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Abstract A cold magnetized plasma sheath is considered

to examine the gas pressure effect on the sheath dynamics.

A fluid model is used to describe the plasma sheath

dynamic. The governing fluid equations in the plasma are

solved from plasma center to the target using the finite

difference method and some convenient initial and

boundary conditions at the plasma center and target. It is

found that, the ion-neutral collision has significant effect on

the dynamic characteristics of the high-voltage sheath in

the plasma immersion ion implantation (PIII). It means

that, the temporal profile of the ion dose on the target and

sheath width are decreased by increasing the gas pressure.

Also, the gas pressure substantially diminishes the tempo-

ral psychograph of ion incident angle on the target.

Keywords Dynamic sheath � Gas pressure � PIII �
Magnetized sheath

Introduction

Plasma immersion ion implantation (PIII) [1, 2] has been

shown to be an effective technique for semiconductor

fabrication and material processing [3–6]. It emulates

conventional ion-beam ion implantation (IBII) in a number

of areas. For example, it has high sample throughput (high

current density) and it is a paralleled processing technique

in which the implantation time is independent of the wafer

size.

The dynamic sheath model plays a very important role

in PIII processes because it is used to predict process

parameters and implantation results including the implant

doses and energies. The optimum characteristics of plasma

system can be determined from an appropriate and rea-

sonable numerical analysis of the plasma-sheath dynamic.

Unfortunately, accurate modeling and prediction of the ion

implantation energy and dose in PIII is quite difficult

because it is a complicated function of inter-related pro-

cessing conditions such as plasma density, pulse duration,

accelerating voltage, external magnetic field, ion mass, ion

temperature, and ion charge state.

There has recently been an explosion of interest in the

dynamic behavior of sheaths which is formed at an elec-

trode biased with a pulsed negative voltage. This problem

is of special interest in PIII technology, where ions are

extracted from plasma, accelerated by a high potential drop

in the sheath and injected into the surface layer of a

material being treated.

In a simple model of PIII, the confined homogeneous

plasma is brought in contiguity with a flat conducting

electrode or target. A series of negative high-voltage pulses

are applied to the electrode. As a result, electrons are

repelled from the electrode and move back toward the

plasma center leaving a positive ion sheath. This initial ion

sheath, which is immediately formed after applying the

negative voltage on the electrode, is called ion matrix

sheath [7–9]. The matrix sheath is created on a time scale

of the order of 1/xp (where xp is the electron plasma fre-

quency). At a characteristic time scale of the order of 1/Xp

(where Xp is the ion plasma frequency), the ions begin to

move towards the electrode. Therefore, the sheath edge

propagates into the plasma and a rarefactive ion
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distribution begins to propagate into the sheath. Thickness

of the time-dependent collisionless sheath is given by [10];

d tð Þ ¼ d0
2

3
Xpt þ 1

� �1=3

; ð1Þ

where, d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e0VT=en0

p
is the thickness of the ion matrix

sheath, n0 is the plasma density, VT is the applied negative

voltage to the target, e0 is the free space permittivity and

e is the unit of electric charge.

Navab Safa et al. [11] have investigated the sheath

dynamics and implantation profiles during the PIII process

on a long step shaped target in the presence of an external

DC magnetic field and showed that the magnetic field

inclination angle strongly affects the ion implanted dose

and ion energy on the target surfaces. Minghao et al. [12]

have analyzed the ion temperature and collision parameter

effects on the plasma-sheath structure in the RF warm

plasma-sheath. They have solved plasma fluid equations

from plasma center to the wall (biased with a low-voltage

sinusoidal source) and presented their results in time-av-

eraged form. It has been examined [13, 14] the ion tem-

perature and collision effects on the Bohm criteria in a

multiply ionized and electronegative warm plasma sheath,

respectively, and using these Bohm criterions it has been

investigated [15, 16] the ion temperature and ion-neutral

collision effects on the steady state plasma-sheath structure

and sheath formation in warm magnetized plasmas.

In this paper, we will study the PIII process for different

gas pressure to investigate the influence of ion-neutral

collision on the dynamic behavior of a pulsed collisional

magnetized sheath. Since the ion incident angle has a

significant effect on the ion penetration at the target, we

have used an external magnetic field in our model to be

able to control the ion incident angle. Here, we use a fluid

model to investigate the time evolution of a sheath

expanding into the plasma. The model equations are solved

through an implicit finite difference scheme.

After introduction, in ‘‘Fluid model and basic equa-

tions’’, a collisional magnetized plasma is formulated and

the proper initial and boundary conditions are nominated.

In ‘‘Numerical results and discussion’’, the numerical

results and their explanation are presented. A summary and

conclusions are presented in ‘‘Summary and conclusions’’.

Fluid model and basic equations

The implantation geometry is schematically displayed in

Fig. 1. A collisional magnetized plasma limited at one side

by a conducting flat target is considered to discuss the

formation of dynamic sheath. The position of the target is

taken at x = 0. We assume at the moment t = 0, the

plasma which is located at the x[ 0 is filled with

stationary singly charged ions and the charge neutrality

condition ni = ne = n0 is fulfilled there. At the moment

t = 0?, the bias on the target is switched on from zero to a

negative bias VT(t), drawing ions to the target and repelling

electrons to the plasma. Under this configuration, the non-

neutral plasma so-called plasma sheath is formed around

the target.

On the other hand, far from the plasma sheath, there is a

cold (Ti = 0) plasma with electron temperature Te where

the electric potential is V = 0. The fluid model is used to

formulate the charged particles as electric fluids. The ion

density and ion velocity distributions, as well as the electric

potential distribution in the plasma-sheath evolve self-

consistently in the fluid equations frame. The continuity

and motion equations of the ions supplemented by the

collisional term are:

oni

ot
þr � nivð Þ ¼ 0; ð2Þ

mni
o

ot
þ v � r

� �
v ¼ eni Eþ v� Bð Þ � mnimv; ð3Þ

where E = -rV (with V as the electric potential) is the

electric field, m, v and m are the mass, velocity and collision

frequency of ion, respectively.

Electrons in the electrostatic well of the target are in the

thermal equilibrium, and their density ne obeys the Boltz-

mann relation

ne ¼ n0exp
eV

kBTe

� �
; ð4Þ

where kB is the constant of Boltzmann. Also, the electric

potential and ion and electron densities satisfy the Pois-

son’s equation as follows:

r2V ¼ � e

e0
ni � neð Þ: ð5Þ

On the basis of the above equations and the ion-neutral

collision frequency m ¼ ngrs v=csð Þbv (where

ng ¼ Pg=kBTg, Pg and Tg are the density, pressure and

temperature of neutral gas, respectively, rs is the ion-

neutral collision cross section in the sound velocity cs and b
so-called the collision power parameter is a real number

between -1 and 0 that b = -1 introduces the constant

Plasma

Sheath
0

y

Target

Fig. 1 A magnetized plasma-sheath as the simulation zone
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collision frequency, while b = 0 presents the constant

collision mean free path), one can describe the dynamic

structure of plasma sheath around target.

For the sake of convenience, it is efficient to introduce

some normalized parameters and variables,

Ni ¼
ni

n0
; Ne ¼

ne

n0
; X ¼ x

kD
; Xc ¼

eB

m

Xp ¼

ffiffiffiffiffiffiffiffiffi
n0e2

me0

s
; a ¼ kD

k
¼ kDngrs; X ¼ Xc

Xp

;

s ¼ Xpt; / ¼ eV

kBTe

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e0kBTe
n0e2

r
; cs ¼

ffiffiffiffiffiffiffiffiffiffi
kBTe

m

r
¼ kDXp;

uj ¼
vj

cs
j ¼ x; y; zð Þ

where Xc is the ion cyclotron frequency and X is the ion

cyclotron frequency to ion plasma frequency ratio. Indeed,Xc

introduces a vector paralleled to the magnetic field B ¼
B0 cos h0x̂þ sin h0ŷð Þ with the magnitude eB0/m. s is the

normalized timeby1/Xp,/ is the electric potential normalized

by kBTe/e, a is the ion-neutral collision parameter, k = 1/ngrs
is the mean free path of ion collision, u is the ion velocity

normalized by the ion sound velocity cs, Ni and Ne are the ion

and electron density, respectively, normalized by n0, andX is

the space coordinate normalized by Debye length kD. Since
the target is planar, r ! o=oxð Þx̂ and the normalized one-

dimensional form of Eqs. (2)–(5) will be as follows:

oNi

os
þ o Niuxð Þ

oX
¼ 0; ð6Þ

o

os
þ ux

o

oX

� �
u ¼ � o/

oX
x̂þ u�X� aubþ1u ð7Þ

Ne ¼ exp /ð Þ ð8Þ

o2/
oX2

¼ Ne � Ni: ð9Þ

Using the definition X ¼ eB0 cos h0x̂þ sin h0ŷð Þ=mXp

¼ X0 cos h0x̂þ sin h0ŷð Þ, one can rewrite the vector Eq. (7)

in the scalar form to find,

o

os
þ ux

o

oX

� �
ux ¼ � o/

oX
� X0uz sin h0 � aubþ1ux ð10Þ

o

os
þ ux

o

oX

� �
uy ¼ X0uz cos h0 � aubþ1uy ð11Þ

o

os
þux

o

oX

� �
uz ¼X0ux sinh0�X0uy cosh0�aubþ1uz: ð12Þ

Equations (6) and (8)–(12) make a complete set of

equations describing the dynamic structure of plasma

sheath. We solve the equations in a region from plasma to

target supplied by a negative high voltage VT tð Þ ¼

VP 1� exp �t=trð Þ½ � in which, VP and tr are the voltage

amplitude and rise time of pulse, respectively.

In order to examine the dynamic structure of plasma

sheath and investigate the influence of plasma parameters

on the sheath structure, the complete set of equations are

numerically solved using a second-order finite difference

scheme in space and a first-order finite difference

scheme in time. After discretization of equations in full

implicit finite difference scheme, some linearization is

required. In order to linearize the equations in time, we

used Taylor’s expansion approximation;

f t þ Dtð Þ � f tð Þ þ of tð Þ=otð ÞDt.
To solve the Eqs. (6) and (8)–(12), some proper initial

and boundary conditions are necessary. The boundary

conditions at the sheath edge and on the target for the time

interval 0\ s\ sp are:

/ 0; sð Þ ¼ /T sð Þ;/ L; sð Þ ¼ 0;

ux L; sð Þ ¼ uy L; sð Þ ¼ uz L; sð Þ ¼ 0;Ni L; sð Þ ¼ 1;

where sp ¼ Xptp is the normalized simulation time or

normalized pulse duration, /T ¼ eVT=kBTe is the normal-

ized voltage of target and L is the normalized length of the

simulation area that introduces the location of a point in the

plasma, sufficiently far from the sheath edge. Also, the

initial conditions for the space interval 0\X\ L are:

/ X; 0ð Þ ¼ 0; ux X; 0ð Þ ¼ uy X; 0ð Þ ¼ uz X; 0ð Þ ¼ 0;

Ni X; 0ð Þ ¼ 1:

Numerical results and discussion

The normalized equations can now be solved assuming

some constant parameters. Atomic nitrogen is used as the

ion that should be implanted on the target surface. Nitrogen

implantation of steel surfaces by PIII has shown to improve

mechanical properties and corrosion performance [17, 18].

Nitrogen plasma density is assumed no = 5 9 1014 m-3

(Xp ¼ 7:8843� 106Hz), electron temperature Te = 1 eV,

magnetic field amplitude B0 ¼ 0:5T (Xc ¼ 3:44� 106Hz)

and the magnetic field deviation angle h0 = p/3. According
to the assuming data, one can find kD ¼ 332:85 lm and

cs ¼ 2624:3m=s. We choose rs ¼ 4� 10�19m2 as the ion-

neutral collision cross section and alter the gas pressure

Pg = kBTgng and for the both values of collision power

parameter b = 0 and -1 to examine their effect on time

evolution of the sheath dynamic structure.

To study the dynamic structure of sheath, we have

numerically solved the complete set of equations assuming

sr ¼ Xptr ¼ 0:1sp, /p ¼ eVp=kBTe ¼ �10000, Ds ¼
XpDt ¼ 4 � 10�3 as the normalized time steps,

nt = 40,000 as the total number of time steps, DX ¼

J Theor Appl Phys (2016) 10:41–46 43
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Dx=kD ¼ 0:5 as the normalized space steps and nx = 1400

as the total number of space steps. Using the time and space

data, one can find the pulse duration tp ¼ ntDt ¼
20:293 ls (sp = 160) and the simulation space LkD ¼
nxDx ¼ 2:33 cm (L = 700). The variable parameters are the

gas pressure and collision power parameter which include the

values Pg = 0, 0.05 and 0:1 Pa and b = 0 and -1, respec-

tively. The simulation results are shown in Figs. 2, 3, 4 and 5.

Temporal variations of ion current density Jx = eniux
perpendicular to the target surface is shown in Fig. 2 as a

function of gas pressure and collision power parameter. It

can be seen that the ion current density on the target

increases from zero, reaches to a maximum value,

decreases and saturates to a constant value. This fig-

ure shows that the both of gas pressure and collision power

parameter reduce the maximum and saturation values of

ion current density. This is because the ion collision term in

the ion motion Eq. (3) decelerates the ion velocity toward

the target.

Figure 3 displays the temporal profile of ion dose on the

target as a function of gas pressure and collision power

parameter. Since the ion dose on the target is defined by

Dx ¼ r
t

0

Jxdt and is directly related to Jx, it has the same

dependency on the ion collision parameters such as the ion

current density. As it can be seen in Fig. 3, the both col-

lision parameters Pg and b, reduce the ion dose on the

target. According to Fig. 3, one can find the necessary time

to achieve the required dose for specified ion collision

parameters.

We have defined the sheath edge as a point between

target and plasma in which the normalized electric poten-

tial reduces to / = -0.01. The distance between target and

sheath edge is called the sheath width that has a critical role

in PIII. Figure 4 exhibits temporal variations of sheath

width normalized by Debye length kD ¼ 0:3328mm as a

function of the ion collision parameters. It is clear that the

sheath width is a descending function of the both collision

parameters Pg and b.
Ion incident angle is defined as the angle between ion

velocity and normal vector on the target surface. It is then

calculated via; Arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2y þ u2z

q
=ux

� �
. The vertical

Fig. 2 Temporal variations of the ion current density Jx normalized

by J0 ¼ en0cs ¼ 0:2099 A/m2 as a function of the gas pressure Pg

and collision power parameter b. The constant parameters in the

simulation are; /p = -10,000, Ds = 4 9 10-3, nt = 40,000,

DX = 0.5, nx = 1400, sp = 160, 1=Xp ¼ 0:1268 ls and L = 700

Fig. 3 Temporal variations of the ion dose on the target normalized

by n0cs ¼ 1:3121� 1018 1=m2s as a function of the ion collision

parameters. The constant parameters are the same as Fig. 2

Fig. 4 Temporal variations of the sheath width normalized by Debye

length kD ¼ 0:3328mm as a function of ion collision parameters Pg

and b. The constant parameters are the same as Fig. 2
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incident of the ion on the target increases the ion pene-

tration while oblique incident of ion on the target grows up

the sputtering of the target surface.

Temporal variations of ion incident angle are depicted in

Fig. 5. This figure shows that the ion incident angle at the

target surface increases from zero and after some fluctua-

tions caused by the magnetic field is saturated to a constant

value. In the absence of collision (Pg = 0), the constant

incident angle is approximated to the magnetic field devi-

ation angle h0 ¼ p=3 ¼ 1:0472 rad. It means the ion

velocity on the target is paralleled to the external magnetic

field. As a result, the magnetic force and fluctuations

caused by it will be removed as soon as the ion velocity is

constantly paralleled with the magnetic field. According to

Fig. 5, the gas pressure reduces the saturated ion incident

angle and diminishes the magnetic field effects.

Also, Fig. 5 shows that the ion incident angle is strongly

reduced by increasing the collision power parameter from

-1 (for constant collision frequency) to 0 (for constant

collision mean free path). Indeed, further increasing the

collision power parameter and the gas pressure reduces the

ion incident angle. In other words, increasing the collision

parameters turn the oblique incident to the perpendicular

incident.

Time evolution of ion impact energy on the target sur-

face defined by Ek ¼ mi v2ix þ v2iy þ v2iz

� �
=2 ¼ kBTe u2xþ

�
u2y þ u2z Þ=2 is displayed in Fig. 6 as a function of the ion

collision parameters Pg and b. This figure shows that the

ion impact energy on the target surface increases from zero

and is eventually saturated to a constant value by time. The

saturation value of ion energy on the target is reduced by

gas pressure and collision power parameter. As one can

see, the ions never gain the full energy of bias voltage even

in the absence of collision. Since ion transit time across the

sheath is large (on the order of 1/Xp) and sheath expands

during ion flight across the sheath, both the shape and

magnitude of the potential barrier vary, so that the

implanted ions do not get the full bias voltage. In other

words, displacement current across the expanding sheath

leads to an increase in the ion implanted current and causes

a decrease in the implanted ion energy with respect to the

stationary sheath with the same parameters [19, 20].

According to Fig. 6, one can anticipate the ion implanting

energy for specified gas pressure and its proper collision

model.

Fig. 5 Temporal variations of ion incident angle on the target as a

function of ion collision parameters Pg and b. The constant

parameters are the same as Fig. 2

Fig. 6 Temporal variations of ion impact energy on the target

normalized by kBTe = 1 eV as a function of the ion collision

parameters Pg and b. The constant parameters are the same as Fig. 2
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Summary and conclusions

In order to investigate the influence of the gas pressure and

ion collision model on the dynamic behavior of plasma

sheath in the PIII process, we have used the fluid model of

plasma and numerically solved time-dependent equations

of a pulsed magnetized plasma through an implicit finite

difference scheme. Temporal variations of normalized

current density, dose, incident angle and impact energy of

ions on the target surface as well as sheath width were

presented in the high-voltage sheath.

Calculations show that temporal profile of the ion current

density and ion dose in the plasma-sheath decrease by

increasing the gas pressure and collision power parameter.

Sheath width is a descending function of the both collision

parameters. Temporal profile of the ion incident angle on the

target begins to increase from zero and after some fluctua-

tions caused by magnetic field is saturated to a constant

value. The constant value of incident angle is the same as the

magnetic field deviation angle h0 = p/3 in the absence of

collision. It means that the magnetic force and fluctuations

arising from it will be removed over time. The collision

parameters including gas pressure and collision power

parameter strongly decrease the saturated ion incident angle.

Also, temporal profile of the ion impact energy on the

target surface shows a growing up from zero and saturating

to a constant value over time. The constant value is sig-

nificantly reduced by gas pressure and collision power

parameter. The profile shows that in the dynamic sheath,

unlike the static sheath, the ions never gain the full energy

of bias voltage. This is because the dynamic sheath

expands during ion flight across the sheath and both the

shape and magnitude of the potential barrier vary. Using

the temporal profile of the ion impact energy one can

anticipate the ion implanting energy for specified collision

parameters.
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