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Abstract

A new hybrid variational model is presented for image denoising, which in-
corporates the merits of Shannon interpolation, total generalized variation
(TGV) regularization, and a symmetrized derivative regularization term
based on l1-norm. In this model, the regularization term is a combination
of a TGV functional and the symmetrized derivative regularization term,
while the data fidelity term is characterized by the l2-norm. Unlike most
variational models that are discretized using a finite-difference scheme, our
approach in structure is based on Shannon interpolation. Quantitative
and qualitative assessments of the new model indicate its effectiveness in
restoration accuracy and staircase effect suppression. Numerical experi-
ments are carried out using the primal-dual algorithm. Numerous real-
world examples are conducted to confirm that the newly proposed method
outperforms several current state-of-the-art numerical methods in terms of
the peak signal to noise ratio and the structural similarity (SSIM) index.
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1 Introduction

Image processing is an extensively utilized and rapidly growing area in com-
puter science enriched with various applications, including image restoration
[4], medical visualization [7], industrial inspection [27], law enforcement [50],
and so on. Recently, various techniques have been proposed in image pro-
cessing, which aims to recover the underlying true image from its degraded
observation, including image denoising models [19, 49, 40, 47], image deblur-
ring models [22, 17], image inpainting models [38, 15], image deconvolution
models [28, 2], and so on. Image denoising is one of the most fundamental
problems in image processing and computer vision. In the past few decades,
many image denoising models have been introduced in the literature, such
as variational models [39, 45], wavelet transform based models [32], nonlocal
means filters [48], curvelet transform based models [29], bilateral filters [3],
and so on. Variational models have been widely used in image denoising
due to their capability in image feature preservation [33, 21, 43, 42, 44]. TV
regularization proposed by Rudin, Osher, and Fatemi [30] (the ROF model)
is a successful example of variational models. Many different papers have
reported the efficiency of TV regularization [37, 13, 8, 9, 36, 18, 46]. Assume
that Γ ⊂ Rd is a continuous domain and that s : Γ → R is a d-dimensional
image in continuous domain Γ. The continuous TV semi-norm of s is defined
as

TV(s) = sup
{∫

Γ

s divυ dx
∣∣∣ υ ∈ C1

c (Γ,Rd), ||υ||∞ ≤ 1
}
=

∫
Γ

|Ds| dx,

where | · | is the Euclidean norm and |Ds| denotes the variation-measure of
the distributional derivative Ds, which is a vector-valued Radon measure.
For smooth function s, we have Ds = ∇s. Therefore, TV is the integral of
its gradient magnitude:

TV(s) =

∫
Γ

|∇s| dx.

In TV regularization, the space of functions of bounded variation (BV) is
considered as an appropriate class for image restoration. The TV semi-norm
defines the norm ||s||BV := ||s||L1 + TV(s) on the space of BV functions.
Although TV regularization-based techniques have become one of the most
widely used regularizers due to their edge-preserving ability, they leave some
form of staircase artefacts in the smooth regions of the image. To alleviate
the staircase effect, several high-order methods have been proposed in the
literature [12, 34, 14, 35, 25]. One technique to overcome this drawback is
total generalized variation (TGV) regularization [5]. In most algorithms, the
TV and TGV regularizations are discretized using a finite-differences scheme.
For this reason, denoised images produced by these approaches cannot be
efficiently interpolated using standard interpolation models. Several types of
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research have been conducted as a remedy to this drawback [24, 26]. Shannon
interpolation has been recently utilized in [1] for total variation-based image
restoration leading to image improvements in terms of restoration accuracy.

In the present work, a new hybrid total generalized variation model is
studied for image denoising in which the regularization term is considered to
be a combination of TGV regularization and a symmetrized derivative regu-
larization term based on l1-norm, and the data fidelity term is characterized
by the l2-norm. Furthermore, in our approach, Shannon interpolation is used
rather than a finite-differences scheme yielding efficient images in terms of
restoration accuracy. Quantitative and qualitative evaluations indicate that
the proposed method significantly outperforms several current state-of-the-
art methods in staircase effect suppression and restoration accuracy. We
employ the primal-dual algorithm presented in [11] to provide a global min-
imizer to the new proposed variational model.

The outline of the paper is organized as follows. In Section 2, we present
the necessary definitions and basic properties of TGV model and Shannon
interpolation. In Section 3, our proposed method and some necessary ana-
lytical discussions are presented. Section 4 contains the numerical algorithm.
In Section 5, we present the convergence analysis for the proposed model.
Section 4 is devoted to numerical experiments. Finally, Section 7 contains
some concluding remarks.

2 Preliminaries

In this section, we first introduce some notations used throughout this pa-
per, and then we briefly review the concepts of TGV regularization [5] and
Shannon interpolation [1].

2.1 Notations

1. Ω = IN1
× IN2

is a discrete domain of size N1 ×N2, where

IN1
= {0, 1, 2, . . . , N1 − 1}, IN2

= {0, 1, 2, . . . , N2 − 1}.

2. u ∈ RΩ is a discrete gray-level image with size N1 ×N2.
3. For d ≥ 1, Γ ⊂ Rd is a continuous domain.
4. L1

loc(Γ) is the set of locally Lipschitz integrable functions s : Γ → R.
5. λ0 and λ1 are fixed positive parameters.
6. Sym2(Rd) is the vector space of symmetric 2-tensors defined by

Sym2(Rd) =
{
η : Rd × Rd → R

∣∣∣ η is 2-linear and symmetric
}
.
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7. C2
c (Γ, Sym

2(Rd)) is the space of 2-times continuous differentiable func-
tions with compact support from Γ to Sym2(Rd).
8. C2

c ([0, N1]× [0, N2], Sym
2(R2)) is the space of 2-times continuously differ-

entiable functions with compact support from [0, N1]× [0, N2] to Sym2(R2).

2.2 TGV regularization and Shannon interpolation

For s ∈ L1
loc(Γ), the TGV functional of order 2 with weight λ is defined as

[5]
TGV2,λ(s) = sup

{∫
Γ

s div2υ dx
∣∣∣ υ ∈ C2

c (Γ, Sym
2(Rd)), ||υ||∞ ≤ λ0,

||divυ||∞ ≤ λ1

}
, (1)

where λ = (λ0, λ1), (divυ)i =
d∑

j=1

∂υij
∂xj

, and div2υ =

d∑
i=1

∂2υii
∂x2

i

+
∑
i<j

2
∂2υij
∂xi∂xj

.

Moreover, the infinity norms of υ and the vector field w, where w = divυ,
are defined as

||υ||∞ = sup
{( d∑

i=1

|υii(x)|2 + 2
∑
i<j

|υij(x)|2
)1/2 ∣∣∣ x ∈ Γ

}
,

||w||∞ = sup
{( d∑

i=1

|wi(x)|2
)1/2 ∣∣∣ x ∈ Γ

}
.

In second-order TGV regularization model, the space of bounded generalized
variation functions of order 2, defined as

BGV2,λ(Γ) =
{
s ∈ L1(Γ)

∣∣∣ TGV2,λ(s) < ∞
}
,

is considered as an appropriate class for image restoration. The Fenchel dual
formulation of (2) for d = 2 and u ∈ RN1×N2 can be written as [6, 20]

TGV2,λ(u) = min
p∈(R2)N1×N2

λ0||ξ(p)||1 + λ1||∇u− p||1, (2)

where ∇u and ξ(p) stand for the gradient and symmetrized derivative oper-
ators, respectively, which can be formulated as

∇u = [∂+
x u ∂+

y u]T , ξ(p) =

[
∂−
x p1

1
2 (∂

−
x p2 + ∂−

y p1)
1
2 (∂

−
x p2 + ∂−

y p1) ∂−
y p2

]
,

where (∂+
x u)(i, j) = u(i + 1, j) − u(i, j), (∂+

y u)(i, j) = u(i, j + 1) − u(i, j),
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(∂−
x p1)(i, j) = p1(i, j)− p1(i− 1, j), and (∂−

y p1)(i, j) = p1(i, j)− p1(i, j − 1)
((∂−

x p2)(i, j) and (∂−
y p2)(i, j) can be formulated similarly) are discrete first-

order derivatives [5].
The Shannon interpolate U : R2 → R of the discrete image u is defined

as [1]

U(x, y) =
1

N1N2

N1
2∑

α=−N1
2

N2
2∑

β=−N2
2

εN1
(α) εN2

(β) û(α, β) e2πi(
αx
N1

+ βy
N2

), (3)

where û(α, β) =

N1−1∑
k=0

N2−1∑
l=0

u(k, l) e−2πi( αk
N1

+ βl
N2

) is the 2-dimensional discrete

Fourier transform (DFT) of u, and εN1
(α) and εN2

(β) are the weighting terms
[1] formulated as

εN1
(α) =

{
1/2 if |α| = N1

2 ,
1 otherwise,

εN2
(β) =

{
1/2 if |β| = N2

2 ,
1 otherwise.

3 Proposed model

Let U : R2 → R be the Shannon interpolate of u ∈ RΩ defined in (7). For the
case d = 2 in (2), we define the second-order Shannon interpolation based
TGV regularization with weight λ as

STGV2,λ
∞ (u) = sup

{∫
[0,N1]×[0,N2]

U(x, y) div2V (x, y) dxdy
∣∣∣ V ∈

C2
c ([0, N1]× [0, N2], Sym

2(R2)), ||V ||∞ ≤ λ0, ||divV ||∞ ≤ λ1

}
, (4)

where λ = (λ0, λ1). The integral in (4) is generally difficult to compute but
it can be easily approximated using the Riemann sum as

STGV2,λ
n (u) = max

{ 1

n2
⟨U, div2nν⟩RN1×N2

∣∣∣ ν ∈ (R4)N1×N2 , ||ν||∞ ≤ λ0,

||divnν||∞ ≤ λ1

}
, (5)

where n ≥ 2 in practice, div2n is the discrete second-order divergence operator
corresponding to the continuous operator div2, and

1

n2
⟨U, div2nν⟩RN1×N2 =

1

n2

∑
(k,l)∈Ωn

U(
k

n
,
l

n
) div2nν(k, l),
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in which div2nν(k, l) = div2V (
k

n
,
l

n
) and

Ωn = InN1
× InN2

= {0, 1, 2, . . . , nN1 − 1} × {0, 1, 2, . . . , nN2 − 1}.

In order to compute STGV2,λ
n (u), we need to obtain its Fenchel dual for-

mulation. For this purpose, we first introduce the discrete gradient operator
∇n, the discrete symmetrized gradient operator ξn, the discrete first-order
divergence operator divn, and the discrete second-order divergence opera-
tor div2n in the following. To distinguish between the two cases divnp and
divnν, where p ∈ (R2)nN1×nN2 and ν ∈ (R4)N1×N2 , we use the notations
∇∗

np := −div1np and ξ∗nν := −div2nν (∗ denotes the adjoint operator). As
a result, div2n in (3) will be denoted as div1n(div2n(ν)) from now on.

Let U : R2 → R be the Shannon interpolate of u ∈ RΩ defined in
(7). The continuous gradient operator ∇U is formulated as ∇U(x, y) =

[Dx(U(x, y)) Dy(U(x, y))]
T [5, 1] in which

Dx(U(x, y)) =
2πi

N1N2

N1
2∑

α=−N1
2

N2
2∑

β=−N2
2

α

N1
εN1(α) εN2(β) û(α, β) e

2πi( αx
N1

+ βy
N2

),

(6)

Dy(U(x, y)) =
2πi

N1N2

N1
2∑

α=−N1
2

N2
2∑

β=−N2
2

β

N2
εN1(α) εN2(β) û(α, β) e

2πi( αx
N1

+ βy
N2

).

(7)

For (k, l) ∈ Ωn, the discrete gradient operator∇n : RN1×N2 −→ (R2)nN1×nN2

can be derived as [1]

∇nu(k, l) = ∇U(
k

n
,
l

n
). (8)

For p = [p1 p2]
T ∈ (R2)nN1×nN2 and (k, l) ∈ Ωn, the discrete first-order

divergence operator div1n : (R2)nN1×nN2 −→ RN1×N2 is defined as

div1n(p(k, l)) = div1n1
(p(k, l)) + div1n2

(p(k, l)) (9)

[5], where ̂div1n1
(p)(α, β) = D̂∗

x(p1)(α, β) and ̂div1n2
(p)(α, β) = D̂∗

y(p2)(α, β),
for (α, β) ∈ Ω̂ = ÎN1 × ÎN2 , are formulated as [1]
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D̂∗
x(p1)(α, β) = 2πi

α

N1



p̂1(α, β) if |α| < N1

2 , |β| < N2

2 ,

1
2 (p̂1(α, β)− p̂1(−α, β)) if α = −N1

2 , |β| < N2

2 ,

1
2 (p̂1(α, β) + p̂1(α,−β)) if |α| < N1

2 , β = −N2

2 ,

1
4

∑
s1=±1

∑
s2=±1

s1p̂1(s1α, s2β) if (α, β) = (−N1

2 ,−N2

2 ),

(10)

D̂∗
y(p2)(α, β) = 2πi

β

N2



p̂2(α, β) if |α| < N1
2
, |β| < N2

2
,

1
2
(p̂2(α, β) + p̂2(−α, β)) if α = −N1

2
, |β| < N2

2
,

1
2
(p̂2(α, β)− p̂2(α,−β)) if |α| < N1

2
, β = −N2

2
,

1
4

∑
s1=±1

∑
s2=±1

s2p̂2(s1α, s2β) if (α, β) = (−N1
2
,−N2

2
).

(11)

For V =

[
V11 V12

V12 V22

]
∈ C2

c ([0, N1] × [0, N2], Sym
2(R2)), the first-order con-

tinuous divergence operator div2 can be written as [5]

div2V (x, y) =

[
Dx(V11(x, y)) +Dy(V12(x, y))

Dx(V12(x, y)) +Dy(V22(x, y))

]
,

where Dx and Dy are defined as (6) and (7). Now, the discrete first-order
divergence operator div2n : (R4)N1×N2 −→ (R2)nN1×nN2 can be derived as

div2nν(k, l) = div2V (
k

n
,
l

n
), (12)

for ν ∈ (R4)N1×N2 and (k, l) ∈ Ωn. For p ∈ (R2)nN1×nN2 and (α, β) ∈
Ω̂ = ÎN1

× ÎN2
, the symmetrized gradient operator ξn : (R2)nN1×nN2 −→

(R4)N1×N2 is given by [5]

ξ̂n(p)(α, β) =

 D̂∗
x(p1)(α, β)

1
2 (D̂

∗
y(p1)(α, β) + D̂∗

x(p2)(α, β))

1
2 (D̂

∗
y(p1)(α, β) + D̂∗

x(p2)(α, β)) D̂∗
y(p2)(α, β)

 ,

where D̂∗
x(p1), D̂∗

x(p2), D̂∗
y(p1), and D̂∗

y(p2) are defined similar to (10) and
(11). For (k, l) ∈ Ωn, ξnp(k, l) is obtained by taking the inverse Fourier
transform as

ξnp(k, l) =

[
ξn1

p(k, l) ξn3
p(k, l)

ξn3
p(k, l) ξn2

p(k, l)

]
, (13)
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where ξn1
p(k, l) is achieved as

ξn1
p(k, l) =

1

N1N2

N1
2∑

α=−N1
2

N2
2∑

β=−N2
2

D̂∗
x(p1)(α, β) e

2πi( αk
N1

+ βl
N2

),

and ξn2
p(k, l), ξn3

p(k, l) can be formulated similarly.
The discrete functional STGV2,λ

n in (3) is equivalent to Fenchel dual for-
mulation

STGV2,λ
n (u) = min

p∈(R2)nN1×nN2

λ0

n2
||ξn(p)||1 +

λ1

n2
||∇nu− p||1, (14)

where ∇n and ξn are defined as (8) and (13), respectively. The analytical
process for establishing this Fenchel dual formulation of (3) is exactly based
on the lines of [5] and [20] (except the factor 1

n2
in (3) and the change on

the operators). For this reason, we do not bring the proof here and we refer
the reader to the mentioned references. Now, we concentrate on the new
Shannon interpolation based the hybrid TGV (SHTGV) model defined as

SHTGV2,λ
n (u) = STGV2,λ

n (u) + γ ||ξn(∇n(u))||1,

where γ > 0 is a fixed positive parameter, STGV2,λ
n (u) is defined as (14),

and ξn(∇n(u)) can be easily formulated by substituting ∇n(u) with p in
the procedure of deriving ξn in (13). The concerned variational problem is
established in the form

min
u

||u− u0||22 + SHTGV2,λ
n (u), (15)

where u is the desired restored image and u0 is the observed data. According
to our experience, the fixed value γ = 0.01 is suitable and does not need to
be tuned. Therefore, one can say that no additional parameter is introduced
with the new model.

4 Numerical algorithm

We use the primal-dual algorithm (Algorithm 1) presented in [11] to provide
a minimizer of the variational problem (9). This primal-dual algorithm is
particularly efficient in finding a solution to the saddle-point problem

min
x∈X

max
y∈Y

⟨Kx, y⟩Y + F (x)−G(y), (16)

where X and Y are Hilbert spaces, K : X −→ Y is a linear and continuous
mapping, and F : X −→ (−∞,∞] and G : Y −→ (−∞,∞] are proper,
convex, and lower semi-continuous functionals. In order to adapt the opti-
mization problem (9) to Algorithm 1, we need the corresponding saddle-point
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Algorithm 1 The first-order primal-dual algorithm presented in [11].
1. Set k = 0, choose the initial estimates x0 ∈ X, y0 ∈ Y , x̄0 = x0, and
positive parameters τ and σ such that στ |||K|||2 < 1 (||| · ||| denotes the
induced l2-norm).
2. Calculate xk+1, yk+1, and x̄k+1 using the following equations:

yk+1 = (I + σ ∂G)−1(yk + σ K x̄k),
xk+1 = (I + τ ∂F )−1(xk − τ K∗ yk+1),
x̄k+1 = 2xk+1 − xk.

3. Stop or set k = k + 1 and go back to step 2.

structure of this optimization problem, which is formulated as (see for details)

min
u∈RN1×N2

p∈(R2)nN1×nN2

max
w∈(R2)nN1×nN2

ν∈(R4)N1×N2

q∈(R4)N1×N2

||u− u0||22 +
λ1

n2
⟨∇nu− p, w⟩+ λ0

n2
⟨ξn(p), ν⟩

+ γ⟨ξn(∇nu), q⟩ − I{||·||∞≤1}(w)− I{||·||∞≤1}(ν)− I{||·||∞≤1}(q).
(17)

Using the saddle-point structure (17), x, y, the functionals F and G, and the
mapping K in saddle-point problem (16) are obtained as

x = (u, p), y = (w, ν, q), F (x) = F (u, p) = ||u− u0||22,

G(y) = G(w, ν, q) = I{||·||∞≤1}(w) + I{||·||∞≤1}(ν) + I{||·||∞≤1}(q),

K =


λ1

n2
∇n −λ1

n2
I

0
λ0

n2
ξn

γξn∇n 0


From [1, Proposition 7], we have |||∇n||| ≤ nπ

√
2. Moreover, some com-

putations yield |||ξn||| ≤ nπ
√
2. Therefore, an upper bound for the induced

l2-norm of K can be easily achieved as

|||K|||2 <
2π2((λ1

n2 )
2 + (λ0

n2 )
2)n2 + 4π4γ2n4 + (λ1

n2 )
2

2

+
( (2π2((λ1

n2 )
2 + (λ0

n2 )
2)n2 + 4π4γ2n4 + (λ1

n2 )
2)2

4

+
−16π4n4((λ1

n2 )
2(λ0

n2 )
2 + (λ1

n2 )
2γ2)− 32π6γ2(λ0

n2 )
2n6

4

)1/2

.

Now the primal-dual algorithm for solving (9) can be formulated as (see [11]
for more details),
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uk+1 = argmin
u

{||u−u0||22+
λ1

n2
⟨∇nu−p, w⟩+γ⟨ξn(∇nu), q⟩+

1

2τ
∥u−uk∥22}

=
uk + τ

λ1

n2
div1n(w

k+1)− τγdiv1n(div2n(q
k+1)) + 2τu0

1 + 2τ
, (18)

pk+1 = argmin
p

{λ1

n2
⟨∇nu− p, w⟩+ λ0

n2
⟨ξn(p), ν⟩+

1

2τ
∥p− pk∥22}

= pk + τ (
λ1

n2
wk+1 +

λ0

n2
div2n(ν

k+1)), (19)

wk+1 = argmax
w

{λ1

n2
⟨∇nu− p, w⟩ − I{||·||∞≤1}(w)−

1

2σ
∥w − wk∥22}

= Pλ1(w
k + σ

λ1

n2
(∇nū

k − p̄k)), (20)

νk+1 = argmax
ν

{λ0

n2
⟨ξn(p), ν⟩ − I{||·||∞≤1}(ν)−

1

2σ
∥ν − νk∥22}

= Pλ0
(νk + σ

λ0

n2
(ξn(p̄

k))), (21)

qk+1 = argmax
q

{γ⟨ξn(∇nu), q⟩ − I{||·||∞≤1}(q)−
1

2σ
∥q − qk∥22}

= Pγ(q
k + σγ (ξn(∇nū

k))), (22)

where

Pλ1(w̄) =
w̄

max(1, |w̄|)
, Pλ0(ν̄) =

ν̄

max(1, |ν̄|)
, Pγ(q̄) =

q̄

max(1, |q̄|)
,

and τ and σ are positive constants. Algorithms 2 is the adapted algorithm
to solve (9) (see [11] for details).
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Algorithm 2 The adapted algorithm for solving the SHTGV model.
1. Set k = 0, choose the initial estimates u0 ∈ RN1×N2 , p0 ∈
(R2)nN1×nN2 , w0 ∈ (R2)nN1×nN2 , ν0 ∈ (R4)N1×N2 , q0 ∈ (R4)N1×N2 ,
ū0 = u0, p̄0 = p0, and positive parameters τ , σ such that στ |||K|||2 < 1,
where

|||K|||2 <
2π2((

λ1
n2 )2+(

λ0
n2 )2)n2+4π4γ2n4+(

λ1
n2 )2

2

+
(

(2π2((
λ1
n2 )2+(

λ0
n2 )2)n2+4π4γ2n4+(

λ1
n2 )2)2

4

+
−16π4n4((

λ1
n2 )2(

λ0
n2 )2+(

λ1
n2 )2γ2)−32π6γ2(

λ0
n2 )2n6

4

)1/2

.

2. Calculate uk+1, pk+1, wk+1, νk+1, qk+1, ūk+1, and p̄k+1 using the following
equations:

wk+1 = Pλ1
(wk + σ

λ1

n2
(∇nū

k − p̄k)), where Pλ1
(w̄) =

w̄

max(1, |w̄|)
,

νk+1 = Pλ0(ν
k + σ

λ0

n2
(ξn(p̄

k))), where Pλ0(ν̄) =
ν̄

max(1, |ν̄|)
,

qk+1 = Pγ(q
k + σγ(ξn(∇nū

k))), where Pγ(q̄) =
q̄

max(1, |q̄|)
,

uk+1 =
uk + τ

λ1

n2
div1n(w

k+1)− τγdiv1n(div2n(q
k+1)) + 2τu0

1 + 2τ
,

pk+1 = pk + τ(
λ1

n2
wk+1 +

λ0

n2
div2n(ν

k+1)),
ūk+1 = 2uk+1 − uk, p̄k+1 = 2pk+1 − pk.

3. Stop or set k = k+1 and go back to step 2.

5 Convergence analysis

In this section, we establish the convergence of the primal-dual algorithm
used for solving (9). Here, we only give the basic proof frameworks and do
not repeat the lengthy proving process in [11]. For this purpose, we first
prove the existence of the solution to the variational problem (9) through the
following theorem, which proof is similar to the proof of Theorem 1 in [23].

Theorem 1. There exists a solution to optimization problem (9).

Proof. Using the compactness property of BV(Ω), for every bounded and
minimizing sequence {uk}k∈N ⊂ BV(Ω), there exists a subsequence {uki}i∈N ⊂
{uk}k∈N converging to some u∗ ∈ BV(Ω). According to [5], the functions
||∇nu − p||1, ||ξn(p)||1, and ||ξn(∇n(u))||1 are proper, convex, and lower
semi-continuous, and the same conclusion holds for their weighted sum
SHTGV2,λ

n (u). Moreover, {||Auki
− u0||22}i∈N is bounded. Therefore, we

yield

||Au∗−u0||22+SHTGV2,λ
n (u∗) ≤ lim

i→+∞
inf (||Auki

−u0||22+SHTGV2,λ
n (uki

)).
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As a result, we can conclude the existence of the solution to optimization
problem (9).

Now the convergence theorem is exhibited in the following result.

Theorem 2. For positive parameters σ and τ, where στ |||K|||2 < 1, the
sequence {uk, pk, wk, νk, qk} generated by Algorithm 2 converges to a solution
of (9).

Proof. Based on Theorem 1, there exists a solution to optimization problem
(9). For this reason, the set of saddle-points of (17) is non-empty. According
to [5], the functions ||∇nu − p||1, ||ξn(p)||1, and ||ξn(∇n(u))||1 are proper,
convex, and lower semi-continuous functions. Moreover, σ and τ in Algorithm
2 satisfy στ |||K|||2 < 1. As a result, conditions (a), (b), and (c) of Theorem
1 in [11] hold. Therefore, we can conclude that Algorithm 2 is an application
of the original primal-dual algorithm in [11] and converges to a solution of
(9).

6 Experimental results

We compare the experimental results of our model with the current state-of-
the-art models: isotropic TV (ITV), upwind TV [10] (UTV), Condat TV [16]
(CTV), TGV [5], Shannon TV [1] (STV), and the Huber variant of Shannon
TV [1] (HSTV). The experiments are conducted on test images illustrated
in Figure 1. All test images are corrupted by additive white Gaussian noise
of standard deviations 0.18 and 0.23. All the reconstruction processes are
carried out using MATLAB R2015b on a PC with AMD A10-4600M APU
with Radeon(tm) HD Graphics, 2.3-GHz Inter Core processor, and 4GB of
RAM under Windows 8.

As discussed in [1], in practice, choosing the oversampling factor as n = 2
or n = 3 is enough. We set the oversampling factor n = 2 in STV, HSTV, and
the new proposed SHTGV model. For the case n = 3 in STV, HSTV, and
the new proposed SHTGV model, we observed that the convergence speed is
decreased while no remarkable change is made in comparison with the case
n = 2.

The restoration quality is measured by the peak signal to noise ratio
(PSNR) [31] and the structural similarity index measure index [41]. The
best result for each comparison item is highlighted in bold type font (see
Table 2). The restored results are illustrated in Figures 2, 3, 4, 5, 6, and 7.
For each model and test image, the results corresponding to parameters that
provide the highest PSNR value are presented here.

The results of the ITV, UTV, CTV, STV, and HSTV models obviously
illustrate staircasing effect in the affine regions. Although the TGV model
is capable of suppressing the staircasing artifacts, the denoised results using
this approach indicate that it sometimes leads to undesired edge blurring.
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Moreover, the performance of the TGV model reveals that some regions con-
tain an obvious staircasing effect. Our proposed model not only substantially
alleviates the staircasing artifacts, but also sharply preserves important im-
age features. Moreover, the reconstructed edges and details by our model
are more distinct in comparison with other variational models. For example,
zoomed-in regions in Figures 2 and 3 illustrate that the UTV model leaves
some small white noise particles in denoised results. The ITV model performs
to some extent better than the UTV model in noise removal, but some details
and edges are not well reconstructed during the denoising process. The CTV
model outperforms both the UTV and ITV models in restoration accuracy
and noise removal. However, the results of the ITV, UTV, and CTV models
obviously suffer from the staircasing artifacts. Although the STV and HSTV
models have better performance in preserving edges and details in compari-
son with the ITV, UTV, and CTV models, they achieve results with obvious
staircasing effect, while the staircasing effect is less sharp compared with the
ITV, UTV, and CTV models. The denoised results by the TGV model in-
dicate that this regularization scheme sometimes produces denoised results
with blurred edges. The denoised results using the proposed model illustrate
that this new scheme is capable of eliminating the staircasing effect and pre-
serving the edges at the same time. In fact, the ITV, UTV, CTV, STV, and
HSTV models cannot compete with our model in staircasing effect suppres-
sion, as observed in the denoised results of Figure 2. TGV model is capable
of eliminating the staircasing effect to some extent, but it yields denoised
results with blurred edges. As a result, we can conclude that TGV model
cannot compete with our model in edge preservation. The same conclusion
holds for denoised results in Figures 4, 5, and 6.

The ITV, UTV, CTV, and TGV regularization models are discretized
using a finite-difference scheme, while the STV, HSTV, and SHTGV mod-
els are based on the concept of Shannon interpolation. For this reason, the
images generated by means of ITV, UTV, CTV, and TGV schemes cannot
be efficiently interpolated using standard interpolation models. To support
this claim, croppings of the restored results are magnified with factor 3 using
bicubic interpolation method, which reveals that interpolating the restored
results of the ITV, UTV, CTV, and TGV models yield images with unwanted
artifacts, while the results of the STV, HSTV, and SHTGV models are in-
terpolated without creating artifacts. Since the proposed model outperforms
both STV and HSTV models in staircase artifacts suppression, the staircas-
ing artifacts are remarkably alleviated in interpolated results of our model.
Moreover, the edges and details in interpolated results of our model are more
distinct in comparison with the STV and HSTV models.
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Figure 1: The test images used in our numerical experiments. First row, from left to
right: Bird, Parrot, and Lena. Second row, from left to right: Clown, MRI1, and MRI2.
Third row, from left to right: MRI3, MRI4, and MRI5. Forth row, from left to right:
MRI6 and MRI7.
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Figure 2: Performance comparison of Lena test image with additive white Gaussian
noise of standard deviation 0.18. First row, from left to right: reference image, noisy
image, restored results by ITV, UTV, and CTV. Second row, from left to right: restored
results by STV, HSTV, TGV, and SHTGV. Images in the third and fourth rows are the
corresponding zoomed-in regions of images in the first and second rows, respectively.
Images in the fifth and sixth rows are croppings of the restored results of the Lena test
image in the first and second rows magnified with factor 3 using the bicubic interpolation
method. Fifth row, from left to right: reference image, resampling of the reference image,
ITV, UTV, and CTV. Sixth row, from left to right: resampling of and STV, HSTV,
TGV, and SHTGV.
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Figure 3: Performance comparison of MRI1 test image with additive white Gaussian
noise of standard deviation 0.18. First row, from left to right: reference image, noisy
image, restored results by ITV, UTV, and CTV. Second row, from left to right: restored
results by STV, HSTV, TGV, and SHTGV. Images in the third and fourth rows are the
corresponding zoomed-in regions of images in the first and second rows, respectively.
Images in the fifth and sixth rows are croppings of the restored results of MRI1 test
image in the first and second rows magnified with factor 3 using bicubic interpolation
method. Fifth row, from left to right: reference image, resampling of the reference
image, ITV, UTV, and CTV. Sixth row, from left to right: resampling of and STV,
HSTV, TGV, and SHTGV.
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Figure 4: Performance comparison of MRI2 test image with additive white Gaussian
noise of standard deviation 0.18. First row, from left to right: reference image, noisy
image, restored results by ITV, UTV, and CTV. Second row, from left to right: restored
results by STV, HSTV, TGV, and SHTGV. Images in the third and fourth rows are the
corresponding zoomed-in regions of images in the first and second rows, respectively.
Images in the fifth and sixth rows are croppings of the restored results of MRI2 test
image in the first and second rows magnified with factor 3 using bicubic interpolation
method. Fifth row, from left to right: reference image, resampling of the reference
image, ITV, UTV, and CTV. Sixth row, from left to right: resampling of and STV,
HSTV, TGV, and SHTGV.
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Figure 5: Performance comparison of Bird test image with additive white Gaussian
noise of standard deviation 0.18. First row, from left to right: reference image, noisy
image, restored results by ITV, UTV, and CTV. Second row, from left to right: restored
results by STV, HSTV, TGV, and SHTGV. Images in the third and fourth rows are
the corresponding zoomed-in regions of images in the first and second rows, respectively.
Images in the fifth and sixth rows are croppings of the restored results of Bird test image
in the first and second rows magnified with factor 3 using bicubic interpolation method.
Fifth row, from left to right: reference image, resampling of the reference image, ITV,
UTV, and CTV. Sixth row, from left to right: resampling of and STV, HSTV, TGV,
and SHTGV.
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Figure 6: Performance comparison of Parrot test image with additive white Gaussian
noise of standard deviation 0.18. First row, from left to right: reference image, noisy
image, restored results by ITV, UTV, and CTV. Second row, from left to right: restored
results by STV, HSTV, TGV, and SHTGV. Images in the third and fourth rows are the
corresponding zoomed-in regions of images in the first and second rows, respectively.
Images in the fifth and sixth rows are croppings of the restored results of Parrot test
image in the first and second rows magnified with factor 3 using bicubic interpolation
method. Fifth row, from left to right: reference image, resampling of the reference
image, ITV, UTV, and CTV. Sixth row, from left to right: resampling of and STV,
HSTV, TGV, and SHTGV.
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Table 1: Comparison of different models in terms of PSNR and SSIM with additive
white Gaussian noise of standard deviation 0.18.

Image MRI1 MRI2
Model PSNR / SSIM / Optimal λ PSNR / SSIM / Optimal λ
ITV 25.30 / 0.7810 / 0.15 25.33 / 0.7687 / 0.15
UTV 24.76 / 0.7566 / 0.18 24.80 / 0.7463 / 0.18
CTV 25.64 / 0.7898 / 0.14 25.64 / 0.7792 / 0.14
STV 26.14 / 0.8113 / 0.25 26.06 / 0.7996 / 0.25
HSTV 26.07 / 0.7965 / 0.25 26.00 / 0.7936 / 0.26
TGV 26.01 / 0.7824 / (0.4, 0.1) 26.10 / 0.7759 / (0.5, 0.1)

SHTGV 26.39 / 0.8210 / (0.45, 0.28) 26.34 / 0.8139 / (0.45, 0.28)
Image Bird Parrot
Model PSNR / SSIM / Optimal λ PSNR / SSIM / Optimal λ
ITV 25.50 / 0.7348 / 0.15 25.33 / 0.7428 / 0.15
UTV 25.03 / 0.7109 / 0.18 24.80 / 0.7127 / 0.18
CTV 25.78 / 0.7438 / 0.14 25.63 / 0.7522 / 0.14
STV 26.09 / 0.7563 / 0.25 25.73 / 0.7464 / 0.24
HSTV 26.04 / 0.7509 / 0.26 25.68 / 0.7349 / 0.24
TGV 26.03 / 0.7416 / (0.17, 0.11) 25.46 / 0.7584 / (0.15, 0.29)

SHTGV 26.29 / 0.7693 / (0.45, 0.25) 25.84 / 0.7620 / (0.42, 0.21)

Table 2: Comparison of different models in terms of PSNR and SSIM with additive
white Gaussian noise of standard deviation 0.23.

Image MRI1 Parrot
Model PSNR / SSIM / Optimal λ PSNR / SSIM / Optimal λ
ITV 24.10 / 0.7480 / 0.2 24.17 / 0.7111 / 0.2
UTV 23.55 / 0.7053 / 0.23 23.63 / 0.6603 / 0.23
CTV 24.42 / 0.7454 / 0.18 24.46 / 0.7086 / 0.18
STV 24.90 / 0.7762 / 0.33 24.56 / 0.7146 / 0.32
HSTV 24.84 / 0.7608 / 0.33 24.51 / 0.7020 / 0.32
TGV 24.75 / 0.7439 / (0.26, 0.14) 24.30 / 0.7117 / (0.19, 0.36)

SHTGV 25.03 / 0.7551 / (0.5, 0.5) 24.62 / 0.7178 / (0.4, 0.28)
Image Lena Clown
Model PSNR / SSIM / Optimal λ PSNR / SSIM / Optimal λ
ITV 24.49 / 0.6701 / 0.21 22.42 / 0.6308 / 0.19
UTV 24.03 / 0.6393 / 0.25 21.97 / 0.6035 / 0.22
CTV 24.67 / 0.6759 / 0.19 22.67 / 0.6443 / 0.18
STV 24.69 / 0.6818 / 0.33 22.89 / 0.6563 / 0.31
HSTV 24.68 / 0.6814 / 0.34 22.89 / 0.6533 / 0.31
TGV 24.77 / 0.6916 / (0.21, 0.17) 23.00 / 0.6471 / (0.23, 0.13)

SHTGV 24.83 / 0.6926 / (0.5, 0.3) 23.10 / 0.6645 / (0.6, 0.37)
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Table 3: Comparison of different models in terms of PSNR and SSIM with additive
white Gaussian noise of standard deviation 0.18.

Image MRI3 MRI4
Model PSNR / SSIM / Optimal λ PSNR / SSIM / Optimal λ
ITV 24.57 / 0.7567 / 0.15 25.60 / 0.6891 / 0.15
UTV 24.06 / 0.7354 / 0.18 25.17 / 0.6676 / 0.18
CTV 24.91 / 0.7671 / 0.14 25.83 / 0.6966 / 0.14
STV 25.28 / 0.7810 / 0.25 26.16 / 0.7161 / 0.25
HSTV 25.25 / 0.7739 / 0.25 26.11 / 0.7096 / 0.26
TGV 24.99 / 0.7470 / (0.29, 0.09) 26.11 / 0.6988 / (0.16, 0.12)

SHTGV 25.44 / 0.7893 / (0.4, 0.2) 26.38 / 0.7231 / (0.4, 0.2)
Image MRI5 MRI6
Model PSNR / SSIM / Optimal λ PSNR / SSIM / Optimal λ
ITV 25.96 / 0.6351 / 0.16 23.30 / 0.6245 / 0.14
UTV 25.50 / 0.6173 / 0.19 22.86 / 0.6057 / 0.16
CTV 26.19 / 0.6413 / 0.15 23.58 / 0.6288 / 0.13
STV 26.43 / 0.6541 / 0.26 23.89 / 0.6285 / 0.22
HSTV 26.39 / 0.6429 / 0.26 23.86 / 0.6178 / 0.22
TGV 26.22 / 0.6174 / (0.17, 0.11) 23.67 / 0.5766 / (0.24, 0.08)

SHTGV 26.53 / 0.6444 / (0.4, 0.2) 24.06 / 0.6291 / (0.4, 0.2)
Image Lena Clown
Model PSNR / SSIM / Optimal λ PSNR / SSIM / Optimal λ
ITV 25.45 / 0.7028 / 0.15 23.55 / 0.6866 / 0.14
UTV 25.02 / 0.6800 / 0.19 23.08 / 0.6587 / 0.16
CTV 25.67 / 0.7133 / 0.14 23.82 / 0.6979 / 0.13
STV 25.70 / 0.7189 / 0.25 23.99 / 0.7083 / 0.23
HSTV 25.69 / 0.7160 / 0.25 23.99 / 0.7053 / 0.23
TGV 25.77 / 0.7277 / (0.17, 0.11) 24.16 / 0.7028 / (0.18, 0.09)

SHTGV 25.84 / 0.7283 / ((0.42, 0.23) 24.24 / 0.7149 / (0.44, 0.25)
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Figure 7: Performance comparison of denoised results of MRI7 with additive white
Gaussian noise of standard deviation 0.18. First row, from left to right: reference image,
noisy image, restored results by ITV (optimal λ = 0.17, PSNR = 25.63, SSIM = 0.7555),
UTV (optimal λ = 0.16, PSNR = 25.79, SSIM = 0.7639), and CTV (optimal λ = 0.17,
PSNR = 25.63, SSIM = 0.7555). Second row, from left to right: restored results by
STV (optimal λ = 0.26, PSNR = 25.87, SSIM = 0.7774), HSTV (optimal λ = 0.26,
PSNR = 25.81, SSIM = 0.7507), TGV (optimal λ = (0.17, 0.11), PSNR = 25.84, SSIM
= 0.7113), and SHTGV (optimal λ = (0.46, 0.22), PSNR = 25.99, SSIM = 0.7525).

7 Conclusion

In this paper, a new hybrid TGV model was presented for image denoising.
This model incorporated the advantages of Shannon interpolation, TGV reg-
ularization, and a symmetrized derivative-based l1-norm regularized term.
In comparison with some state-of-the-art techniques, experimental results
illustrated that the proposed model substantially alleviates the staircasing
effect and sharply preserves important image features. In fact, the recon-
structed edges and details by our model were more distinct in comparison
with several current state-of-the-art variational models. As we mentioned in
the paper, most variational models were discretized using a finite-difference
scheme, which cannot be efficiently interpolated using standard interpola-
tion models. In this paper, we observed the efficiency of applying Shannon
interpolation instead of the finite-differences schemes in the structure of vari-
ational models. Shannon interpolation applied in this paper was based on
the Fourier transform. Designing a more powerful structure for Shannon in-
terpolation based on the curvelet transform instead of Fourier transform will
be considered as our future research.
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