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approach for solving systems of nonlinear

equations with application to
Chandrasekhar’s Integral equation
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Abstract

This study aims to present an accelerated derivative-free method for solv-
ing systems of nonlinear equations using a double direction approach. The
approach approximates the Jacobian using a suitably formed diagonal ma-
trix by applying the acceleration parameter. Moreover, a norm descent
line search is employed in the scheme to compute the optimal step length.
Under the primary conditions, the proposed method’s global convergence
is proved. Numerical results are recorded in this paper using a set of
large-scale test problems. Moreover, the new method is successfully used
to address the problem of Chandrasekhar’s integral equation problem ap-
pearing in radiative heat transfer. This method outperforms the existing
Newton and inexact double step length methods.
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1 Introduction

Scientists are interested in nonlinear problems because most engineering, bi-
ology, mathematics, physics, and other science problems are naturally non-
linear. The standard nonlinear equation system is represented by

F(x) =0, (1)

where F' : R" — R™ is a nonlinear map. The space R™ denotes the n-
dimensional real space, || - || is the Euclidean norm, and Fy = F(xy) is used
throughout this paper. Further applications of problem (1) can be found
in chemical equilibrium systems [16] and signal and image processing [25].
The Chandrasekhar H-equation that arises in the theory of radioactive heat
transfer is a nonlinear integral equation that can be discretized into non-
linear equations [20]. Iterative methods for solving these problems include
the Newton and quasi-Newton methods [4, 21, 26, 14], Levenberg-Marquardt
methods [15, 13, 12], matrix-free methods [17, 1, 8], and tensor methods [2].
Typically, the iterative formula for solving these methods is given by

:EkJrl:{Ek-i-akdk, k:071,..., (2)

where x4 1 represents a current iterate, xy is the previous iterate, oy is a step
length, and dj, is the search direction can be calculated by solving system of
linear equations as follows:

Fk+Fédk:07 (3)

where F} is the Jacobian matrix of Fj, at x;. One of the most important
requirements of the line search is to reduce the function values sufficiently
[9, 11], as shown below:

[Ersall < [kl (4)

Irrespective of how appealing the Newton and quasi-Newton approaches
are, the Jacobian matrix or its approximation can be calculated at each
iteration, making them unsuitable for solving large-scale problems. Due to
the drawbacks of these methods, the double direction technique has been
proposed [6], with the following iterate:

Thi1 = Tk + apdy + by, (5)
where dj and by, are search directions, respectively.

Suppose that f is a merit function defined by

£(a) = IF @) (0
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Then problem (1) is analogous to the unconstrained optimization problem
described below:
min f(z), =z €R", (M)

where f: R™ — R, and condition (4) is equivalent to

flag + andy) < f(ak). (8)

The iterative method generating the sequence {z)} that satisfies (4) is called
the norm descent method [9]. If dy, is a descent direction of f at xj, then con-
dition (8) holds for all oy, > 0 small enough. The Newton method (NM) with
line search is norm descent. Nonetheless, di might not be a descent direction
of f at z for quasi-Newton methods, even if the approximation of the Ja-
cobian matrix By, is positive definite and symmetric. Li and Fukushima [14]
proposed an approximately norm-descent line search approach. However, the
proposed method is not norm descent, but they established a global conver-
gence theorem under the assumption that Jacobian is uniformly nonsingular.

The concept of the double direction approach was suggested by Duranovié-
Milicié [6] by using a multi-step iterative scheme and curve search to generate
new iterates. However, in [7], another double direction algorithm was also
presented to minimize nondifferentiable functions. Motivated by the work
presented in [7], Petrovi¢ and Stanimirovié¢ [19] suggested a double direc-
tion model for solving unconstrained optimization problems. They used the
acceleration parameter y; to approximate the Hessian matrix, that is,

sz(zk) ~ 77617 (9)

where I is the identity matrix, and the sequence of iterates {xj} is gener-
ated using (5). The attractive feature of the scheme in [19] is that the two
directions presented in their work are derivative-free. Therefore, it enables
their method to solve large-scale problems. However, the literature is infre-
quent to study derivative-free double direction methods for solving nonlinear
equations. Based upon the idea presented in [19], Halilu and Waziri used
the scheme in (5) to propose a method for solving a system of nonlinear
equations using a double direction approach. They used the acceleration
parameter 7y, > 0 in their work to approximate the Jacobian matrix, that is,

Fy =yl (10)
where [ is an identity matrix and the acceleration parameter is derived as

ygyk
o+ 3yt dy

ekt = | (11)

The method’s global convergent is proved by assuming that the Jacobian of
F is positive definite and bounded. The double direction scheme is justified
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by the fact that scheme (5) contains two corrections. If one of the iterative
corrections fails, then the system will be corrected by the second.

The implementation of double direction is additionally enhanced by
Petrovié [18], where the double step length scheme for the unconstrained
optimization problem is presented as

Tp1 = T + ardy + Brbr, (12)

where ay, and [ are two different step lengths. The numerical results indi-
cated the approach is quite effective compared to the double direction method
in [19]. The authors in [8] incorporated the concept in (12) and transformed
the double step length method for solving (1) to improve the numerical re-
sults and global convergence properties of the double direction scheme. The
numerical results exhibited that the method in [8] is more reasonable than
the method in [10] because it converges faster. Furthermore, the method
[8] is globally converged using the line search proposed in [14]. Motivated
by the work in [8], Halilu and Waziri [11] presented an inexact double step
length method for solving (1). The attractive feature of this method is that
it has a double step length and a single direction that satisfies the decent
properties independent of line search. Despite the good convergence prop-
erties of the method in [10], its numerical performance is defined as weaker.
Therefore, motivated by this reason, we aim to develop a globally converged
derivative-free method with a line search to solve a system of nonlinear equa-
tions without calculating the Jacobian matrix.

Table 1: Authors’ contribution table

Author’s Name Derivative-free | Matrix-free | Double Direction | Global Convergence | Application

Duranovié-Milicié [6] v v v v
Halilu and Waziri [10] v v v v
Duranovic-Milicic (7] v v v v
Musa, Waziri, and Halilu [17] v v

Abdullahi, Waziri, and Halilu [1] v v v v
Petrovi¢ and Stanimirovié [19] v v v v
Kanzow et al. [12] v v
Halilu and Waziri [11] v/ ' v v v
Yuan and Lu [26] v v

Waziri et al. [23] v v v
Halilu and Waziri [8] v v v v
Li and Fukushima [14] v v
Halilu and Waziri [9] v v v v
petrovié [18] v v v v

This article v v v v v

The research gap between the existing method and this article is described
in Table 1 above. The table clearly shows that only the proposed method
is derivative-free, matrix-free, double direction method, globally convergent,
and can be applied to solve discretized Chandrasekhar’s integral equation
among the listed articles.

We now describe how the paper is structured. The proposed method’s
algorithm will be presented in section 2. Section 3 illustrates the convergence
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results. Section 4 contains a list of numerical experiments and applications
of the proposed method to Chandrasekhar’s integral equation, which arises
in radiative heat transfer. Section 5 concludes the paper.

2 Main result

In this section, we present the algorithm of our method. We suggest that the
dy, and by, in (5) are defined as follows:

d, = —v; ' Fy, (13)

and
by = —Fy, (14)

where 7y, > 0 is an acceleration parameter. By substituting (13) and (14)

into (5), we obtain

Tpr1 = g — (g + Ozi'yk)'yk_le. (15)

The acceleration parameter can be obtained using Taylor’s series expansion
below:
Fk-i—l ~ Fi + F’(’Lb)(ﬂ?k_;,_l — J,‘k) (16)

By multiplying (16) through by 0, we have
Ok Fyogr =~ O Fi + 0 F' (¥) (0 + 0 vi ), (17)
where 0, > 0 and 1) satisfies the conditions ¢ € [z, zk41] and
VY =ap+C(Thr1 — k), 0S¢ (18)

Taking ¢ = 1 in (18), obtain ¢ = 4.
We like to make Jacobian approximations via

O () ~ s . (19)
Using (17) and (19), it is easy to confirm that

Yit+15k = Ok, (20)

T
where sg = (o + a3Vk)dk, Yyx = Fry1 — Fi, and 6, = S’%Sk (see [24]).

Yi Sk
The proposed acceleration parameter is defined by multiplying y} on both
sides of (20)
il lyell®
(ar + )2 (vl di)?

Vh+1 = (21)
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Our proposed scheme is given by equation (22) below based on (13) and (15):

Tht1 = T, + (Oék + Ozi’yk)dk. (22)

Algorithm 1 Modification of the double direction approach (MDFDD)

Input: Given zg, o = 1, € = 1075, ¢; > 0, ¢2 > 0, and r € (0,1), set k = 0.
Step 1: Compute F},.

Step 2: If || F|| < ¢, then stop; otherwise, proceed to Step 3.

Step 3: Calculate search direction di = —’ygle.

Step 4: Set xj11 = x) + (ag + a3k )dk, where a = r® with aj, being the
smallest nonnegative integer a such that

flan+ (ak+ajy)de) — fze) < —orl|anFrl]” — gollondr||® + 70 f (zk). (23)

Let {7} be a given positive sequence such that
o0
Z T < T < 00. (24)
k=0

Step 5: Compute Fj1.
[EAR A

(ak +ag)? (vl de)?
Step 7: Consider £k = k + 1 and go to Step 2.

Step 6: Determine ;41 =

3 Convergence Analysis

We present how the proposed Algorithm 2 (MDFDD) converges globally in
this section. Let us start by defining the level set

Q= {af||[F(z)|| < [|F(zo)ll}- (25)
However, we require the following assumptions:
Assumption 1. However, we state the following assumptions:
1. There exists * € R™ such that F'(z*) = 0.

2. F'is continuously differentiable in some neighborhood say @ of * con-
taining €.

3. The Jacobian of F' is bounded and positive definite on Q. That is, there
exist positive constants H > h > 0 such that

|F'(z)|| < H forallzeq, (26)
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and
hl|d||*> < dTF'(z)d forall z € Q,d € R". (27)

Remark 1. We make the following remark:
Assumption 1 implies that there exist constants H > h > 0 such that

hl|d|| < |F'(z)d| < H||d|| for all z € Q,d € R", (28)
hllz =yl < [[F(z) = F(y)ll < H|z —yll  forallz,y Q. (29)

Since ;! approximates Fj, along sy, the following assumption can be
made.

Assumption 2. I is a good approximation to Fy, that is,
1(Fy — veD)dy|| < el Fill, (30)
where € € (0,1) is a small quantity [26].

Lemma 1. Suppose that Assumption 2 holds, and let {x}} be generated by
the MDFDD algorithm. Then dj is a sufficient descent direction for f(xy)
at xy, that is,

Vf(z) dy < | Fxl|?, ¢>0. (31)

Proof. From (13), we have
Vf(ar) dy = Fy Fydy
= FL((F, = wI)di — Fy] (32)
= Fy (Fy =y D)di — || Fe]|?,
by the Cauchy—Schwarz inequality, we have

Vf (k) de < | Fllll(F = yed)de]l = |1F (@)

< —(1- P ()| ()

This lemma is true for € € (0, 1).
We can conclude from Lemma 1 that the norm function f(xy) is a descent
along dj, which means that ||Fj41| < || Fk|| is true. O

Lemma 2. Suppose that Assumption 1 holds, and let {x}} be generated by
the MDFDD algorithm. Then {z;} C Q.

Proof. From Lemma 1, we have ||Fiy1]|| < ||Fk||. Furthermore, for all k,
1Fertll < IFl < [Pl < - < IRl

This means that {z;} C Q. O
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Lemma 3 (see [26]). Suppose that Assumption 1 holds, and let {zx} be
generated by the MDFDD algorithm. Then there exists a constant m > 0
such that for all &,

yi sk > hl|sell”. (34)

Lemma 4. Suppose that Assumption 1 holds and that {z)} is generated by
the MDFDD algorithm. Then

lim |agdi|| = lim ||sg|| =0 (35)
k—o0 k—o0
and
k— o0

Proof. By (23) for all k > 0

dallakdi|® < 1 llaw Fill” + p2londi ]|

(37)
<N Fel? = [1Fra 1?4 7l F5 1.
By summing the above inequality, we have
k k k
d2 > laidi® <D (IEN? = 1Fiall?) + > nill Fill?,
i=0 =0 i=0
k
= |Bol1” = [ Fraall® + D wllFll?,
=0
. (38)
< |[Foll® + 1Foll® Y 7,
i=0
<Rl + (| Fol? ZTi'
i=0

From the level set and the fact that {7} satisfies (24), then the series

Z l|av;d;||? converges. This implies (35). Using the same logic as above,
i=0
but this time with ¢; [|a Fy[|* on the left, we obtain (36). O

Lemma 5. Suppose that Assumption 1 holds, and let {x}} be generated by
the MDFDD algorithm. Then there exists a constant m; > 0 such that for
all £ > 0,

|di|| < B. (39)

Proof. From (13) and (21), we have
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] = | oS e
lyk—10*llsk—11?
[ Exllllst—1[* lyr—1]? (40)
k-1l lye—11?
< |[|Foll-
Choosing B = || Fy||, we have (39). O

Theorem 1. Suppose that Assumption 1 holds, and let {z} be generated
by the MDFDD algorithm. Assume further, for all £ > 0,

|y di|

ap > A—E— (41)
(| ||?
where A is some positive constant. Then
lim [|F|| = 0. (42)
k—o00

Proof. From Lemma 5, we have (39). Also, from (35) and the boundedness
of {||dk||}, we have
lim ay||dx]|? = 0. (43)
k—o0

From (41) and (43), we have

lim |Fldy| = 0. (44)
k—o0
Also, from (13), we have
Fld = = I F?, (45)
172 = 1| = FE di] )
< |ELdi| [ ve-
Since
1 (Yh_15K-1)° B2 |lsk—|l* h?[[sk—1l® _ h*
P e Pllse—a 2 T lus—aPllse—all? T H2[lse—a?  H?
then )
_1 h
e 12 1

Therefore from (46), we have

H2
5P < 15 el (G ) (47)
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As a result,
2 T H2
0 < ||Fx|l* < |Fy; di <h2> — 0. (48)
Hence,
lim ||Fy|| = 0. (49)
k—o0
O

4 Numerical experiments

The first part of this section provides numerical results to demonstrate the
efficacy of the proposed method by comparing it with existing methods.

o IDFDD: Algorithm 1 proposed in [10].
o IDSL: Algorithm 1 proposed in [11].

The MDFDD method is used in the second part to solve the problem of
Chandrasekhar’s integral equation in radiative heat transfer. The computer
codes used were written in MATLAB 9.4.0 (R2018a) and ran on a computer
with a 1.80 GHz CPU processor and 8 GB RAM.

4.1 Experiment of some nonlinear systems of equations

In the experiments, we implemented the three algorithms using the same
1

line search (23), with ¢; = ¢ = 1074, r = 0.2, and 7, = FiDE The
iteration is set to stop for the three methods if ||Fg|| < 1075 or when the
number of iterations overreaches 1000, but there is no z;, meeting the stopping
criterion. The numerical effects of the three methods are shown in Tables 3-9,
where “ITRN,” “CTM(S),” and “IP” represent the total number of iterations,
CPU time (in seconds), and initial points, respectively. In addition, ||Fk||
represents the residual value at the stopping point. The symbol “-” indicates
failure due to a memory requirement or when some iterations exceed 1000.
We tested the three methods on the current seven test problems, each with a
different set of initial points and dimensions (n values). The experiment was
carried out with the dimensions 100, 1,000, 2,000, 10,000, 50,000, and 100,000
to demonstrate the comprehensive numerical experiments of the MDFDD,
IDFDD, and IDSL methods. Table 2 contains the starting points for the test
problems.
The experiments made use of the following test problems:

Problem 1 [§]

COS(

x1+xo )

Fi=x1—¢ nFl
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Table 2: Initial points used in test problems
INITIAL POINTS (IP) VALUES
IP1 (55,97
P2 (L1 H"
1P3 (3,3,....3)7
P4 (2,2,...,5)"
IP5 (0,1,2,...,1-1)7
a\T
IPG (3.5 S5
IP7 (LL L. )7
Ti—1tzitz;
Fi=ux— ews( ! CES +1)
cos(znfﬁ—zn)
F,=z,—e€ ntt 1=2,3,...,n—1
Problem 2 [11]
Fi(z) = 2;(1 + 22p_2Tn_12,) =2+ (1 —22), i=1,2,...,n.
Problem 3 [24]
Fi(z)=2a; —x; (sinxi — %) +2, i=1,2...,n.
Problem 4 [10]
Fi(z) = (21 + 23)21 — 1,
Fi(z) = (#2_1 + 227 + 27 )z; — 1,
F.(z)=(22_, +22)x,, i=2,3,....,n—1.
Problem 5 [10]
Fi(z) =2z; —sin|z;|, ¢=1,2,...,n.
Problem 6 [11]
F(x) = Az + by,
2 —1
-1 2 -1
where A = yand by = (e¥ —1,...,e2 — 1T,
oo —1
-1 2
Problem 7 [§]
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F(x) = Bz + by,
2 -1
02 -1

where B = ,and by = (sinzy; — 1,...,sinz, — 1)7.
R —
-1 2

Table 3: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for

problem 1
MDFDD IDFDD IDSL

Dimension IP "ITRN CIM(S) ||F]| ITRN CTM(S) |F "TTRN CTM(S)  |F:|
100 P16 0.009  7.44E-06 60 0.031 835E-06 41 0.015  9.86E-06
P2 11 0.020  2.67E-06 60 0.023  9.48E-06 42 0013  7.83E-06
P36 0.013  9.57E-06 58 0.022  7.93E-06 40 0022  7.72E-06
P4 7 0.009  7.55E-06 60 0.020  8.73E-06 42 0.015  T7.21E-06
P57 0.023  T7.17TE-06 59 0.023  8.78E-06 41 0.014  7.88E-06
P68 0.024  7.36E-06 61 0.018  849E-06 42 0.026  9.23E-06
P7 10 0.027  6.68E-06 61 0.019  7.64E-06 42 0023  8.3E-06
1,000 IPL 3 0.005  4.35E-07 96 0.057 8.59E-06 45 0.031  7.51E-06
P2 3 0.005  5.13E-07 96 0.077  9.76E-06 45 0.051  8.52E-06
P33 0.007  2.09E-07 94 0.056  8.17E-06 43 0.029  8.41E-06
P4 3 0.005  4.6E-07 96 0.058  8.98E-06 45 0.057  T7.84E-06
P53 0.009  3.17E-07 95 0.057  8.8E-06 44 0.035  8.34E-06
P63 0.007  6.38E-07 97 0.058  8.74E-06 46 0.055  T7.03E-06
P73 0.011  5.66E-07 97 0.092 7.98E-06 45 0051  9.17E-06
10,000 IPT 3 0.017 1.38E-10 111 0.486  9.05E-06 48 0239  8.14E-06
1P2 3 0.035 1.63E-10 112 0.492 7.81E-06 48 0.206 9.24E-06
P33 0.022  6.64E-11 109 0477  8.6E-06 46 0.266  9.13E-06
P4 3 0.034  1.46E-10 111 0.485  9.45E-06 48 0.182  8.51E-06
P53 0.037 1E-10 110 0483  9.23E-06 47 0232  9.01E-06
P63 0.021  203E-10 112 0.500  9.2E-06 49 0182  7.63E-06
P73 0.034  18E-10 112 0490  842E-06 48 0.206  9.97E-06
50,000 IP1 3 0103 496E-13 114 1948  8.88E-06 50 0.752  8.92E-06
P2 3 0.087  5.96E-13 115 1.985  7.66E-06 51 0.778  T.09E-06
P32 0.072  8.87E-06 112 1910  8.44E-06 48 0.718 1E-05
P4 3 0.113  4.96E-13 114 1.949  9.28E-06 50 0.748  9.32E-06
P53 0.101  299E-13 113 1934  9.05E-06 49 0.903  9.87E-06
P63 0.093  6.95E-13 115 1978  9.03E-06 51 0752  8.36E-06
P73 0.079  5.96E-13 115 1.933  8.27E-06 51 0.760  7.65E-06
100,000 IPT 2 0.082  6.57E-06 115 4097  954E-06 51 1.465  8.83E-06
1P2 2 0.116 7.75E-06 116 4.347 8.23E-06 52 1.534 7.02E-06
P32 0.104  3.14E-06 113 3.826  9.07E-06 49 1392 9.9E-06
P4 2 0.108  6.95E-06 115 3.872  9.97E-06 51 1497 9.23E-06
P52 0.104  4.76E-06 114 3.852  9.73E-06 50 1473 9.77E-06
P62 0.095  9.65E-06 116 3.923  9.7IE-06 52 1.536  8.27E-06
P72 0.099  857E-06 116 3.827  8.89E-06 52 1.537  7.57E-06

From Tables 3-9, we can observe that the three methods are trying
to solve (1). However, the improvement and effectiveness of the proposed
method are pretty straightforward. The tables indicated that modifying
the IDFDD method in the proposed scheme is a good improvement. The
MDFDD method remarkably outperforms the IDFDD and IDSL methods
for nearly all the problems assessed since it has the least number of iter-
ations, which are far below the number of iterations for the IDFDD and
IDSL methods. Moreover, the proposed method has less CPU time than the
IDFDD method. However, the MDFDD method has a higher CPU time than
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Table 4: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 2

MDFDD IDFDD IDSL
Dimension IP ITRN CIM(S) ||[F| TITRN CTIM(S) ||Fe] ITRN CTM(S) | Fll
100 P1 13 0.026  6.15E-06 26 0022  7.35E-06 37 0010  8.96E-06
P2 20 0.036  9.95E-06 19 0014  9.06E-06 28 0012 9.49E-06
P3 15 0.043  5.55E-06 30 0022  T7.09E-06 43 0021  7.75E-06
P4 18 0018  446E-06 27 0018  954E-06 33 0017  8.71E-06
IP5 20 0024  62TE-06 64 0041  9.19E-06 34 0.009  8.09E-06
P6 11 0017  5.10E-06 30 0023  T7.6IE-06 38 0012 9.20E-06
P7 23 0.043  6.62E-06 39 0024  G634E-06 43 0021  9.82E-06
1,000 IPL 19 0.062  2.86E-07 28 0020 952E-06 40 0013 9.72E-06
P2 17 0.040  T7.93E-06 22 0025  T751E-06 32 0025  T7.21E-06
P3 20 0072  527E-06 32 0032  9.18E-06 46 0028  8.4E-06
P4 16 0.050  6.52E-06 30 0024  T791E-06 36 0027  9.45E-06
P5 18 0.062  8.70E-06 71 0054 T.79E-06 34 0027  T7.27E-06
IP6 12 0.045  5.73E-06 32 0020  9.85E-06 42 0.039  T7.06E-06
P72 0.065 6.80E-06 43 0018  5.72E-06 43 0032  9.51E-06
10,000 IPI 33 0300 5.24E-06 31 0174  T7.80E-06 44 0.153  7.38E-06
P2 41 0.345  3.48E-06 24 0143  9.72E-06 35 0.131  7.82E-06
IP3 14 0.208  T7.43E-06 35 0129  T7.61E-06 49 0.185  9.11E-06
P4 35 0269  3.35B-06 33 0174  655E-06 40 0101  7.17E-06
P5 17 0220  6.73E-06 70 0209 845E-06 33 0119  9.98E-06
IP6 14 0.207  4.16E-07 35 0119  8.I7TE-06 45 0.141  7.65E-06
IP7 29 0.350  54E-06 44 0.157 8E-06 46 0.137  7.38E-06
50,000 IPL 37 0719  2.83E-06 33 0443  7.23E-06 46 0380  8.08E-06
P2 45 0.792  2.38E-07 26 0339  891E-06 37 0334  8.57E-06
P3 16 0594  2.96E-06 37 0461  6.97E-06 51 0472 9.99E-06
P4 43 1100 9.23E-07 34 0433  9.38E-06 42 0408  7.86E-06
IP5 14 0629  438E-06 73 0825  8.0IE-06 33 0281  9.93E-06
IP6 14 0515  8.34E-06 37 0556  T.48E-06 47 0435  8.39E-06
P7 32 1103 8.78E-06 45 0527  8.09E-06 48 0447 T7.49E-06
100,000 1P1 36 1114 8698-06 34 0759  6.54E-06 47 0.786 SE-06
P2 50 1775 82E-07 27 0.645  8.06E-06 38 0.650  8.48E-06
P3 11 0595  T7.05E-07 37 0.865  9.86E-06 52 0.873  9.89E-06
P4 42 1.368  5.53E-06 35 0760  8.49E-06 43 0.697  T7.78E-06
P5 17 1597 6.23B-06 72 1480  815E-06 33 0.578  9.92E-06
P6 21 1756 3.55E-06 38 0833  G.7TE-06 48 0.775  8.3E-06
IP7 34 2416 6.9E-06 46 1020 9.52E-06 49 0823  T.3E-06
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Table 5: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 3

MDFDD IDFDD IDSL
Dimension IP ITRN CIM(S) ||[F| TITRN CTIM(S) ||Fe] ITRN CTM(S) | Fll
100 P1 16 0034  8.52E-06 32 0012  9.96E-06 37 0010  8.32E-06
P2 12 0.033  9.99E-06 31 0023  884E-06 26 0015  7.7E-06
IP3 20 0.044  225E-06 35 0021  G42E-06 41 0.008  8.47E-06
P4 17 0.021  1.76E-06 32 0025  845E-06 36 0017  7.56E-06
IP5 20 0.045  GOTE-06 34 0012  6.95E-06 40 0020  7.81E-06
IP6 10 0.023  1.06E-06 28 0016  7.37E-06 35 0017  8.38E-06
P7 17 0.030 T7.24E-06 31 0.023 7E-06 35 0.007  8.61E-06
1,000 IPI 22 0071  6.32E-06 35 0047 826E-06 40 0015 9.02E-06
P2 15 0.039  447E-06 34 0.048  T7.33E-06 29 0012  8.35E-06
P3 26 0.074  2.66E-07 37 0044  832E-06 44 0.047  9.19E-06
P4 24 0.038  3.26B-06 35 0032  T7.0IE-06 39 0030  8.2E-06
P5 28 0.051  T7.39E-07 36 0049  9.28E-06 43 0.040  8.83E-06
P6 12 0.037  3.85E-06 30 0026  9.54E-06 38 0.033  9.09E-06
P7 13 0.082 429E-06 33 0.036  7.05E-06 38 0.028  7.25E-06
10,000 IPI 26 0295  6.95E-06 38 0200 6.85E-06 43 0.114  9.78E-06
P2 24 0.345  1.95E-06 36 0194  95E-06 32 0.168  9.05E-06
P3 37 0.506  3.4F-06 40 0181  GIE-06 47 0211  9.97E-06
P4 27 0319  9.21E-06 37 0178  9.09E-06 42 0.118  8.89E-06
IP5 30 0.263  9.76E-06 39 0164  T.7T3E-06 46 0.166  9.64E-06
P6 17 0.331  9.04E-06 33 0136 7.92E-06 41 0.139  9.86E-06
P7 21 0.256  7.66E-06 35 0166  8.76E-06 41 0.154  T7.64E-06
50,000 IPI 29 0.760  6.52E-06 39 0506  9.81E-06 46 0477 7.5E-06
P2 29 0.941  T7.04E-06 38 0520  87E-06 34 0334 9.92E-06
P340 1244 585E-06 41 0529  9.87E-06 50 0.618  T7.65E-06
P4 28 0823  3.9E-06 39 0540  8.32E-06 44 0491  9.74E-06
IP5 35 0871  3.34E-06 41 0540  T.08E-06 49 0575  T.4E-06
IP6 22 0.825  6.22E-06 35 0488  7.25E-06 44 0433 7.56E-06
P72 1.087  8.32E-06 37 0486  7.99E-06 43 0446  8.36E-06
100,000 1P1 36 2601  824E-06 40 0985  8.8%E-06 47 0.888  7.43E-06
P2 33 2573  6.18E-06 39 1132 7.88E-06 35 0727  9.82E-06
IP3 43 2423 9.86E-07 42 1332 8.94E-06 51 1.080  7.57E-06
P4 34 2520 542E-06 40 0998  T7.54E-06 45 0.887  9.65E-06
IP5 42 2712 9.63E-06 42 1.056  6.41E-06 50 0924  T7.32E-06
IP6 20 1531 2.37E-06 36 0904  G6.56E-06 45 0.862  T7.49E-06
P72 1634  54E-06 38 0980 7.23E-06 44 0825  8.27E-06

IJNAO, Vol. 12, No. 2, pp 426-448

Archive of SID.ir



Archive of SID.ir

440 Kiri, Waziri and Halilu

Table 6: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for

problem 4
MDFDD IDFDD IDSL
Dimension [P TTRN CTM(S)  ||F] TTRN CTM(S) |FJl TTRN CTM(S)  |IF
10  IP1 37 0061 003E-06 45 0018 80IE-06 45 0011  S8.46E-06
P2 32 0066 9.00E-06 47  0.020 847E-06 46 0023  8.83E-06
IP3 36 0053 85IE-06 53  0.032 S8.04E-06 54 0025 9.45E-06
IP4 37 0067 T728E-06 47  0.030 8.34E-06 4l 0.019  8.61E-06
IP5 33 0056 8.14E-06 49  0.030 9.87E-06 51 0026  8.19E-06
IP6 41 0044  G693E-06 49  0.022 9.01E-06 52 0010 7.39E-06
IP7 26 0029 T7IIE-06 41  0.022  836E-06 44 0027  9.03E-06
1000 1P1 33 0084 083E-06 46 0036  1E-05 50  0.040 9.31E-06
P2 32 0090 9.25E-06 48  0.030 9.59E-06 49 0039  7.86E-06
IP3 46 0102 5.74E-06 53  0.043 T.68E-06 59 0043  7.05E-06
IP4 28 0063 T2E06 47  0.052 851E-06 47 0017  9.56E-06
IP5 40 0080 951E-06 52  0.059 9.66E-06 50 0018  8.99E-06
IP6 37 0101 849E-06 49  0.032 9.95E-06 55 0052  7.38E-06
IP7 24 0052  793E-06 43 0.032 941E-06 48  0.038  7.61E-06
10,000 1P1 36 0.657 0.6IE06 48 0212 889E-06 53 0.180  0.81E-06
IP2 40 0567  3.06E-06 50 0215 9.42E-06 54 0227  9.17E-06
IP3 58 0594 9.09E-06 53  0.234 8.38E-06 64 0216  9.44E-06
IP4 39 0761 9.19E-06 50  0.235 9.73E-06 50 0190  9.54E-06
IP5 51 0.718 T754E-06 54 0283  1E05 51 0244  8.49E-06
IP6 49 0751  59E06 54 0254 T7.38E-06 58 0190  7.3E-06
IP7 34 0341  9.06E-06 43 0221  9.2E-06 48  0.165  8.37E-06
50,000 IP1 36 2321  6.59B-06 48 0.698  0.53E-06 56 0595  7.59E-06
P2 39 1581 T7.05E-06 53 0770 9.97E-06 54  0.666  8.81E-06
IP3 68 2331 927E-06 55  0.810 8.88E-06 63  0.670  8.20E-06
IP4 34 1625 501E-06 51  0.752  9.55E-06 51 0537  8.47E-06
IP5 53 2435  9.69E-06 55  0.795 883E-06 53 0638  7.TE-06
IP6 48 2340 873E-06 54  0.834 9.04E-06 61  0.676  9.28E-06
IP7 38 1301 277E-06 44  0.655  8.59E-06 50  0.560  8.04E-06
10,0000 1P1 41 4922 9.02E-06 49 1467 9.82E-06 54 1132  0.69E-06
P2 46 4246  9.16E-06 53 1650  9.8E-06 59 1311  9.21E-06
IP3 73 4694  52E06 55 1908  9.38E-06 63 1342  9.92E-06
IP4 46 4739  6.53E-06 52 1455  86E-06 55  LI113  9.46E-06
IP5 59 5184 346E-06 56 1598  S8.14E-06 58 1240  9.03E-06
IP6 53 365  91E06 55 158 8.23E-06 61 1309 8.11E-06
IP7 39 2125  545E-06 44 1418  9.99E-06 51 1.079  7.92E-06
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Table 7: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 5

MDFDD TDFDD TDSL
Dimension IP ITRN CTM(S)  ||Fil ITRN CTM(S) ||[Fs| ITRN CTM(S)  |Fkl
100 T 19 0026 241E-06 48 0.031  9.76E-06 37 0.023  9.63E-06
P2 16 0015  58E-06 45 0.015  87E-06 35 0.007  7.63E-06

1P3 16 0.037 6.63E-06 53 0.033 8.1E-06 41 0.008 7.85E-06
1P4 13 0.026 1.27E-06 48 0.036 7.74E-06 37 0.007 7.61E-06
IP5 14 0.032 2.97E-06 51 0.032 8.6E-06 39 0.012 9.66E-06
1P6 6 0.007 7.47E-07 48 0.027 7.65E-06 33 0.014 8.53E-06
IP7 12 0.029 8.6E-06 44 0.019 7.78E-06 34 0.012 7.58E-06

1,000 IP1 14 0.042 3.31E-06 53 0.035 7.83E-06 41 0.025 7.31E-06
1P2 10 0.036 5.19E-06 49 0.054 9.18E-06 38 0.019 8.27E-06

1P3 17 0.041 6.63E-06 57 0.048 8.55E-06 44 0.039 8.51E-06
1P4 19 0.040 3.13E-06 52 0.060 8.17E-06 40 0.013 8.26E-06
IP5 9 0.028 4.13E-06 55 0.057 9.45E-06 43 0.036 7.66E-06
IP6 9 0.039 2.42E-07 52 0.030 8.07E-06 36 0.018 9.25E-06
x7 11 0.052 9.45E-06 44 0.040 7.8E-06 34 0.019 7.6E-06

10,000 IP1 13 0.237 5.88E-07 57 0.215 8.26E-06 44 0.108 7.93E-06
1P2 15 0.333 6.48E-06 53 0.171 9.69E-06 41 0.112 8.97E-06
IP3 16 0.202 1.66E-06 61 0.192 9.02E-06 47 0.159 9.23E-06
1P4 13 0.150 7.8E-06 56 0.254 8.62E-06 43 0.132 8.95E-06
IP5 19 0.402 3.93E-06 60 0.225 7.63E-06 46 0.213 8.36E-06
IP6 13 0.213 3.62E-06 56 0.252 8.52E-06 40 0.093 7.02E-06
IP7 13 0.211 2.74E-07 44 0.153 7.8E-06 34 0.079 7.6E-06
50,000 IP1 10 0.618 1.34E-07 60 0.664 8.1E-06 46 0.398 8.69E-06
P2 12 0.552 4.71E-06 56 0.604 9.51E-06 43 0.349 9.83E-06

IP3 12 0.465 5.39E-06 64 0.722 8.85E-06 50 0.422 7.08E-06
1P4 17 1.063 2.64E-06 59 0.689 8.46E-06 45 0.441 9.81E-06
IP5 17 0.961 5.8E-06 62 0.693 9.86E-06 48 0.379 9.17E-06
IP6 11 0.534 5.8E-06 59 0.655 8.36E-06 42 0.332 7.69E-06
IP7 12 0.682 1.68E-06 44 0.500 7.8E-06 34 0.287 7.6E-06
100,000 IP1 11 1.156 7.49E-06 61 1.299 8.71E-06 47 1.125 8.61E-06
P2 9 0.684 4.11E-06 58 1.145 7.77E-06 44 0.871 9.73E-06
IP3 14 1.359 7.52E-06 65 1.336 9.51E-06 51 0.805 7.01E-06
1P4 10 1.360 TE-06 60 1.480 9.09E-06 46 0.873 9.71E-06

IP5 15 1.204 4.48E-06 64 1.405 8.05E-06 49 0.877 9.08E-06
1P6 17 1.563 1.77E-06 60 1.206 8.99E-06 43 0.699 7.62E-06
IP7 11 1.106 1.63E-06 44 1.113 7.8E-06 34 0.520 7.6E-06
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Table 8: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for

problem 6
MDFDD IDFDD TDSL
Dimension [P TTRN CTM(S) ||Fy] TTRN CTM(S) |Fi| TTRN CTM(S)  ||F|
100 1P 27 0205 846E-06 52  0.128 0.42E-06 38 0073 8.21E-06

1P2 20 0.195 6.73E-06 47 0.104 7.62E-06 35 0.072 8.98E-06
1P3 44 0.264 8.86E-06 60 0.132 9.66E-06 40 0.068 8.38E-06
P4 31 0.319 7.88E-06 51 0.115 9.37E-06 37 0.068 9.22E-06
IP5 34 0.264 4.6E-06 55 0.123 9.69E-06 40 0.071 7.5E-06
1P6 24 0.239 5.94E-06 47 0.116 8.84E-06 35 0.061 9.78E-06
IP7 22 0.213 7.94E-06 45 0.106 7.77E-06 37 0.067 9.35E-06
1,000 IP1 31 2.441 9.82E-06 54 1.154 9.19E-06 41 0.664 8.53E-06
P2 25 2.532 8.98E-06 50 1.092 9.64E-06 38 0.608 9.09E-06
1P3 59 2.687 8.13E-06 57 1.178 8.11E-06 43 0.697 8.2E-06
P4 31 2.273 8.28E-06 53 1.135 8.6E-06 40 0.638 9.51E-06
IP5 45 2.836 8.66E-06 55 1.133 9.24E-06 43 0.680 8.2E-06
1P6 25 2.066 8.18E-06 49 1.047 7.81E-06 38 0.614 9.21E-06
IP7 22 2.083 6.55E-06 45 0.988 7.83E-06 37 0.587 9.37E-06
2,000 IP1 26 5.618 4.72E-06 56 3.854 7.96E-06 42 2.135 8.42E-06
P2 25 6.920 9.43E-06 52 3.626 8.66E-06 39 2.011 8.95E-06
1P3 59 8.466 7.28E-06 59 4.029 9.91E-06 44 2.260 8.07E-06

1P4 27 6.605 8.86E-06 55 3.972 8.4E-06 41 2.090 9.39E-06
IP5 43 7.773 7.29E-06 60 4.223 9.13E-06 44 2.283 8.13E-06
1P6 27 7.955 6.38E-06 51 3.586 7.86E-06 39 1.978 8.99E-06

IP7 25 8.424 6.73E-06 45 3.235 7.83E-06 37 1.891 9.37E-06

Table 9: Numerical outcomes of MDFDD, IDFDD, and IDSL methods for
problem 7

MDFDD IDFDD IDSL
Dimension IP ITRN CTM(S) |Fx]|| TITRN CTM(S) |[|[Fx] TITRN CTM(S) |Fll

100 PT 17 0226 9.74E-06 34 0.080  7.68E-06 31 0.053  9.24E-06

P2 23 0.253  5.6E-06 41 0.099  8.19E-06 36 0.063  9.62E-06

IP3 26 0.221  8.98E-06 45 0.102  7.32E-06 40 0.067  7.41E-06

P4 16 0.175  8.8E-06 38 0.082  7.76E-06 34 0.063  7.14E-06

P5 22 0.174  6.76E-06 42 0.110  9.28E-06 38 0.076  7.42E-06

IP6 24 0.168  8.55E-06 44 0.100  7.63E-06 39 0.088  8.13E-06

P7 21 0.164  5.67E-06 42 0.094 9.17E-06 38 0.073  7.26E-06

1,000  IP1 17 1582 8.61E-06 35 0743 831E-06 31 0.497  9.65E-06

P2 24 1.553  9.77E-06 44 0.940  9.98E-06 40 0.646  7.28E-06

P3 28 1.807  4.01E-06 48 1.012  8.61E-06 43 0.687  7.64E-06

P4 22 1.580  T7.03E-06 41 0.870  9.4E-06 37 0.592  7.62E-06

P5 25 1.827  78E-06 46 1.024  8.31E-06 41 0.657  8.08E-06

IP6 25 1.422 7.42E-06 47 1.046 9.26E-06 42 0.670 8.73E-06
1P7 28 1.849 8.2E-06 46 1.069 8.51E-06 41 0.655 8.27E-06
2,000 IP1 18 5.262 7.49E-06 36 2.459 7.66E-06 32 1.656 8.08E-06
1P2 28 5.929 8.16E-06 46 3.167 7.43E-06 41 2.121 7.21E-06
1P3 31 6.115 6.11E-06 49 3.397 8.82E-06 44 2.235 7.54E-06

1P4 27 6.253 9.63E-06 42 2.907 9.64E-06 38 1.995 7.54E-06
IP5 30 7.231 5.2E-06 47 3.298 8.55E-06 42 2.194 8.01E-06
1P6 31 6.675 4.99E-06 48 3.387 9.5E-06 43 2.283 8.64E-06
1P7 25 6.070 5.32E-06 47 3.219 8.77E-06 42 2.188 8.22E-06
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the IDSL method due to the computation of double direction in the MDFDD
methods.

Figures 1-2 display the interpretation of the numerical results of each of
the three methods using Dolan and Moré [5] performance profiles. We achieve
this by plotting fraction p(7) of problems for each method within 7 of the
smallest number of iterations and CPU time. As shown in Figures 1 and
2, the curves representing the MDFDD method remain above the IDFDD
and IDSL methods in number iterations. Furthermore, it is above the curve
representing the IDFDD method for the CPU time. Therefore, the proposed
method outperforms the IDFDD and IDSL methods in fewer iterations and
is thus the most efficient method. Finally, from the results in Tables 3-9, it
is evident that the MDFDD method successfully solves problem (1).

Figure 1: Performance profile with respect to the number of iterations

4.2 Application in integral equations

Chandrasekhar and Breen [3] computed H-equation as the solution of the
nonlinear integral equation that gives the complete nonlinear equations tech-
nique. The nonlinear integral equation arising in radiative heat transfer prob-
lem is given by

Hi) =1+ cEm) [ W

dy, 50

IJNAO, Vol. 12, No. 2, pp 426-448

Archive of SID.ir



Archive of SID.ir

444 Kiri, Waziri and Halilu

Figure 2: Performance profile with respect to the CPU time (in second)

with parameter ¢ € [0,1] and H : [0,1] — R is an unknown function.

Equation (50) can be written as

1
c [*xzH(y) ]
H =|1—-= dy| = 1. 51
@=[1-5 [ =y 51)
. . . . c 1 Q;H(y) -1
By multiplying both sides of (51) with (1 -5/ mdy) , we have
¢ [PaHE) N\

F(H)(z) = H(z) — (1- £ dy) =0, 52
(1) = @) - (1- 5 [ 2204, (52

which is called the Chandrasekhar H-equation [23]. However, (52) can be
discretized by using the midpoint quadrature formula

|t =n3 riw) (53)

for puj = (5 —0.5)h, 0< j < 1,and h = 1.

n

As a result, we have the following system of nonlinear equations:
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—1
€~ i
(3 . .
Fix)=a;,— |1 - — L7 1=1,2,....,n, j=12...,n,
2n o pi

(54)

which is known as the discretized Chandrasekhar H-equation that can be
solved by using some iterative methods. If the initial point zo = (1,1,1,...,1)%,
then the system in (54) has a solution for all ¢ € (0,1). However, the hardest
part of the problem (54) is that the Jacobian is singular at ¢ = 1. Therefore
as ¢ approaches 1, the Jacobian approaches the singularity point. Since our
method is derivative-free, then it has the advantage to solve problem (54)
even when ¢ approaches 1.

To highlight the performance of the MDFDD approach furthermore, we
conduct some numerical experiments by comparing it with the classical NM,
IDFDD method [10], and IDSL method [11]. The iteration is also set to
terminate when ||z41 — xx|| + || Fk|| < 1075 or when the iterations exceed
1000, but no point of xj satisfying the stopping criterion. We have tried the
three methods with the starting point of g = (1,1, 1,...,1)T. Furthermore,
we use the dimensions (n values) 100 to 20,000 to show the performance of
each of the three methods.

Table 10: Numerical results of discretized Chandrasekhar H-equation

NM IDFDD IDSL MDFDD
Dimension ITER TIME ITER TIME ITER TIME ITER TIME

100 12 0.078 38 0.029 13 0.015

500 15 0.785 - - 41 0.017 14 0.015

c=0.1 1000 15 3.056 - - 42 0.018 11 0.018

10000 20 1747 - - 45 0.150 12 0.141

20000 - - - - 46 0.219 20 0.349

100 13 0.111 - - 38 0.009 9 0.009

500 15 0.789 - - 41 0.022 17 0.029

c¢=0.9 1000 18 3.729 - - 42 0.026 15 0.024

10000 - - - - 45 0.231 15 0.215

20000 - - - - 46 0.216 14 0.377

100 13 0.111 - - 38 0.012 12 0.011

500 17 0.874 - - 41 0.032 17 0.020

c=0.99 1000 18 3.733 - - 42 0.019 12 0.018
10000 - - - - 45 0.123 11 0.125

20000 - - - - 46 0.218 13 0.285

100 13 0.112 - - 38 0.019 13 0.014

500 17 0.883 - - 41 0.013 16 0.018

¢=0.999 1000 18 3.766 - - 42 0.025 16 0.029
10000 - - - - 45 0.130 13 0.176

20000 - - - - 46 0.318 12 0.282

The numerical results of the methods used to solve Chandrasekhar H-
equation with different values of parameter ¢, are shown in Table 10. The
table clearly indicates that the proposed method outperformed the NM be-
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cause the NM failed when the number of dimension increased. This is due
to the fact that as ¢ approaches 1, the Jacobian approaches the singularity
point. Moreover, the CPU time (in second) of the NM is higher than other
methods because it solved the Jacobian matrix at each iteration. From Table
10, we can also observe that the IDFDD method has totally failed because it
has poor numerical performance, as we have made mentioned earlier in the
introduction section of this article. Although, the IDSL method solved prob-
lem (54) completely, but it has more number of iterations than the MDFDD
method. This shows that our method has effectively solved the discretized
Chandrasekhar H-equation with the least number of iterations and CPU time.

5 Conclusion

In this article, numerical comparisons were made using a set of large-scale
test problems. Furthermore, Tables 3-9 and Figures 1-2 showed that the pre-
sented method is practically quite efficient because it has fewer iterations than
the IDFDD and IDSL methods. Furthermore, we have successfully used the
proposed method to deal with experiments on the Chandrasekhar H-equation
in radiative heat transfer. The experiments were carried out and reported
in Table 10 with different ¢ values, demonstrating a better efficiency for the
MDFDD method. The numerical results showed that the employed method
solved the discretized integral equation with fewer iterations and CPU time
than the NM, IDFDD, and IDSL methods. Future research includes apply-
ing the MDFDD scheme to solve the discretized three-dimensional nonlinear
Poisson problem.
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