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Abstract

A formalism which enables one to strictly conserve the number of particles when taking into account
the isovector pairing correlations is presented in the case of odd mass nuclei. With this aim, we had
to first establish the expression of the projector for such systems. Expressions of the ground state and
its energy have been exhibited. The model has been numerically tested in the framework of a
schematic model.
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Background

During the last two decades, many works have been devoted to the study of neutron-proton (np) pairing
correlations (see e.g., [1-17] ). Indeed, the region of N ≃ Z medium mass nuclei is now accessible to
experiments and this fact led to renewed interest of theoreticians for this kind of nuclei. In the latter, one
expects that neutrons and protons occupy the same levels and thus that the np pairing effect would be
important. This effect is often treated within the Bardeen-Cooper-Schrieffer (BCS) approximation [1-8].
However, it is well known that the major defect of the BCS theory is its violation of the particle-number
conservation symmetry, in the pairing between like-particles case [18-22] as well as in the np pairing
case.

The particle-number symmetry may be restored using a projection method. Several methods have been
already proposed in the np pairing case, such as the quasiparticle random phase approximation (QRPA)
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[23-31], the Lipkin-Nogami method [32], the generator coordinate method [33], and the PBCS-type pro-
jection methods [34] of FBCS-type [35], or the isospin and particle-number projection method [36]. In
previous papers [37-40], we proposed and applied a generalization of the SBCS (sharp-BCS) projection
method [41-43]. However, this generalization is valid only for even-even nuclei and has not been yet
extended to odd mass systems. The goal of the present work is to propose a formalism which could be
applied to odd mass nuclei. It is based on the Wahlborn blocking method [44,45].

In seeking coherence, the method for the diagonalization of the Hamiltonian and the BCS formalism
are recalled in the first two sections. The particle-number conservation method is then presented in the
next section. The formalism is numerically applied to a schematic model in the ‘Numerical results and
discussion’ section. Main conclusions are summarized in the last section.

Hamiltonian diagonalization

Let us consider a system constituted by N neutrons and Z protons. In the second quantization and
isospin formalism, the Hamiltonian which describes this system is given in the isovector pairing case
by [5,8]

H =
∑
ν>0,t

ενt(a
+
νtaνt + a+ν̃taν̃t) (1)

− 1

2

∑
tt′

Gtt
′
∑
ν,µ>0

(a+νta
+
ν̃t′

aµ̃t′aµt + a+νta
+
ν̃t′

aµ̃taµt′ )

where the subscript t corresponds to the isospin component (t = n, p), and a+νt and aνt respectively
represent the creation and annihilation operators of the particle in the state |νt⟩, of energy ενt ; |ν̃t⟩ is
the time-reverse of |νt⟩, and Gtt′ characterizes the pairing-strength (one assumes that Gtt

′ is constant
and Gnp = Gpn). The neutrons and protons are supposed to occupy the same energy levels.

In order to conserve, on average, the number of particles (i.e., neutrons and protons), let us introduce
the Lagrange parameters λt (t = n, p) and diagonalize the auxiliary Hamiltonian:

H−
∑
t

λtNt (2)

where Nt are the particle-number operators given by

Nt =
∑
ν>0

(
a+νtaνt + a+ν̃taν̃t

)
, t = n, p. (3)

Using the Wick theorem, the linearized part of the auxiliary Hamiltonian (2), denoted as H′, may be
written in a matricial form:

H
′
= E0 +

∑
ν>0,t

ξνt +
∑
ν>0

(
a+νp a+νn aν̃p aν̃n

)
Aν


aνp
aνn
a+ν̃p
a+ν̃n

 (4)
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where E0 is the constant term, Aν is the excitation matrix given by

Aν =


ξνp 0 −∆pp −∆np

0 ξνn −∆np −∆nn

−∆pp −∆np −ξνp 0
−∆np −∆nn 0 −ξνn

 (5)

and where we set

ξνt = ε̃νt −
1

2

∑
r

Grt(1 + δrt)
⊓

a+ν̃taν̃t , ε̃νt = (ενt − λt) (6)

and

∆tt′ = Gtt′
∑
ν>0

⊓
a+νta

+
ν̃t′ = Gtt′

∑
ν>0

⊓
aν̃taνt′ . (7)

Using the generalized Bogoliubov-Valatin transformation
α+
ντ =

∑
t=n,p

(uντta
+
νt + vντtaν̃t)

αντ =
∑

t=n,p
(uντtaνt + vντta

+
ν̃t)

τ = 1, 2, (8)

the Hamiltonian (4) becomes

H
′
= E0 +

∑
ν>0,t

ξνt +
tV


Eν1 0 0 0
0 Eν2 0 0
0 0 −Eν1 0
0 0 0 −Eν2

V

with the notations

E2
ντ =

1

2

[(
E2

νp + E2
νn + 2∆2

np

)
+ (−1)τ

√
Rν

]
, τ = 1, 2

Rν =
(
E2

νp − E2
νn

)2
+ 4∆2

np

[
E2

νp + E2
νn − 2 [ξνnξνp −∆nn∆pp]

]
E2

νt = ξ2νt +∆2
tt , t = n, p

V =


αν1

αν2

α+
ν̃1

α+
ν̃2

 .

BCS formalism

Ground state

The BCS ground state is obtained by eliminating all the quasiparticles from the actual vacuum, i.e.,
|Ψ⟩ ∝

∏
ν,τ

αντ |0⟩ . Using the Bogoliubov-Valatin transformation (8), this state may be written after

normalization in the particle representation:

|Ψ⟩ =
∏
j>0

|Ψj⟩ (9)
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with

|Ψj⟩ =
[
Bj

1A
+
jpA

+
jn +Bj

pA
+
jp +Bj

nA
+
jn (10)

+Bj
4

(
a+
j̃p
a+jn + a+

j̃n
a+jp

)
+Bj

5

]
|0⟩

where A+
jt = a+

j̃t
a+jt refers to the creation operator of a particle pair.

However, the state (9) can only describe even-even systems since it is a superposition of even states. For
an even-odd system, if one assumes that the blocked level is νT (T = n or p), the ground state is given
by [46,47]

|νT ⟩ = a+νT

∏
j>0
j ̸=ν

|Ψj⟩ (11)

where |Ψj⟩ is defined by (10).

It is worth noticing that in the latter expression, the coefficients Bj
i that appear in (10) depend on ν, this

dependence has not been explicited in order to simplify the notations.

Let us note that the limits when ∆np → 0 of all expressions in the np pairing case are given in Appendix
1.

Gap equations - energy

Even-even system

The gap equations, as well as the energy expression, are well established in the framework of the BCS
formalism for an even-even system. In the following, we will briefly recall them so as to show later the
differences with the even-odd systems.

The total particle-number operator is defined by N =
∑
t
Nt. Using Equation (9), the particle-number

conservation condition reads

⟨Ψ|N |Ψ⟩ = 2
∑
j>0

[
2(Bj

1)
2 +

(
Bj

p

)2
+
(
Bj

n

)2
+ 2

(
Bj

4

)2]
. (12)

In the same way, the gap parameters defined by (7) become

∆tt = −Gtt

∑
j>0

(
Bj

1B
j
t +Bj

5B
j
t′

)
(t = n, p, t′ ̸= t)

∆np = 2Gnp

∑
j>0

Bj
4

(
Bj

1 −Bj
5

)
. (13)
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Finally, the system energy is given by

E0 = 2
∑
j>0

{[
(Bj

1)
2 +

(
Bj

4

)2]
(εjp + εjn) (14)

+
∑
t

[(
Bj

t

)2
εjt −

1

2
Gtt

(
(Bj

1)
2 +

(
Bj

t

)2)]
− 1

2
Gnp

[
(Bj

1)
2 + 2

(
Bj

4

)2]}
−
∑
j,l>0
j ̸=l

{∑
t

Gtt

(
Bj

1B
j
t′ +Bj

tB
j
5

)(
Bl

1B
l
t′ +Bl

tB
l
5

)

+ 2GnpB
j
4

(
Bj

1 −Bj
5

)
Bl

4

(
Bl

1 −Bl
5

)}
where t′ ̸= t (i.e., t′ = n(p) if t = p(n)).

Even-odd system

In the case of an even-odd system, the particle-number conservation condition reads, using the state (11)

⟨νT |N |νT ⟩ = 1 + 2
∑
j>0

j ̸=ν

[
2(Bj

1)
2 +

(
Bj

p

)2
+
(
Bj

n

)2
+ 2

(
Bj

4

)2]
. (15)

As for the gap parameters, they are given by

∆
(ν)
tt = −Gtt

∑
j>0
j ̸=ν

(
Bj

1B
j
t +Bj

5B
j
t′

)
(t =, n, p, t′ ̸= t)

∆(ν)
np = 2Gnp

∑
j>0
j ̸=ν

Bj
4

(
Bj

1 −Bj
5

)
. (16)

The system energy is given in this case by

EνT
0 = ενT + 2

∑
j>0
j ̸=ν

{[
(Bj

1)
2 +

(
Bj

4

)2]
(εjp + εjn) (17)

+
∑
t

[(
Bj

t

)2
εjt −

1

2
Gtt

(
(Bj

1)
2 +

(
Bj

t

)2)]
− 1

2
Gnp

[
(Bj

1)
2 + 2

(
Bj

4

)2]}
−
∑
j,l>0
j ̸=l ̸=ν

{∑
t

Gtt

(
Bj

1B
j
t′ +Bj

tB
j
5

)(
Bl

1B
l
t′ +Bl

tB
l
5

)

+ 2GnpB
j
4

(
Bj

1 −Bj
5

)
Bl

4

(
Bl

1 −Bl
5

)}
where t′ ̸= t. Expressions (15) to (17) are similar to their homologues (12) to (14) of the even-even
case. One can clearly see that the blocked level is occupied by the single particle and that the index ν is
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excluded from the summations over j.

Particle-number projection

Ground state

It is well established that the states (9) and (11) are not eigen-states of the particle-number operator.
However, the particle-number symmetry may be restored using a particle-number projection method. In
the present work, we use the Sharp-BCS (SBCS) one [37-40].

Even-even system

The operator that enables one to project the conventional BCS state (i.e., in the pairing between like-
particles case) on the good particle number is given by [45]

P =
1

2π

∫ 2π

0
exp(iφ(N− 2P ))dφ , (18)

with P being the number of pairs of particles and N the particle-number operator of the considered
system.

Its discrete form is given by [42]

Pm =
1

2(m+ 1)


m+1∑
k=0

ξkz
−P
k

∏
j

[
1 + a+j aj(

√
zk − 1)

]
+ c.c.

 (19)

where

zk = exp(
ikπ

m+ 1
) and ξk =

{
1
2 if k = 0 or k = m+ 1
1 otherwise

}
(20)

where m is a non-zero integer which represents the extraction degree of the false components and ‘c.c.’
means the complex conjugate with respect to zk.

In the isovector pairing case, the ground state (9) is simultaneously projected on the good neutron and
proton numbers, i.e., [38-40]∣∣Ψmm′

⟩
= PnPp |Ψ⟩

= Cmm′

m+1∑
k=0

m
′
+1∑

k
′
=0

ξkξk′
{
z−PN
k z−PZ

k
′

∣∣Ψ(zk, zk′ )
⟩

(21)

+ z̄−PN
k z−PZ

k′

∣∣Ψ(z̄k, zk′ )
⟩
+ c.c.

}
where ∣∣Ψ(zk, zk′ )

⟩
=
∏
j>0

∣∣Ψj(zk, zk′ )
⟩

(22)

with ∣∣Ψj(zk, zk′ )
⟩
=
{
zkzk′B

j
1A

+
jpA

+
jn + zk′B

j
pA

+
jp + zkB

j
nA

+
jn (23)

+
√
zkzk′B

j
4(a

+
j̃p
a+jn + a+

j̃n
a+jp) +Bj

5

}
|0⟩
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Cmm′ is the normalization constant.

Even-odd system

In the pairing between like-particles case for an odd system which constituted of (2P +1) particles, the
projector on the good particle-number is given by

P =
1

2π

∫ 2π

0
exp(iφ(N− 2P − 1))dφ. (24)

Its discrete form is given by

Pm =
1

2(m+ 1)


m+1∑
k=0

ξkz
−(P+ 1

2
)

k

∏
j

[
1 + a+j aj(

√
zk − 1)

]
+ c.c.

 . (25)

One then obtains

∣∣νTmm
′
⟩
= Cνmm

′

m+1∑
k=0

m
′
+1∑

k
′
=0

ξkξk′a
+
νT

{
z−PN
k z−PZ

k′

∣∣Ψ(zk, zk′ )
⟩
ν

+ z̄−PN
k z−PZ

k′

∣∣Ψ(zk, zk′ )
⟩
ν
+ c.c.

}
, T = n, p (26)

where ∣∣Ψ(zk, zk′ )
⟩
ν
=
∏
j>0

j ̸=ν

∣∣Ψj(zk, zk′ )
⟩

(27)

and
∣∣Ψj(zk, zk′ )

⟩
being defined by (9). Let us however recall that in this case the coefficients Bj

i depend
on ν. Cνmm

′ is the normalization constant.

Expectation values

Even-even system

The calculation of the expectation value of a given operator O that conserves the particle-number is
simplified by the use of the property [37]:⟨

Ψmm′
∣∣O ∣∣Ψmm′

⟩
= 4(m+ 1)(m

′
+ 1)Cmm′ ⟨Ψ|O

∣∣Ψmm′
⟩
. (28)

In particular, if O is the identity operator, the normalization condition of the wavefunction (21) leads to

C−2
mm′ = 4(m+ 1)(m

′
+ 1)

m+1∑
k=0

m
′
+1∑

k′=0

ξkξk′ (29)

×

z−PN
k z−PZ

k
′

∏
j>0

Aj(zk, zk′ )

+z̄−PN
k z−PZ

k
′

∏
j>0

Aj(z̄k, zk′ ) + c.c.
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with the notation

Aj(zk, zk′ ) =

{
zkzk′

(
Bj

1

)2
+ zk′

(
Bj

p

)2
+ zk

(
Bj

n

)2
(30)

+2
√
zkzk′

(
Bj

4

)2
+
(
Bj

5

)2}
with z̄k being the complex conjugate with respect to zk. PN (respectively PZ) represents the number of
pairs of neutrons (respectively protons).

In the same way, the expectation value of the Hamiltonian (1) over the state
∣∣Ψmm

′
⟩

reads

Emm′ = 4(m+ 1)(m
′
+ 1)C2

mm′

m+1∑
k=0

m
′
+1∑

k
′
=0

ξkξk′ (31)

×
[
z−PN
k z−PZ

k′
E(zk, zk′ ) + z̄−PN

k z−PZ

k′
E(z̄k, zk′ ) + c.c.

]
with

E(zk, zk′ ) =
∑
j>0

[
Ej

0(zk, zk′ )−GnnE
j
n(zk′ )−GppE

j
p(zk)

−GnpE
j
np(zk, zk′ )

]∏
i>0
i̸=j

Ai(zk, zk′ )

−
∑
j,l>0

j ̸=l

[
GnnzkF

j
n(zk′ )F

l
n(zk′ ) +Gppzk′F

j
p (zk)F

l
p(zk)

+2Gnp
√
zkzk′F

j
np(zk, zk′ )F

l
np(zk, zk′ )

] ∏
i>0
i̸=j,l

Ai(zk, zk′ ) (32)

where

Ej
0(zk, zk′ ) = 2

{(
Bj

n

)2
zkεjn +

(
Bj

p

)2
zk′εjp

+

[(
Bj

1

)2
zkzk′ +

(
Bj

4

)2√
zkzk′

]
(εjn + εjp)

}
Ej

n(zk′ ) = zk

[(
Bj

1

)2
zk′ +

(
Bj

n

)2]
F j
n(zk′ ) = Bj

1B
j
pzk′ +Bj

nB
j
5

Ej
p(zk) = zk′

[(
Bj

1

)2
zk +

(
Bj

p

)2]
(33)

F j
p (zk) = Bj

1B
j
nzk +Bj

pB
j
5

Ej
np(zk, zk′ ) =

√
zkzk′

[(
Bj

1

)2√
zkzk′ + 2

(
Bj

4

)2]
F j
np(zk, zk′ ) = Bj

4

(
Bj

1
√
zkzk′ −Bj

5

)
and where Ai(zk, zk′ ) is given by Equation (30).

The real parts of Equations (29) and (31) are given in Appendix 2.
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Even-odd system

In the case of an even-odd system, using an expression similar to (28), one obtains for the normalization
condition of the state (26)

C−2
νmm′ = 4(m+ 1)(m

′
+ 1)

m+1∑
k=0

m
′
+1∑

k′=0

ξkξk′ (34)

×

z−PN
k z−PZ

k
′

∏
j>0

j ̸=ν

Aj(zk, zk′ )

+ z̄−PN
k z−PZ

k
′

∏
j>0

j ̸=ν

Aj(z̄k, zk′ ) + c.c.


Aj(zk, zk′ ) being defined by (30).

The energy of the system is obtained using the wavefunction (26 ), i.e.,

EνT
mm′ = ενT + 4(m+ 1)(m

′
+ 1)C2

νmm′

m+1∑
k=0

m
′
+1∑

k
′
=0

ξkξk′ (35)

×
[
z−PN
k z−PZ

k′
Eν(zk, zk′ ) + z̄−PN

k z−PZ

k′
Eν(z̄k, zk′ ) + c.c.

]
where we set

Eν(zk, zk′ ) =
∑
j>0

j ̸=ν

[
Ej

0(zk, zk′ )−GnnE
j
n(zk′ )−GppE

j
p(zk)

−GnpE
j
np(zk, zk′ )

]∏
i>0
i̸=ν

Ai(zk, zk′ )

−
∑
j,l>0

j ̸=l

j ̸=ν

(GnnzkF
j
n(zk′ )F

l
n(zk′ ) +Gppzk′F

j
p (zk)F

l
p(zk)

+ 2Gnp
√
zkzk′F

j
np(zk, zk′ )F

l
np(zk, zk′ ))

∏
i>0
i ̸=j,l

i̸=ν

Ai(zk, zk′ ).

The terms Ej
i (zk, zk′ ), F

j
i (zk′ ), F

j
i (zk), and F j

i (zk, zk′ ) ( i = n, p, np) are given by the same expres-
sions as in the even-even case, i.e., by equations in (33). Let us note that the blocked particle does not
contribute to the pairing energy, but its energy, which is due to the occupation of the |ν⟩ level of the
single-particles model that appears in the total energy.
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Numerical results and discussion

The previously described formalism has been tested within the schematic one-level model. In the latter,
it is assumed that there is only one level of energy ενt = 0 ∀ ν and for t = n, p. In all that follows, we
used the total degeneracy of level value Ω = 12.

Gap parameters

We have first studied the variations of the various gap parameters as a function of the ratio Gnp/Gpp in
the even-even case as well as in the odd one. We used the values Z = 6 (see Figure 1) and Z = 8 (see
Figure 2) with (N − Z) = 0, 1, 2, 3. In each case, the neutron and proton pairing-strength values are
Gnn = Gpp = 0.125 MeV. The behavior of the ∆nn, ∆pp, and ∆np parameters in the even-even case
(upper part of Figures 1 and 2) is similar to those of several works (see e.g., [3-5,7]). One notes that
there exists a critical value of Gnp (which will be hereafter denoted (Gnp)c), under which there is no np
pairing (i.e., ∆np = 0 and the ∆nn and ∆pp values are those of the pairing between like-particles case).

Figure 1 Variation of the gap parameters versus Gnp/Gpp within the one-level model for Z = 6
with N − Z = 0, 1, 2, 3.

Figure 2 Variation of the gap parameters versus Gnp/Gpp within the one-level model for Z = 8
with N − Z = 0, 1, 2, 3.

In the odd case (lower part of Figures 1 and 2), the trends of the three curves are very similar to those of
the even-even case, as underlined in [46,47].

Test of the projection method

In order to judge the efficiency of the projection method, we have studied the overlap between the BCS
wavefunction and the projected one in the even-even case (⟨Ψ | Ψmm

′ ⟩) (see Table 1 for Z = 6, N = 6
and Table 2 for Z = 8, N = 8) as well as in the odd one (⟨νT | νTmm

′ ⟩) (see Table 3 for Z = 6, N = 7
and Table 4 for Z = 8, N = 9) as a function of the extraction degrees of the false components m and
m′ . We used in each case the values Gpp = 0.125 MeV, Gnn = 0.150 MeV, and Gnp = 0.137 MeV.
One then notices a rapid convergence: in practice, the convergence is reached as soon as m = m′ = 3
for all considered systems.

Table 1 Variation of overlap between the projected and non-projected states for an even-even
system (Z = 6, N = 6)
m m

′ ⟨Ψ | Ψmm
′ ⟩ m m

′ ⟨Ψ | Ψmm
′ ⟩

0 0 0.267 1 0 0.224
0 1 0.224 1 1 0.222
0 2 0.223 1 2 0.222
0 3 0.223 1 3 0.223

2 0 0.223 3 0 0.223
2 1 0.222 3 1 0.223
2 2 0.223 3 2 0.224
2 3 0.224 3 3 0.224
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Table 2 Variation of overlap between the projected and non-projected states for an even-even
system (Z = 8, N = 8)
m m

′ ⟨Ψ | Ψmm′ ⟩ m m
′ ⟨Ψ | Ψmm′ ⟩

0 0 0.268 1 0 0.217
0 1 0.217 1 1 0.216
0 2 0.216 1 2 0.216
0 3 0.216 1 3 0.216

2 0 0.216 3 0 0.216
2 1 0.217 3 1 0.217
2 2 0.217 3 2 0.217
2 3 0.217 3 3 0.217

Table 3 Variation of the overlap between the projected and non-projected states for an odd system
(Z = 6, N = 7)
m m

′ ⟨νT | νTmm′ ⟩ m m
′ ⟨νT | νTmm′ ⟩

0 0 0.249 1 0 0.195
0 1 0.195 1 1 0.189
0 2 0.195 1 2 0.189
0 3 0.194 1 3 0.189

2 0 0.197 3 0 0.198
2 1 0.189 3 1 0.189
2 2 0.190 3 2 0.190
2 3 0.190 3 3 0.190

Table 4 Variation of the overlap between the projected and non-projected states for an odd system
(Z = 8, N = 9)
m m

′ ⟨νT | νTmm
′ ⟩ m m

′ ⟨νT | νTmm
′ ⟩

0 0 0.249 1 0 0.193
0 1 0.192 1 1 0.184
0 2 0.191 1 2 0.184
0 3 0.191 1 3 0.184

2 0 0.194 3 0 0.194
2 1 0.184 3 1 0.184
2 2 0.184 3 2 0.184
2 3 0.184 3 3 0.184

In addition, there exists an important discrepancy between the projected and non-projected states. In-
deed, the overlap between the projected and non-projected wavefunctions is of the order of 0.22 for
the even-even systems and 0.19 for the odd ones. This shows the necessity of eliminating the false
components of the BCS wavefunctions when calculating the physical observables.

Energy

We have first studied the convergence of the method for the projected ground-state energy. As it can
be seen in Tables 5 and 6 (respectively Tables 7 and 8) where we reported the variations of Emm′

(respectively EνT
mm

′ ) as a function of the extraction degrees of the false components m and m′, in the
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case of even-even systems (respectively odd systems), the convergence is also rapidly reached in the
case of the energy (as soon as m = m′ = 4 in all the considered cases). However, the convergence
seems to be slightly faster in even-even cases than in the odd ones.

Table 5 Variation of projected ground-state energy in case of even-even system (Z = 6, N = 6);
BCS energy E0 = −7.733 MeV
m m

′
Emm′ (MeV) m m

′
Emm′ (MeV)

0 0 −7.780 1 0 −8.172
0 1 −8.168 1 1 −8.206
0 2 −8.161 1 2 −8.201
0 3 −8.163 1 3 −8.201
0 4 −8.164 1 4 −8.202

2 0 −8.165 3 0 −8.167
2 1 −8.201 3 1 −8.202
2 2 −8.200 3 2 −8.200
2 3 −8.200 3 3 −8.200
2 4 −8.200 3 4 −8.199

4 0 −8.169
4 1 −8.202
4 2 −8.200
4 3 −8.199
4 4 −8.199

Table 6 Variation of projected ground-state energy in case of even-even system (Z = 8, N = 8);
BCS energy E0 = −9.349 MeV
m m

′
Emm′ (MeV) m m

′
Emm′ (MeV)

0 0 −9.431 1 0 −9.844
0 1 −9.838 1 1 −9.924
0 2 −9.837 1 2 −9.933
0 3 −9.837 1 3 −9.935
0 4 −9.837 1 4 −9.936

2 0 −9.843 3 0 −9.844
2 1 −9.933 3 1 −9.936
2 2 −9.936 3 2 −9.937
2 3 −9.936 3 3 −9.937
2 4 −9.937 3 4 −9.937

4 0 −9.844
4 1 −9.937
4 2 −9.937
4 3 −9.937
4 4 −9.937
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Table 7 Variation of projected ground-state energy in case of odd system (Z = 6, N = 7); BCS
energy EνT

0 = −6.311 MeV
m m

′
EνT

mm
′ (MeV) m m

′
EνT

mm
′ (MeV)

0 0 −6.287 1 0 −7.353
0 1 −7.459 1 1 −7.544
0 2 −7.508 1 2 −7.555
0 3 −7.515 1 3 −7.560
0 4 −7.519 1 4 −7.561

2 0 −7.277 3 0 −7.259
2 1 −7.552 3 1 −7.555
2 2 −7.563 3 2 −7.566
2 3 −7.567 3 3 −7.569
2 4 −7.569 3 4 −7.571

4 0 −7.252
4 1 −7.556
4 2 −7.567
4 3 −7.571
4 4 −7.571

Table 8 Variation of projected ground-state energy in case of odd system (Z = 8, N = 9); BCS
energy EνT

0 = −7.761 MeV
m m

′
EνT

mm′ (MeV) m m
′

EνT
mm′ (MeV)

0 0 −7.754 1 0 −8.551
0 1 −8.664 1 1 −8.832
0 2 −8.711 1 2 −8.875
0 3 −8.722 1 3 −8.881
0 4 −8.724 1 4 −8.884

2 0 −8.559 3 0 −8.549
2 1 −8.878 3 1 −8.880
2 2 −8.886 3 2 −8.889
2 3 −8.889 3 3 −8.892
2 4 −8.891 3 4 −8.893

4 0 −8.545
4 1 −8.881
4 2 −8.890
4 3 −8.893
4 4 −8.893

As a second step, we have studied the variations of the energy, before (E0, (respectively EνT
0 )) and after

(Emm′ , (respectively EνT
mm′)) the projection as a function of the ratio Gnp/Gpp. The corresponding

results are shown in Figure 3 for Z = 6 (respectively Figure 4 for Z = 8) with (N − Z) = 0, 1, 2, 3.
From these figures, one may conclude that the behavior of the energy as a function of Gnp (before and
after the projection) is similar in the even-even case and the odd one. Here again, there appears two
regions: i.e., when Gnp < (Gnp)c and when Gnp > (Gnp)c. The slope variation in the E0 (respectively
EνT

0 ) and Emm
′ (respectively EνT

mm′) curves corresponds to the value Gnp = (Gnp)c . The fact that
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the energies are not constant when Gnp < (Gnp)c , even if ∆nn and ∆pp are constant, is due to the
additional term in Gnp in Equations (36 ), (38), (39), and (40).

Figure 3 Variation of the energy as a function of the ratio Gnp/Gpp for Z = 6 with
N − Z = 0, 1, 2, 3.

Figure 4 Variation of the energy as a function of the ratio Gnp/Gpp for Z = 8 with
N − Z = 0, 1, 2, 3.

Moreover, in every case, the projection effect leads to a lowering of the energy. One may also notice that
the discrepancy between the BCS and projected energy values is constant for a given region. We reported
in Table 9 (respectively Table 10) the values of the relative discrepancy δE(%) between the projected
and non-projected energies, as a function of (N − Z), for Z = 6 and Z = 8 when Gnp = 0.75 Gpp

(respectively when Gnp = 1.5 Gpp) in order to illustrate the region Gnp < (Gnp)c (respectively Gnp >
(Gnp)c). It then appears that the projection effect is more important in the first region. It also appears
that the projection effect is more important in odd systems than in the even-even ones. Indeed, the
average value of δE is respectively 8% when Gnp < (Gnp)c and 4% when Gnp > (Gnp)c in the even-
even case, whereas it is 17% when Gnp < (Gnp)c and 15% when Gnp > (Gnp)c in the odd case. From
the above discussion, we can conclude to the necessity of the elimination of the false components in the
BCS states in the odd mass systems.

Table 9 Variation of the relative discrepancy δE(%) between the projected and non-projected
energies when Gnp = 0.75Gpp

Z = 6 N − Z δE(%) Z = 8 N − Z δE(%)

0 8.03 0 7.89
1 21.93 1 15.94
2 7.94 2 7.79
3 18.71 3 13.85

Table 10 Variation of the relative discrepancy δE(%) between the projected and non-projected
energies when Gnp = 1.5 Gpp

Z = 6 N − Z δE(%) Z = 8 N − Z δE(%)

0 3.02 0 3.18
1 19.09 1 13.58
2 5.19 2 5.08
3 15.71 3 10.58

Conclusions

A formalism that enables one to take into account the isovector pairing interaction, with inclusion of the
particle-number conservation, in odd systems has been established. The Wahlborn blocking method has
been used [44,45].

The most general form of the isovector pairing Hamiltonian has been approximately diagonalized using
the Wick theorem. A discrete expression of the projection operator has been constructed. A projection
of the BCS wavefunction on both the good proton and neutron numbers has been performed. The
expression of the ground-state projected energy has been deduced.

The method has been numerically tested using the one-level schematic model. The convergence of the
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method as a function of the extraction degrees of the false components has been studied. The rapidity
of this convergence shows the efficiency of the projection method. On the other hand, it has been shown
that the behavior of the energy as a function of the neutron-proton pairing constant in odd systems is
analogous to that of even-even ones. However, this effect seems to be more important in odd systems.

Competing interest

The authors declare that they have no competing interests

Authors’ contributions

All authors, AB, MF, and ANH, contributed to the formalism. AB performed the numerical calculations.
All authors read and approved the final manuscript.

Appendix 1

Limit when ∆np → 0

Before projection

At the limit when ∆np → 0, the coefficients Bj
i which appear in Equation (10) become

Bj
1 = vjpvjn , Bj

t = vjtujt′

Bj
4 = 0 , Bj

5 = ujpujn

where t = n, p and t′ ̸= t.

uνt and vνt are the occupation and inoccupation probability amplitudes of the ν state in the conventional
BCS theory (i.e. in the pairing between like-particles case).

It may be easily shown that the wavefunction |Ψ⟩ defined by (9) in the even-even case is then the product
of the usual BCS wavefunctions of the proton and neutron systems.

The energy of the system given by (14) reads in this case:

lim
∆np→0

E0 =
∑
t

2∑
j>0

εjtv
2
jt −Gtt

∑
j>0

v4jt −
∆2

tt

Gtt

 (36)

−Gnp

∑
j>0

v2jpv
2
jn.

This means that in this case, E0 is not only the sum of the energies of the proton and neutron systems,

but also there is an additional term

(
−Gnp

∑
j>0

v2jpv
2
jn

)
.

In the same way, the wavefunction in the even-odd case defined by (11) becomes

lim
∆np→0

|νT ⟩ = a+νT

∏
t,j>0
j ̸=ν

(
ujt + vjta

+
jta

+

j̃t

)
|0⟩ . (37)

It is worth noticing that this expression does not exactly reduce to its homologue of the conventional
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BCS theory. Indeed, in the latter, the neutron and proton systems are considered separately. Thus,
when a level of the t (say the proton) system is blocked, there is no consequence on the t′ (t′ ̸= t) (the
neutron) system. On the opposite, in the np pairing case, due to the definition of the wavefunction (11),
the blocked level νT is simultaneously excluded for both types of nucleons (i.e., the protons and the
neutrons).

As for the expression of the energy given by (17), it becomes

lim
∆np→0

EνT
0 = ενT +

∑
t

2∑
j>0
j ̸=ν

εjtv
2
jt −Gtt

∑
j>0
j ̸=ν

v4jt −

(
∆

(ν)
tt

)2
Gtt


−Gnp

∑
j>0
j ̸=ν

v2jpv
2
jn. (38)

As in the even-even case, the term

−Gnp
∑
j>0
j ̸=ν

v2jpv
2
jn

 appears in addition to the sum of the proton

and neutron system energies.

After projection

As it was the case before projection, one may easily verify that in the even-even case,
∣∣Ψmm

′
⟩
, reduces

to the product of the projected wavefunctions of the neutron and proton systems in the pairing between
like-particles case defined in [41].

The corresponding energy is given by

lim
∆np→0

Emm
′ = Em + Em′ (39)

− 4Gnp(m+ 1)(m
′
+ 1)C2

mC2
m′


m+1∑
k=0

m
′
+1∑

k′=0

ξkξk′

×

z−PN+1
k z−PZ+1

k′

∑
j>0

v2jnv
2
jp

∏
i̸=j

(u2in + zkv
2
in)(u

2
ip + zk′v

2
ip)

+ z−PN+1
k z−PZ+1

k
′

∑
j>0

v2jnv
2
jp

∏
i̸=j

(u2in + zkv
2
in)(u

2
ip + zk′v

2
ip)


+ c.c.

}
where Em is the projected energy of the neutron system and Em

′ that of the proton system in the pairing
between like-particles case for an even system and Cm and Cm′ are the corresponding normalization
constants (see [41]). This means that at the limit when ∆np → 0, the energy (31) does not only reduces
to the sum of the proton and neutron systems energies.
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In the even-odd case, the wavefunction
∣∣νTmm′

⟩
defined by Equation (26) becomes

lim
∆np→0

∣∣νTmm′
⟩

= a+νTCmν


m+1∑
k=0

ξk

z−PN
k

∏
j>0
j ̸=ν

(
ujn + zkvjnA

+
jn+

)
|0⟩+ c.c.




× Cm′ν


m′+1∑
k′=0

ξk′

z−PZ
k′

∏
j>0
j ̸=ν

(
ujp + zk′vjpA

+
jp

)
|0⟩+ c.c.


 ,

Cmν and Cm′ν being the normalization constants.

As it was already the case before the projection, this expression does not exactly generalizes that of
the pairing between like-particles case. Indeed, the blocked level is excluded from the products in both
systems. In the same way, the energy (35) reads

lim
∆np→0

EνT
mm

′ (40)

= ενT + Eν
m + Eν

m′

− 4Gnp(m+ 1)(m
′
+ 1)C2

mνC
2
m′ν


m+1∑
k=0

m
′
+1∑

k
′
=0

ξkξk′

×

z−PN+1
k z−PZ+1

k
′

∑
j ̸=ν

v2jnv
2
jp

∏
i ̸=j ̸=ν

(u2in + zkv
2
in)(u

2
ip + zk′v

2
ip)

+z−PN+1
k z−PZ+1

k′

∑
j ̸=ν

v2jnv
2
jp

∏
i̸=j ̸=ν

(u2in + zkv
2
in)(u

2
ip + zk′v

2
ip)


+c.c.

}
where

Eν
m = 2(m+ 1)C2

mν

{
m+1∑
k=0

ξkz
−P+1
k (41)

×

∑
j ̸=ν

2

(
εj −

G

2

)
v2j
∏

i̸=j ̸=ν

(u2i + zkv
2
i )

−2G
∑
l<i
l ̸=ν

ujvjulvl
∏

i̸=ν,j,l

(u2i + zkv
2
i )

+ c.c.

 .

One notices that although ∆np → 0, there remains a term in Gnp. Moreover, as before the projection,
the blocked level concerns both the proton and neutron systems.
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Appendix 2

Extraction of the real parts

Normalization constants

The real part of Equation (29) is given by

C−2
mm

′ = 8(m+ 1)(m
′
+ 1)

m+1∑
k=0

m
′
+1∑

k
′
=0

ξkξk′ (42)

×
[
ρ(xk, xk′ ) cos θ(xk, xk′ ) + ρ(−xk, xk′ ) cos θ(−xk, xk′ )

]
with

xk =
kπ

2(m+ 1)

θ(xk, xk′ ) = −2PNxk − 2PZxk′ + φ(xk, xk′ )

ρ(xk, xk′ ) =
∏
j>0

ρj(xk, xk′ ) , φ(xk, xk′ ) =
∑
j>0

φj(xk, xk′ )

ρj(xk, xk′ ) =
√

(a(j))2 + (b(j))2 , tanφj(xk, xk′ ) =
b(j)

a(j)

where

a(j) = (Bj
1)

2 cos(2xk + 2xk′ ) + (Bj
p)

2 cos 2xk′ + (Bj
n)

2 cos 2xk

+ 2(Bj
4)

2 cos(xk + xk′ ) + (Bj
5)

2

b(j) = (Bj
1)

2 sin(2xk + 2xk′ ) + (Bj
p)

2 sin 2xk′ + (Bj
n)

2 sin 2xk

+ 2(Bj
4)

2 sin(xk + xk′ )

In the same way, the real part of Equation (34) reads

C−2
νmm′ = 8(m+ 1)(m

′
+ 1)

m+1∑
k=0

m
′
+1∑

k′=0

ξkξk′ (43)

×
[
ρ(xk, xk′ )

ρν(xk, xk′ )
cos θν(xk, xk′ )

+
ρ(−xk, xk′ )

ρν(−xk, xk′ )
cos θν(−xk, xk′ )

]
where

θi...j(xk, xk′ ) = θ(xk, xk′ )− φi(xk, xk′ )− ...− φj(xk, xk′ )
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Energy

The real part of the energy for an even-even system (Equation (31)) is given by

Emm′ = 8(m+ 1)(m
′
+ 1)C2

mm′

m+1∑
k=0

m
′
+1∑

k′=0

ξkξk′

×
{ ∑[

εj(xk, xk′ ) + εj(−xk, xk′ )
]

+
∑
j,l>0

j ̸=l

[
εjl(xk, xk′ ) + εjl(−xk, xk′ )

]
 (44)

where

εj(xk, xk′ ) =
ρ(xk, xk′ )

ρj(xk, xk′ )
{Rj

0(xk, xk′ ) cosΦ
j
0(xk, xk′ )

−GnnR
j
n(xk′ ) cosΦ

j
n(xk, xk′ )

−GppR
j
p(xk) cosΦ

j
p(xk, xk′ )

−GnpR
j
np(xk, xk′ ) cosΦ

j
np(xk, xk′ )} (45)

and

εjl(xk, xk′ ) =
ρ(xk, xk′ )

ρj(xk, xk′ )ρl(xk, xk′ )
(46)

× {−GnnQ
j
n(xk′ )Q

l
n(xk′ ) cosΦ

jl
n (xk, xk′ )

−GppQ
j
p(xk)Q

l
p(xk) cosΦ

jl
p (xk, xk′ )

− 2GnpQ
j
np(xk, xk′ )Q

l
np(xk, xk′ ) cosΦ

jl
np(xk, xk′ )}

with the notations

Rj
0(xk, xk′ ) =

√
(a

(j)
0 )2 + (b

(j)
0 )2

ηj0(xk, xk′ ) = arctan

(
b
(j)
0

a
(j)
0

)

Rj
i (xk, xk′ ) =

√
(a

(j)
i1 )2 + (b

(j)
i1 )2

ηji (xk, xk′ ) = arctan

(
b
(j)
i1

a
(j)
i1

)
(47)

Qj
i (xk, xk′ ) =

√
(a

(j)
i2 )2 + (b

(j)
i2 )2

δji (xk, xk′ ) = arctan

(
b
(j)
i2

a
(j)
i2

)
i = n, p, np
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Φj
0(xk, xk′ ) = θj(xk, xk′ ) + ηj0(xk, xk′ )

Φj
n(xk, xk′ ) = θj(xk, xk′ ) + ηjn(xk′ ) + 2xk

Φj
p(xk, xk′ ) = θj(xk, xk′ ) + ηjp(xk) + 2xk′

Φj
np(xk, xk′ ) = θj(xk, xk′ ) + ηjnp(xk, xk′ ) (48)

Φjl
n (xk, xk′ ) = θjl(xk, xk′ ) + δjn(xk′ ) + δln(xk′ ) + 2xk

Φjl
p (xk, xk′ ) = θjl(xk, xk′ ) + δjp(xk) + δlp(xk) + 2xk′

Φjl
np(xk, xk′ ) = θjl(xk, xk′ ) + δjnp(xk, xk′ ) + δlnp(xk, xk′ )

+ xk + xk′

θ(xk, xk′ ) = −2PNxk − 2PZxk′ + φ(xk, xk′ ) (49)

θiqr(xk, xk′ ) = θi(xk, xk′ ) + qxk + rxk′

θi...jqr(xk, xk′ ) = θi...j(xk, xk′ ) + qxk + rxk′

a
(j)
0 = 2(Bj

1)
2 (εjn + εjp) cos(2xk + 2xk′ ) + 2(Bj

p)
2εjp cos 2xk′

+ 2(Bj
n)

2εjn cos 2xk + 2(Bj
4)

2 (εjn + εjp) cos(xk + xk′ )

b
(j)
0 = 2(Bj

1)
2 (εjn + εjp) sin(2xk + 2xk′ ) + 2(Bj

p)
2εjp sin 2xk′

+ 2(Bj
n)

2εjn sin 2xk + 2(Bj
4)

2 (εjn + εjp) sin(xk + xk′ ) (50)

a
(j)
n1 = (Bj

1)
2 cos 2xk′ + (Bj

n)
2 ; b

(j)
n1 = (Bj

1)
2 sin 2xk′ (51)

a
(j)
p1 = (Bj

1)
2 cos 2xk + (Bj

p)
2 ; b

(j)
p1 = (Bj

1)
2 sin 2xk

a
(j)
np1 = (Bj

1)
2 cos(2xk + 2xk′ ) + 2(Bj

4)
2 cos(xk + xk′ )

b
(j)
np1 = (Bj

1)
2 sin(2xk + 2xk′ ) + 2(Bj

4)
2 sin(xk + xk′ ) (52)

a
(j)
n2 = Bj

1B
j
p cos 2xk′ +Bj

nB
j
5 ; b

(j)
n2 = Bj

1B
j
p sin 2xk′

a
(j)
p2 = Bj

1B
j
n cos 2xk +Bj

pB
j
5 ; b

(j)
p2 = Bj

1B
j
n sin 2xk (53)

a
(j)
np2 = Bj

1B
j
4 cos(xk + xk′ )−Bj

4B
j
5

b
(j)
np2 = Bj

1B
j
4 sin(xk + xk′ ). (54)

In the same way, for an even-odd system, the real part of the energy (Equation ( 35)) is given by

EνT
mm′ = ενT + 8(m+ 1)(m

′
+ 1)C2

νmm′

×
m+1∑
k=0

m
′
+1∑

k
′
=0

ξkξk′{
∑
j>0

j ̸=ν

[
ενj (xk, xk′ ) + ενj (−xk, xk′ )

]
+
∑
j,l>0

j ̸=l

j ̸=ν

[
ενjl(xk, xk′ ) + ενjl(−xk, xk′ )

]
} (55)
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where

ενj (xk, xk′ ) =
ρ(xk, xk′ )

ρj(xk, xk′ )ρν(xk, xk′ )

× {Rj
0(xk, xk′ ) cosΦ

jν
0 (xk, xk′ )

−GnnR
j
n(xk′ ) cosΦ

jν
n (xk, xk′ )

−GppR
j
p(xk) cosΦ

jν
p (xk, xk′ )

−GnpR
j
np(xk, xk′ ) cosΦ

jν
np(xk, xk′ )} (56)

and

ενjl(xk, xk′ ) =
ρ(xk, xk′ )

ρj(xk, xk′ )ρl(xk, xk′ )ρν(xk, xk′ )
(57)

{−GnnQ
j
n(xk′ )Q

l
n(xk′ ) cosΦ

jlν
n (xk, xk′ )

−GppQ
j
p(xk)Q

l
p(xk) cosΦ

jlν
p (xk, xk′ )

− 2GnpQ
j
np(xk, xk′ )Q

l
np(xk, xk′ ) cosΦ

jlν
np (xk, xk′ )}

with the notations

Φjν
0 (xk, xk′ ) = θjν(xk, xk′ ) + ηj0(xk, xk′ )

Φjν
n (xk, xk′ ) = θjν(xk, xk′ ) + ηjn(xk′ ) + 2xk

Φjν
p (xk, xk′ ) = θjν(xk, xk′ ) + ηjp(xk) + 2xk′

Φjν
np(xk, xk′ ) = θjν(xk, xk′ ) + ηjnp(xk, xk′ ) (58)

Φjlν
n (xk, xk′ ) = θjlν(xk, xk′ ) + δjn(xk′ ) + δln(xk′ ) + 2xk

Φjlν
p (xk, xk′ ) = θjlν(xk, xk′ ) + δjp(xk) + δlp(xk) + 2xk′

Φjlν
np (xk, xk′ ) = θjlν(xk, xk′ ) + δjnp(xk, xk′ ) + δlnp(xk, xk′ )

+ xk + xk′ .
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