagator as a solid line and cuts as bold
dashed lines, as in Figure 17.

As we have shown before, an infinite number of cut limit
is not feasible. Thus, we have to choose the sequence of
cuts in a clever way. In particular, note that when you per-
form a cut, the number of spheres doubles. The trick is to
double also the number of spheres cut at each step. For
instance as in Figure 17, the first cut is on one sphere, the
second cut is on the two S2 spheres, the third on the four
S3 spheres, and so on. In this way, the number of cuts is
n before we exhaust the number of spheres. Each nth cut
separates 2n spheres. Carrying all the cuts until the end
gives the following bound:

A(G #S3
1 # . . . #S3

n) ≤ (A(Qn))
1

2n

n∏
i=1

√
A(Si # Si) (17)

Figure 17 The first three cuts of the sequence for a connected sum with n different spheres, Si .
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Now Qn is a very particular graph which depends on
the number of spheres but has a typical form for n > 2,
and which we will now explain. The case n = 1 is spe-
cial. To give a graphical representation, if the amplitude
was a single vertex, the resulting amplitude at the (n−1)th
cut would be a piece of (n − 1)-dimensional cubic lattice
where at each point the Sn sphere is attached. The case
n = 1 is trivial. In Figure 18, the graphs are generated by
the sequence of cuts in the cases n = 1, . . . , 4. Notice that
these cuts are well behaved from the topological point of
view. In fact, when we do a cut on a sphere, for instance
in the n = 1 case, what we are doing is the following:
take a manifold and remove a ball B3 from it, then take
the same manifold, reverse the orientation, carve a ball B3,
and identify the boundaries between the two. This is the
same as ordinary surgery in topology. Let us define now
the following surgery operation #n: carve n balls out of a
manifold, copy the manifold with an opposite orientation,
and identify the boundary of these balls pairwise. We now
have all the elements to give a proper definition for the
quantity Qn. Let G be the topological manifold associated
with G. Then the resulting Qn manifold is contructed by
recursively cutting and pasting as follows:

Q1 = G # G

Q2 = (G # G) #2 (G # G) (18)

In general, this is defined for a generic n as

Qn = Qn−1 #n Qn−1. (19)

Thus, Equation 17 gives a compact bound, trivializing
the contribution of the spheres if these are strategically
separated by means of cuts. For the case of solid torii,
in particular, the divergence can be evaluated and related
to the number of handles, which behave nicely under
the surgery explained. In principle, this bound, given the
smallest representation of a topological manifold in terms
of simplices, can be explicitly evaluated. On the other
hand, the evaluation of the graph Qn can be quite cum-
bersome. Another possible cut, which is quite economical,
is given by the single cut of all the spheres together. This
cut, once performed, leaves us with what we will call a
‘core graph’ (Figure 19). For this cut, the n = 8 case
is the simplest way to evaluate for the solid torus, while
it is n = vvert case for a generic graph with vvert ver-
tices. Using the integration rule for concentric strands, the
resulting graph becomes counting the number of circles in
the graph (Figure 20). In this case, in fact, there is a δ�(e)2

because a propagator is made of three internal strands. For
the solid torus, n can be as big as 8, which would be the
most general case to evaluate. To give an example of how
to evaluate this bound, we evaluate the cases n = 1, . . . , 4

(a) (b)

(c) (d)

Figure 18 The graphs Qn generated for n = 1, . . . , 4 (a, b, c, d).
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Figure 19 The core graph associated to the n = 8 minimal representation of the solid torus. To each sphere, replace the four colored
propagators associated with the sphere of the cut. Each line in the graph is associated with a stranded line.

for the solid torus, showing how it works for n = 2 and
giving the final results for n = 3, 4.

A näive large N limit for solid torii
We now have the possibility, using this exact result for
canonical graphs and the motivated conjecture on the
maximum divergence of the sphere, to perform a ’t Hooft
limit in the couplings. Let us consider now the renormal-
ized couplings:

λ → λ0
δ�(e)

; λ̄ → λ̄0
δ�(e)

.

Using the upper bound, we can see that as

sup A2k(S3) ∼ [δ�(e)]1−n

Figure 20 The graph associated with the n = 8 core graph of the
solid torus. The solid torus is associated to the cut of all the balls
together. The divergence of this graph can be easily evaluated to be
(δ�(e))16.

and

A2k(Th
3 ) ∼ [δ�(e)]−4h .

It is easy to see that the first order of the sphere does
not diverge, while the higher the number of handles, the
higher the graph is suppressed in the weak coupling limit.
This is compatible with the result obtained in [16].

It is, however, easy to understand that these are valid
for minimal graphs for solid torii. Let us then use the
bound given by (15) given by cutting only one sphere of 2n
vertices. In this case,

sup A2k(Th
3 ) ∼ [δ�(e)]−4h+n+1 .

Thus, there is a competition between the number of han-
dles of the canonical graph and the vertices associated to
the sphere which has been cut.

Conclusion
Group field theories provide one of the most promis-
ing framework for a background-free theory of quantum
gravity in which one sums both over topologies and
geometries. The important feature of the model rests on
the structure of the divergencies, related to the struc-
ture of the Feynman graphs. It has been shown, under a
proper regularization of the integrals preserving the group
structure underlying the theory, that graphs topologi-
cally equivalent to sphere dominate the partition function
when the only cutoff is sent to infinity in the renormal-
ized couplings. If the coupling is kept finite, however,
other topologies contribute to the partition function, and
indeed it has been shown that they are combinatorially
favored in the expansion to the spherical topology. In this
paper, we focused on the topology related to the dual of
the Feynman graphs in the perturbative expansion of the
partition function and introduced a formalism of cuts in
order to separate divergencies related to different topolo-
gies. We believe this to be a novel technique aimed at
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analyzing and factorizing the contribution to the diver-
gence degree due to the sphere. These techniques relied
heavily on the graph coloring, thus valid only in a col-
ored group field theory, and are aimed at constructing
amplitude bounds using propagator cuts. We showed that
cutting along propagators, the dual can be interpreted
as points in which a connected sum of two manifolds is
performed and can factorize the divergencies of the two
topologies. In particular, if the cut is performed where a
sphere is connected, then a specific bound can be taken as
spheres are very well studied in group field theory. Color
is a fundamental ingredient in this paper as the connected
sum can be defined only on the base of dipole contrac-
tions. After having introduced the technique, we applied
it to the connected sum of solid torii as an example.

Although several powerful and precise results on the
divergence of generic Feynman diagrams already exist
[14], in relation to both the group and the structure of the
graph �, it is clear that the divergences of a Feynman dia-
gram are not related only to the topology of the bubbles
but are indeed intertwined with the topology of the dual of
the graph �. In this respect, we believe that the formalism
introduced in the present paper could contribute to the
understanding of the contributions related to the topol-
ogy of dual graphs in Group Field Theory. The sphere
cuts can be introduced in order to introduce topological
surgery into the matter of calculating divergence bounds
on a particular graphs.

The limitation of such approach is its lack of general-
ity in providing a sequence of cuts for generic topologies.
The sphere cut formalism might be useful in the study of
graphs of specific topology. It has been for long stressed
that the partition function of a quantum gravitational the-
ory has to have a sum over all the possible topology. Our
approach might be helpful in understanding the differ-
ent behavior, in terms of divergencies, of two topologies
connected by a topological surgery operation.
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